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Abstract: We consider the general many-to-one matching model with ordinal pref-
erences and give a procedure to partition the set of preference profiles into subsets
with the property that all preference profiles in the same subset have the same Core.
We also show how to identify a profile of (incomplete) binary relations containing the
minimal information needed to generate as strict extensions all the (complete) prefer-
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1 Introduction

The purpose of this paper is to study the invariance of the Core of ordinal many-to-one
matching problems with respect to changes on firms’ preference relations on subsets of
workers. An ordinal many-to-one matching problem (a matching problem for short) consists
of two non-empty and disjoint sets of agents: the set of firms (or institutions like schools,
colleges, hospitals, etc.) and the set of workers (or individuals like children, students,
medical interns, etc.). An allocation for a matching problem is a matching among firms
and workers with the property that each worker can be matched to at most one firm and
each firm is matched to a (possibly empty) subset of workers, keeping the bilateral nature
of the relationships in the sense that if a worker is matched to a firm this firm is matched
to a subset of workers that contains this worker. Each worker has a strict preference
relation on the set of firms plus the prospect of remaining unmatched. Each firm has a
strict preference relation on the set of all subsets of workers. A preference profile is a list
of preference relations, one for each agent. The Core of a matching problem (at a given
preference profile) is the set of matchings that are not blocked; namely, a matching belongs
to the Core if there is no subset of agents (a coalition of firms and workers) such that, by
rematching only among themselves, each agent gets a weakly better partner and at least
one of them gets a strictly better one.

The first result of the paper (Theorem 1) characterizes the family of equivalence classes
of preference relations of each firm with the property that two preference relations are in
the same class if and only if they have the same Core for all preference relations of the
remaining agents. Our invariance result in Theorem 1 identifies those orderings between
pairs of subsets of workers in a preference relation of a firm that, if inverted, the Core
remains unchanged for all possible preference relations of the other agents. In other words,
Theorem 1 identifies irrelevant changes on a preference relation of a firm that leave the Core
invariant, irrespectively of the other agents’ preference relations. The way of proceeding

with this identification is as follows. Take a preference relation of a firm. First, construct



the family of individually rational subsets of workers (a set of workers S belong to the
family if and only if the firm prefers the set S to all of its strict subsets). Second, define
a binary relation on this family as follows: given two subsets of workers S and S’ in the
family declare that S is preferred to S’ (according to the binary relation) if and only if S
is the best subset (according to the original and complete preference relation of the firm)
among all subsets of S U S’; otherwise, the two subsets of workers are left unordered by
the binary relation. Observe that in general this binary relation is not only defined on
a subfamily of subsets of workers but it is also incomplete. It turns out that this binary
relation can be used as the representative of one equivalence class of preference relations
of the firm because all preference relations that share the same binary relation constructed
as we just described have the property that the Core is the same regardless of the other
agents’ preference relations.

Theorem 1 extends and generalizes our previous result in Martinez, Mass6, Neme, and
Oviedo (2008) where we construct this invariant partition only for the subclass of substi-
tutable preference profiles.! If the preference profile is substitutable the Core and the set
of stable matchings coincide, are non-empty, and the binary relations obtained from the
preference relations of the firms, as we have described above, are partial orders.

In general, the binary relation used to represent the equivalence class formed by all
preference relations of a firm that leave the Core invariant still relates too many pairs of
subsets of workers. In centralized matching markets in which Core mechanisms (stable ones,
whenever firms’ preferences are substitutable) are used to suggest to the participants —after
collecting and processing their preference relations— a matching in the Core, it would be
very useful to use the smallest possible amount of information contained in the preference

profile that still allows to compute a Core matching relative to this preference profile.?

LA preference relation of a firm is substitutable if the desirability of a worker w in a particular set of
workers does not come from the presence of another worker w’ in that set because the firm still wants to hire
worker w even when worker w’ is not available anymore; i.e., substitutable preference relations do not exhibit
strong complementarities among workers. A preference profile is substitutable if the preference relations of
all firms are substitutable. Kelso and Crawford (1982) were the first to define and use substitutability in a

more general matching model with money.

2See Roth and Sotomayor (1990) for a general description and analysis of these centralized markets.

Niederle, Roth, and Sénmez (2008) contains a recent overview on matching and market design in general.



Thus, and in order to identify this minimal amount of information, we give a procedure to
construct the minimal binary relation contained in the binary relation identified in Theorem
1, with the property that it still can generate all preference relations in the same equivalence
class (that is, with the same Core) as their strict extensions. Furthermore, this binary
relation is minimal in the sense that any strictly weaker (i.e., strictly contained) binary
relation has at least two strict extensions that belong to different equivalence classes and
thus have different Cores for some preference relations of the other agents.

Observe that the question of finding the minimal binary relation that can generate
all equivalent preference relations was not even asked in Martinez, Massé, Neme, and
Oviedo (2008) for the subclass of substitutable preference relations. Thus, the marginal
contribution of this paper in relation to our former one is two-fold. We first extend the result
of Theorem 1 from substitutable preference relations to any preference relation. Second,
we identify for each preference relation (substitutable or not) the minimal binary relation
that can be used as the representative of each equivalence class of preference relations with
an invariant Core. This binary relation contains the indispensable and, at the same time,
minimal information to generate the full class.

Echenique (2008) answers a related question. Suppose we observe a set of matchings
and we do not know agents’ preference relations. Are there preference relations for the
agents so that the observed set of matchings are stable?® If yes, the set of matchings is
said to be rationalizable. Echenique (2008) first shows that there are sets of matchings that
are not rationalizable (and thus, the theory is testable) and second he identifies conditions
that characterize the sets of matchings that are rationalizable: a necessary condition is
that a certain graph has no odd cycles and a necessary and sufficient condition is in terms
of no odd cycles and a certain system of polynomial inequalities. However, his results
are different from ours in many respects. Echenique (2008)’s results apply only to the
one-to-one matching model while ours apply to the more general many-to-one matching
model. His results are in graph-theoretical terms and deal with the full preference profile
by identifying how agents can rank potential partners given the set of matchings to be
rationalizable. In contrast we identify, given a preference relation of a firm over subsets of

workers (and independently of the other agents’ preferences), those relations between pairs

3Chambers and Echenique (2008) ask a similar question for a cardinal matching model.



of subsets of workers that are critical from the point of view of the Core and those that are
not.

Before finishing this Introduction we want to emphasize that, besides their intrinsic
interest, our invariance and minimality results have a relevant informational implication.
They show that the amount of information about firms’ preferences required to compute the
set of Core matchings may be significantly smaller than the amount needed to describe their
complete preference relations. This may be specially relevant for running direct preference
revelation Core mechanisms in centralized entry-level professional labor markets. Moreover,
our results may have computational and behavioral implications since they may simplify
the task of computing the set of Core matchings as well as the analysis of the strategic
behavior induced on firms by centralized Core matching mechanisms (in particular, to find
either best-replies or unilateral deviations may be substantially easier). Finally, our results
can be straightforwardly extended to the Core of ordinal many-to-many matching markets.

The paper is organized as follows. In Section 2 we present the notation, the basic
definitions, and some preliminary results. In Section 3 we state and prove the invariance
result for the set of Core matchings. In Section 4 we define the notions of minimal binary
relation, strict extension and state and prove the minimality result. Finally, in Section 5 we
conclude with final remarks, including a very preliminarily analysis of the computational

aspect of our approach.

2 Preliminaries

2.1 Agents and Preferences

Let W be the set of workers and let F' be the set of firms. We assume that W and F
are finite and disjoint. The set of agents is W U F. Each worker w € W has a preference
relation P, on the set of firms plus the prospect of remaining unemployed. We assume
that P, is strict. Specifically, P, is a complete, irreflexive, and transitive binary relation

on F U {@}, where @ means that w is not hired by any firm.* Given P,, let R, be the

*A binary relation = on X is (i) complete if for all z,y € X such that z # y, either x = y or y = =z (ii)
irreflexive if © % x for all x € X and (iii) transitive if for all z,y,z € X such that z > y = z, > z holds.



weak preference relation on F'U{@} induced by P, as follows: for f, f' € FU{@}, fRy,f’
if and only if either f = f" or fP,f’. Then, R, is a complete, reflexive, antisymmetric,
and transitive binary relation on F' U {@}.° Each firm f € F has a preference relation
P; on the family of all subsets of workers. We assume that Py is strict. Specifically, Py
is a complete, irreflexive, and transitive binary relation on 2", where the empty set is
interpreted as the prospect of not hiring any worker. Given firm f’s preference relation P
and a subset of workers S, Ch(S, Py) denotes f’s most-preferred subset of S according to
Ps. Generically, we will refer to this set as the choice set. Given Py, let Ry be the complete,
reflexive, antisymmetric, and transitive binary relation induced similarly on 2V by P;. A
preference profile P = ((Pf) fer, (Puw)wew) is a | F|+|W| —tuple of preference relations, one
for each agent. Given a preference profile P and f’s preference relation P;, we will denote
by (P, P_y) the original preference profile P after replacing Py by P; and refer to P_;
as a subprofile. Given a preference relation Py of firm f, the subsets of workers preferred
to the empty set by f are called acceptable. Similarly, given a preference relation P, of
worker w, the firms preferred to the empty set by w are called acceptable. By convention,
we declare the empty set as being acceptable for all agents. Since the set of agents will be

fixed throughout the paper, we identify a matching problem with a preference profile P.

2.2 Matchings and the Core

A matching assigns each firm to a subset of workers (possibly empty) and each worker to
at most one firm, keeping the bilateral nature of the relationship; i.e., worker w works for
firm f if and only if firm f hires worker w.

Definition 1 A matching is a mapping 1 : W U F — 2FYW with the properties:
(ma.1) p(f) € 2V for all f € F;

(ma.2) p(w) € 2F and |pu(w)] < 1 for all w € W; and

(ma.3) w € u(f) if and only if p(w) = f.5

5 A binary relation = on X is (i) reflezive if z = z for all # € X and (ii) antisymmetric if, for all z,y € X

such that x = y and y > x, x = y holds.
SWith a slight abuse of notation we treat u(w) # @ as an element of F instead of one of its subsets; for

instance, we write u(w) = f instead of u(w) = {f}.



If matching is voluntary it should be immune to any secession of a coalition of agents
that, by matching only amongst themselves, could obtain better partners by breaking the
former partnerships and creating new ones (a block). The Core is the set of matchings that

are not blocked by any coalition of agents.

Definition 2 Let P be a preference profile and let i be a matching. Coalition W/ U F’ C
W U F blocks pu if there exists another matching ' such that:

(bl.1) p/(f) C W' for all f € F;
(bl.2) either y/(w) = @ or p/(w) € F’ for all w € W’; and
(bl.3) for all f € F,

W) Rep(f), (1)
for all w € W/,

p (w) Ruppu(w), (2)
and at least one of the weak preferences in (1) and (2) is strict.

Definition 3 Let P be a preference profile. A matching p belongs to the Core (at P) if

it is not blocked by any coalition.

A matching p is individually rational (at P) if p(w)R,@ for all w € W and u(f) =
Ch(u(f), Py) for all f € F. Denote by I R(P) the set of individually rational matchings at
P. A matching p is pair-wise stable (at P) if there is no unmatched pair (w, f) € W x F
such that fP,u(w) and w € Ch(pu(f)U{w}, Pf). The set of stable matchings (at P) is the
set of individually rational matchings that are pair-wise stable. Let S(P) denote the set
of stable matchings (at P) and let C(P) denote the set of matchings in the Core (at P).
Obviously, C(P) C S(P) for all P. It is well-known that there are preference profiles for
which the Core (and the set of stable matchings) is empty.

Kelso and Crawford (1982) proposed (in a more general many-to-one matching model) a
condition on the preference relations of firms, called substitutability, with the property that
if in a profile P all firms have substitutable preference relations then the Core is non-empty
and coincides with the set of stable matchings. For this reason substitutability has played

a central role in the analysis of many-to-one matching models.

Definition 4 A firm f’s preference relation P; satisfies substitutability if for any set S
containing workers w and w’ (w # w’), if w € Ch (S, Py) then w € Ch (S\ {w'}, Py).

6



Substitutability precludes strong complementarities among workers since it requires that
the desirability of a worker w in a particular set S does not come exclusively from the
presence of another worker w’ in that set; i.e., the firm still wants to hire worker w even
though worker w’ is not available anymore; thus, w is a good worker (in the context of the set
S) not only because of the presence of w’. A preference profile P is substitutable if for each
firm f, the preference relation P satisfies substitutability. Let S be the set of substitutable
preference profiles. For any substitutable preference profile P € S, C(P) = S(P) # @.
However, there are non substitutable preference profiles P for which C(P) # &.

2.3 Extracting Binary Relations from Firms’ Preferences

Consider a preference relation of a firm on the family of all subsets of workers. Our objective
is to distinguish among all orderings between pairs of subsets of workers those that are
irrelevant for the Core from those that are relevant in the following sense. Take S and S’
and assume that SP;S’. Consider a new preference relation P; with the property that it
coincides with Py except that S'P;S. Then either C'(Pf, P_y) = C(Py, P_y) for all P_ (in
which case the ordering between S and S’ is irrelevant for the Core) or else there exists at
least one P’ , such that C(Py, P’ ;) # C(P}, P’ ;) (in which case the ordering is relevant).
To attain this objective we proceed by first selecting from the family of all subsets of
workers a subfamily on which we will then define a binary relation that keeps only the
relevant orderings (from the point of view of the Core) between subsets of workers. But
before, we need some additional notions and notation.

Let A be a non-empty subfamily of subsets of W containing the empty set; i.e., A C 2V
and @ € A. A partial order = on A is a reflexive, transitive, and antisymmetric binary
relation on A. Observe that weak preference relations of firms are complete partial orders
on 2. Given a binary relation > on A, let = be the antireflexive and transitive binary
relation on A induced by > on A as follows: for 5,5 € A, S = S if and only if S = 5’
and S # S’. A binary relation = on A is acyclic if for all Sy, ..., Sy € A such that S; # S,
S1 = ... = S implies S, % S1. A binary relation = on A has a mazimal element on B C A
if there exists S € B such that for all S” € B with §" # S, S > S’ holds where > is induced
by =. Then, given a preference relation P; and a set S € 2", P; has a maximal element
on the family of all subsets of S. We have denoted this set by Ch(S, Pf) and called it the



choice set of S according to Pf; namely, Ch(S, Py)P;S' for all S" € 25\Ch(S, P}).

It will be useful to understand (and to denote) a binary relation > on A as a subset of
A x A; namely, for all S\T € A, (S,T) €-C A x A if and only if S > T. Hence, for two
binary relations >~ and >’ on A the notation »C>’ means that if 5,5’ € A and S = 5’
then, S =’ 5’.

After these preliminaries we now turn to define the procedure to delete from the pref-
erence relation of a firm the orderings between those pairs of subsets of workers that are
irrelevant with respect to the set of matchings in the Core. First, subsets that are not the
choice set of themselves can be left unordered since no matching in the Core, regardless
of the other agents’ preference relations, matches this firm with any of these subsets. For-
mally, given the preference relation P; on 2", define the family A p; of individually rational
subsets of workers relative to Py as the collection of sets that are choice sets of themselves;
that is,

Ap, ={S €2V | §=Cn(S, Py)}.

Second, some pairs of subsets of workers in Ap, will be left unordered. Specifically,

define the binary relation =p, on Ap, obtained from Py as follows: for all S, 5" € Ap,,
S =p, S"if and only if S = Ch(SUS’, Py).

Again, the binary relation =p, on Ap, leaves as unordered (i) all sets in 2W that are
not the choice of themselves and (ii) those pairs of sets in Ap, whose union contains a
set that is preferred to each of the two sets.” Martinez, Mass6, Neme, and Oviedo (2008)
show that if P; is substitutable then =p, is a partial order on Ap, and (Ap;, =p;) is a
semilattice; namely, for every S,5" € Ap,, luby P 15,8} € Ap, (where, given a family of
subsets 7, lubs Pf’T is the least upper bound of 7'). Example 1 below shows that if Py is

not substitutable then the binary relation = p, may not be transitive.
Example 1 Let W = {wy,wy, w3, wy, ws} be the set of workers and let f be a firm.

Consider the preference relation

Pf : {wlﬁ w5}a {w1> w2}7 {w3a w4}> {w47 w5}7 {®}>

"Blair (1988) was the first to use this binary relation when showing that the set of stable matchings

with multiple partners has a lattice structure.



where we only list acceptable subsets of workers in decreasing order of preference. Observe
that Py is not substitutable since ws € Ch(W, Pf) and ws ¢ Ch(W\{w:}, Py) = {ws, w4}.
Moreover, the family of individually rational subsets of workers relative to Py is Ap, =
{{wy, ws}, {wy, wa}, {ws, wy}, {wy, ws},{@}} and

{wy,we} = Ch ({wy, wa} U{ws, wy}, Py),
{ws, ws} = Ch ({ws, ws} U{wy, w5}, Ps), and
{wl, w5} =Ch ({wl, U}Q} U {w4,w5}, Pf) .

Hence, {w1,wa} =p, {ws,ws} =p, {ws,ws} but {wy, wy} ipf {wy, ws}. Thus, the binary
relation =p, is not transitive and (Ap,, = p,) is not a semilattice. O

Example 1 shows that the binary relation = p, may be incomplete on Ap, (both {w;,wy} * P
{ws, w5} and {wy, w5} #p, {w1, w2} hold) and that it may not inherit the transitivity of Py.
Nevertheless, Remarks 1 and 2 below establish that the binary relation > Py inherit some

other properties from the preference relation P;.
Remark 1 Let 5,5 € Ap, be such that S =p, S". Then, SR;S".

Remark 2 The binary relation =p, on Ap, is reflevive, antisymmetric, acyclic, and has

a maximal element on Apf.

3 The Invariance Result

Theorem 1 below gives a simple procedure to partition the set of firm f’s preference relations
into equivalence classes where each class contains exactly those preference relations for
which the set of Core matchings is invariant regardless of the other agents’ preference
relations. Theorem 1 says that an equivalence class is composed of all firm f’s preference

relations for which the binary relation obtained from them coincide.

Theorem 1 Let Py and Pji be two preference relations on 2VV. Then,
=p=rp, if and only if C(Py, P_y) = C(Pyf, P_y) for all P_y.

Proof ( =) Let Py and Pj’c be two preference relations such that > p= P;- Thus,
Ap, = Ap;. Assume there exist P_y and p such that p € C(Py, P_f)\C(P4, P_y). Since

9



Ap, = Ap; and € C(Py, P_y), p(f) € Ap, = Apy; ie., p(f) = Ch (1 (f),P}) . Thus,
p € IR(Py, P_y) NIR(Py, P_y). (3)

Define P’ = (P}, P_y) and let (F', W', ;i) be a block of y at P'. By (3), there exist f' € F”
and S” C W' such that p/(f') = 5" and for all v € {f'} U S,

p (0) Bypa(v), (4)

and there exists v € {f'} U S’ such that
4 () PLyu(o). (5)

It " # f, by (4) and (5), p/'(v)Ryp(v) and p/(0) Popu(v). Hence ({f'}, S', 1) blocks p at
(Pr,P_y). This contradicts the hypothesis that 4 € C(Pf, P_y). Thus, f' = f. Hence

({f}, 1/ (f), 1) blocks pu at P'. If y/(f) # Ch(4/(f), P}) then ({f},Ch (¢ (f), P}),n")
also blocks y at P, where " is such that u"(f) = Ch (4/(f), P;) and 1'(f) = @ for

all f # f. Hence, and since Ap, = Ap}, we can assume without loss of generality that
W(f) = Ch (4(f), P}) = Ch (i (f), Py) . Since s € C(Py, P ),

u(f) Py (f) and /' (f) Pru(f).

Thus,
W(f) £r, u(f) and u(f) e, 1'(f)- (6)
By the hypothesis that tpf:tpj/c,

W (f) e, u(f) and u(f) £, 1 (f)- (7)

Consider any matching ji with the property that ji(f) = Ch(u(f) U u' (f),Pr). We now
show that, ({f},Ch(u(f)U ' (f),Ps),ft) blocks p at (Py, P_y). Since (7) we have that
A(f)Pru(f). Let w € i(f). Either w € p(f), in which case w € S” and f1
a(w) = p(w) or else, w € p/(f), in which case fi(w) = f = p/(w)Ryp(w) by (4) and
R, = R, This contradicts the hypothesis that © € C(Py, P_y).

(«) Let Py and P; be such that C(Pr, P_y) = C(P}, P_y) for all P_;. We first show
that Ap, = Ap}. Assume S € Ap,. We want to show that S € Ap} (by symmetry, this will

P

w) Ry pu(w) since

10



suffice). Consider the following subprofile P_;: for all w € S, all w’' ¢ S, and all T,

P, Py P

f %] @
@.

The unique core matching at (Pf, P_;) is y, where pu(f) = S and u(f) = @ for all f # f
(obviously, u(w’) = @ for all w' ¢ S). By hypothesis, C(Py, P_y) = C(P}, P_y). Hence,
i is individually rational at (P},P, 7). Thus, S € AP}. To show that =p == P assume
S1,8, € Ap, = Ap} are such that S; =p, Ss, but S) %P} Sy. Then,

Sy # Ch (S U Sy, P})

Consider the following preference profile P_;: for all w € S; U Ss, all w’ ¢ S; U S, and all
f#17.
P, P, P
f %) %)

S

Let 11 be the matching where u(f) = Sy, u(f) = @ for all f # f, and p(w') = @ for all w' ¢
Si. Since S1 =p; Sa, S1 = Ch(S1 U Sy, Py). It is easy to check that u € C(Py, P_y). Since
S1 #£ Ch (51 U.Ss, PJ’C), Ch (51 U.Ss, PJIc) P}Sl. Thus, ({f},Ch (51 U.Ss, PJ’C) , i), where p/
is any matching such that p/'(f) = Ch (Sl U Sa, P}), blocks p at (Pf, P_y) since

W () Prul(f) = S,

and for all w € Ch (S U S, P}) :

f = (w) Ryp(w).
Hence, p ¢ C(P}, P—y). This contradicts the hypothesis that C'(Pf, P_y) = C(P;, P_y). B

An alternative way of describing Theorem 1 in terms of the Core correspondence is as
follows. For a firm f and its preference relation Py denote by T} p, the Core mapping that
takes as arguments all subprofiles of preferences P_; of workers and remaining firms and
such that Ty p.(P_f) = C(Pf, P_y). Theorem 1 partitions the set of preference relations of
firm f into equivalence classes such that all preference relations in a class have the same

Core mapping.

11



4 The Minimality Result

An implication of Theorem 1 is that an incomplete binary relation can be used as the
representative of each equivalence class of all preference relations of a firm that leave the
Core invariant. In general, the amount of information contained in the incomplete binary
relation is substantially smaller than the one contained in any of its associated preference
relations. However, this binary relation still contains redundant information (some pairs
of subsets of workers are unnecessarily ordered) since the same equivalence class could be
recovered by extending appropriately a strictly weaker binary relation. Example 2 below

illustrates this fact and how we will proceed.

Example 2 Let W = {w;, ws, w3} be the set of workers and let f be a firm. Consider

the preference relation P; on 2%

{wr, wa, w3} Pr{wq, we } Pr{w1, w3} Pr{wa, w3} Pr{w: } Pr{ws} Pr{ws } Pr{@}.

Observe that Apf = 2", Obviously, S > p;, S forall § € Apf. In addition, = p, consists of

the following orderings:

{wr, wo, w3} =p, {wr, wa} {wy, wa} =p, {ws} {w} =p, {2}
{wy, wy, w3} =p, {wy,ws} {wy, wa} =p, {ws} {wa} =p, {}

{wy, wy, w3} =p; {wa, w3} {wy, wo} =p, {T} {ws} =p, {2}
{wy, wa, w3} =p, {w1} {wi, w3} =p, {w:}
{wr, wo, w3} =p, {wa} {w, w3} =p, {ws}
{wy, wy, w3} =p, {ws} {wy, w3} =p, {T}
{wy, wo, w3} =p, {@} {wa, w3} =p, {ws}

{ws, w3} =p, {ws}

{wa, w3} =p, {T}
Note that {wy, ws} Pr{wy, ws}, {wy, ws} Pr{ws, w3}, and {wy, ws} Pr{ws, w3} but {wy, wa} #p,
{wi,ws}, {wi,wa} #p, {wa,ws}, and {wy,ws} ¥p, {wy,ws} because {wy,wy, w3} =
Ch({wy, w2} U{wy,ws}, Pr) = Ch({wy, we} U{ws, w3}, Pr) = Ch({wr, ws} U {ws, w3}, Pr).
From the point of view of the Core, the only relevant information contained in Py (together
with the fact that Ap, = 2) is that the best subset of workers is W itself (this is true as

long as we extend the binary relation by making sure that if one set of workers is strictly
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contained in another set then, the larger set is strictly preferred to the smaller one in the
extension). The relative orderings among subsets of cardinality two and the relative or-
derings among subsets of cardinality one are irrelevant for the set of Core matchings. For

instance, in this case the three preference relations P, P, and P;" defined by

{wr, wo, UJS}P}{UH, w2}P}{w2, ws}P}{wh ws}P}{w1}P}{w2}P}{w3}P}{®}
{wl,wg,wg}P}’{wl,wg}P}'{wl,wg}P}'{wg,w3}P]'/{wg}P}'{wl}P}'{wg}P}'{Q}
{wl,wg,wg}P}"{wl,wg}P}"{wg,wg}P}"{wl,wg}P}”{wg}P}"{wl}P}”{wg}P}"{Q}

have the property that C(Py, P_y) = C(P}, Py) = C(Pf,P_y) = C(P{',P_;) for any
subprofile P_;. Indeed, we will show that from the information conveyed by the fact that
Ap, = 2" and the much weaker (and minimal) binary relation ='p,= {@}, where no pair of
subsets of workers are related, we will be able to extract the class of (complete) preference
relations on 2" that leave the Core invariant. Observe that the number of pairs related
by =p, (nineteen or twenty seven if we include those that follow from reflexivity) is much
larger than the number of pairs related by =P, (none). But this is an extreme case.

Consider now the preference relation Pf on 2V
{wn, wa} Pr{wi} Pr{wz} Py{ws} Pr{2},
where we only list acceptable partners. Then, Ap = {{wy, wa}, {wi}, {ws}, {ws}, {@}}
and {wy, we} =p {wi}, {wi, we} =p {we}, {wi, wa} =p {ws}, {wi} =p {ws}, {wa} =p,
{ws}, and for any S € Ap , S =p Sand S =p {@}. Observe first that {w:} %Pf {ws} and
{ws} ?—LPf {w1}, and that the orderings {w;, ws} = p, {ws} and {wy, ws} = p, {@} could be
recovered by transitivity (using either {w;} or {ws} as intermediate subset). In addition,
the orderings {w;,ws} iﬁf {w1}, {wy,ws} iﬁf {wy} and for any S € Apf, S tpf S
and 5 =p {@} could also be recovered because they relate a set with one of its subsets.
Thus, we could define a much weaker binary relation z’;gf on A P, with only two elements:
{w1} zygf {ws} and {ws} zygf {ws}. Moreover, given Ap, (this conveys a very important
information), the two preference relations Pf (the one that we started with) and P; on 2"

(again, we only list acceptable partners)

{wy, w’z}pf{wl}pf{%}pf{ws}pf{@}
{wy, wa} Pr{wa} P{w: } Pr{ws} Pr{ @}
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can be obtained from igf as what we will call strict extensions. Our results will say that
C(Py, P_y) = C(Py, P_y) for all subprofiles P_;. On the other hand, if we had left the
two subsets {w; } and {ws} unordered we could have found two strict extensions P and P;
with the property that C(Py, P_s) # C(P;, P_) for some subprofile P_;; in this sense the

binary relation t”};f on A P, will be called minimal. O

In the sequel we define a minimal binary relation that will declare as unordered (i) any
two subsets of workers with the property that one is a strict subset of the other and (ii) any
two subsets of workers whose relative ordering (for instance, S =p, S”) could be obtained
by transitivity (i.e., S and S” will be left unordered whenever there exists S’ € Ap, such
that S =p, 8" =p, S”).

In this section we identify the minimal binary relation (weaker than the one used as the
representative of the class) with the following two properties: (i) all preference relations
in the class can be obtained from this minimal binary relation by what we call a strict
extension, and (ii) any strictly weaker binary relation has at least two strict extensions that

belong to two different equivalence classes.

4.1 Transitive Closure

To make the proof of Theorem 2 below simpler, we will now first enlarge =p, with its
transitive closure tgf and then reduce it by identifying a minimal binary relation ='p, SO
that =2 C=p C} .

Definition 5 Let = be an acyclic binary relation on A. The binary relation =7 on A is
the transitive closure of = if it is the smallest transitive binary relation on A that contains
-

Notice that the all-relation on A x A is transitive and contains all binary relations on
A. The intersection of transitive binary relations on A is again transitive; that is, given =,
=T=nN{='C Ax A|='D> and =’ is transitive} is transitive. Finally, let = be an acyclic
binary relation on A. Then, =7= U,y =", where S =" S’ if there exist S, ..., S, € A such
that S =S5, >=---=5,=9"%

Before proceeding we state and prove a Lemma that will be useful in the sequel.

8See Harzheim (2005).
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Lemma 1 Let Py be a preference relation on 2V and assume that Sy, Sy € Ap;, S i}gf
SQ, and Sl Q SQ. Then, Sl = Sg.

Proof Since 51 C S and Sy € Ap,, Ch (S U Sy, Py) = Ch(Ss, Py) = Ss. Hence, Sy =p,
S1 and Sy z;f S1. By hypothesis, S; ingf Sy. By Proposition 1, =p, is antisymmetric. By

its definition, i;f is antisymmetric as well. Thus, S; = 55. |

4.2 Minimal Binary Relation

To identify the minimal binary relation associated to the preference relation Py of firm f
we proceed as follows. First, obtain Apf. Second, compute >~ Py and its transitive closure
i;f. Then, delete from EJTDf all ordered pairs of subsets of workers that (i) are related by

inclusion and (ii) are related as the consequence of the transitivity of z;f. Formally,

Definition 6 Let P; be a preference relation on 2" . The binary relation EQEITD , On A P
is minimal if for all S,S" € Ap, such that S EITgf S’ the following condition holds:

(mi) S = S if and only if SN.S" ¢ {S,5"} and there does not exist S” € Ap,\ {S,5"} such
that, S =}, S" =} 5.

Given Py, there is a unique minimal binary relation on Ap,. Denote it by =P - Next
lemma states that =7 is not only weaker than =T . but it is also weaker than the original

=Py
Lemma 2 Let Py be a preference relation on 2W . Then, i%fgtpf )

Proof To obtain a contradiction assume z’];f,@t p,; namely, there exist 5, 5" € Ap, such
that S =, S" and S %pf S'. Since, by Remark 2, =p, is reflexive, S # S’. Observe that
i}%gi;f and S = 5" imply S EITgf S’. Since S #p, S" and S i}gf S’, by definition of
ingf there exists Sy, ...,.S, € Ap, such that S # Sy # --- # 5, # S" and S =p, S1 =p,
- =p; Sp =p, S'. Since zﬁf is transitive by definition, this implies that S z;f S, i}@f S’
By (mi) in Definition 6, S £, S, a contradiction. |

Alternatively, we could directly define =p,C=p, replacing condition (mi) in Definition

6 above by

(mi’) S = 8" if and only if SN.S" ¢ {S, S’} and there does not exist S” € Ap,\ {S, '} such
that, S =p, S" =p, S'.

15



However, the arguments would become more involved since instead of using the transitivity
of igf we should use the acyclicity of =p, by identifying (and working with) sequences
Si =p, - -+ =p, S with the property that Sy #p, Si.

4.3 Strict Extension

We next give a procedure to obtain from the minimal binary relation all preference relations
that would generate it. The procedure consists of completing the acyclic minimal binary
relation by declaring a set in the family to be (strictly) preferred to all its subsets and if a
set is not in the family of individually rational subsets of workers then it must have a strict

subset that belongs to the family and is strictly preferred to it. Formally,

Definition 7 Let = be an acyclic binary relation on A C 2" with @ € A. The (strict)
preference relation P; on 2V is a strict extension of = if for all S',S” € A such that
S' £ S

(se.1) if " = S” then, S'P;S";

(se.2) if S” & S’ then, S"P;S”; and

(se.3) if S ¢ A then, there exists S € A such that S ¢ S and SP;S.

Definition 7 can be seen as a set of instructions on how to extend an acyclic binary
relation on A to a preference relation on 2. First, it preserves all the ordered pairs (this
corresponds to the standard notion of an extension used by Szpilrajn (1930)). Second, a
set is preferred to all its subsets. Third, if a set is not in A then, we have freedom on how
to order it but the set has to be worse than one of its subsets (perhaps the empty set).
Finally, all the remaining pairs that are not ordered by the acyclic binary relation can be
freely ordered by the preference relation (this is one of the reasons of why in general there
are many strict extensions of an acyclic binary relation). Before proceeding, we state and
prove two results: Lemma 3 will be useful in the proof of Theorem 2 below and Lemma 4

states that indeed Py is obtained as a strict extension of =7 .

Lemma 3 Let Py be a preference relation on 2. Suppose ?f is a strict extension of
='p, . Furthermore, assume S,5" € Ap;, S # 5" and S igf S’. Then, SP;S'.

Proof If S5 S’ then, by (se.1) in Definition 7, SP;S".
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Assume S %’]}f S’. By Lemma 1, and since S zﬁf S’ and S # 5, S € S'. Thus, either
S D S’ or there exists S; € Ap, such that S EITDf Sy z%;f S’ If S O S then, by (se.2) in
Definition 7, SP;S".

Assume there exists S; € Ap, such that S; # S,5" and S z;f S, z;f S’, We assume
without lost of generality that S; is maximal with respect to t%; 1.e., there does not exist
SeA S+85.,5,5 such that S EITDf S z,@f Sy i}gf S’. Observe that by Remark 2, > p, is
acyclic and hence, by Lemma 2, =p, is also acyclic. Thus, this maximal set S; does exist.

Assume S 7 Si. Then, if there would exist S € Ap, such that S =p; S =P, S1 then,
S E}Cf S ingf Si ng S’, contradicting the maximality of S;. Because S tgf S1, by (mi) in
Definition 6, either S D S; or S; D S. Note that if S; D S, and since S EITDf S1, Lemma 1
implies S = S’. This contradicts S i’]}f Sy because, by Remark 2, = p, is reflexive. Hence,
and since z’gfgzgf, E”P“f is reflexive as well. Thus, S O ;. By (se.2) in Definition 7, any
strict extension Py of t"ﬂf satisfies SP;S).

Assume S = Si. By (se.l) in Definition 7, any strict extension Py of =5 satisfies
SP¢S;.

We have already shown that SP;S; and S, E}Cf S'1f Sy =, S', by (se.1) in Definition
7, S1P;S’, in which case, SP;S. If S ,»fggf S’, we repeat the argument above replacing the
former role of S by S;. Since Ap, is finite, there exists a finite sequence {Si, ..., S} such
that SP;S, Py -+ PpS¥P;S'. By transitivity of Py, SPS'. [ |

Lemma 4 Let Py be a preference relation on 2VV. Then, P; is a strict extension of the

minimal binary relation =p .

Proof We consider separately the three cases in Definition 7. For the first two, let
S1,55 € Apf be such that S; # S,.

(se.1) Assume S i’j.f‘f Sy. By Lemma 2, Sy =p, S; i.e., S; = Ch(S1USy, Py). Since

S1 # Sa, S1PfSs.

(se.2) Assume Sy & S;. To obtain a contradiction, assume S P;.S;. Then, Sy # Ch (S U Sy, Py) =
Ch (51, Pr), where the equality follows because Sy & S;. But this is a contradiction with

S1 € Ay

(se.3) Let S ¢ Ap,. We want to show that there exists Se Ap, such that S C Sand SP;S.

Note that Ch (S, Py) € Ap, and Ch(S, Pf) C S. Since S ¢ Ap,, Ch(S, Py)P;S. Thus, set

the desired S be equal to Ch(S, P;). Then, SP;S. u
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4.4 Results

We are now ready to state and prove the two results of this section.

Theorem 2 Let Py be a preference relation on 2V and assume ﬁf 15 a strict extension

of the minimal binary relation =P, - Then, Apf = Ap, and Zp, =P -

Before proving Theorem 2 two remarks are in order. First, the statement of Theorem 2
implicitly contains the following procedure that we want to make explicit before we proceed
to its proof. Given a preference relation Py on 2V, construct the family A p; of individually
rational subsets of workers relative to Py. From Ap,, obtain sequentially the binary relation
=Py
an arbitrary strict extension Py of ='p,, construct the family Aﬁf and its associated binary

on Ap,, its transitive closure ng, and the minimal binary relation t}?f. Then, take

relation iﬁf' Theorem 2 says that Apf = Aﬁf and > pf:ipf hold. Second, Theorem 2
implies (together with Theorem 1) that the minimal binary relation can be used as the
representative of all preference relations that leave the set of Core matchings invariant;
namely, =, still contains all information needed to obtain the full equivalence class of
preference relations as strict extensions of A

We now turn to prove Theorem 2.

Proof We first prove that Apf = Apf. To show that Apf - Apf, we will show that
S ¢ Ap, implies S ¢ Ap . Assume S ¢ Ap,. Hence, and since Py is a strict extension of
=P, by (se.3), there exists S € Ap, such that S C S and SP;S. Thus, S # Ch(S, Py) and
S ¢ Ap,.

To show that Ap, C Ap , assume S € Ap, \Aﬁf. Hence,

S = Ch(S, Py) (8)

and S # Ch(S, Py). Let S" C S be such that S’ = Ch(S, P;). Obviously, S’ = Ch(S', Py)
and

S'P;S. (9)
Thus, S’ € Aff. Hence, and since we have already proved that Apf C Ap,;, S" € Ap,. Thus,
S = Ch(S’,Pf)._By S' G Sand (8), S =Ch(SUS’, Py). Hence, S =p, S'. Thus, S >IT3f S’
By Lemma 3, SPfS’, a contradiction with (9).
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Second, to prove Zp,=rp; We will show that for all S;, Sy € Apf = Ap,,
Sl =Ch (Sl U SQ,Ff) if and OIlly if Sl =Ch (Sl U 52, Pf) .

=) Assume S # Ch (51U Sy, Py). Hence, Ch (Sy U Sy, Pr) =p, Si. By definition of
igf, Ch(S1USs, Py) EITgf Si. By Lemma 3, C'h (S7 U Sy, Pf)FfSl. Since Ch (S U Ss, Py) C
S1U Sy, S1# Ch (51U Ss, Py).

<=) To obtain a contradiction, assume S; = Ch (S; U Sy, Pf) and S; # Ch (51 U SQ,Ff) .
Then, Ch (S1 U Sa, Py) ~p, S1. Since Ch(S1USy, Py) C S;USy and Sy = Ch(S;U Sy, Py),
S1 =p, Ch (S1U S2, Py) . By definition of EIT;f, S, EIT;f Ch(S; U Sy, P;). By Lemma 3,
SlﬁfC’h (51 U Sg,?f) , a contradiction with Ch (51 U Sg,?f) P, Si. [

Theorem 3 below states that =P, is indeed minimal in the sense that any strictly weaker
binary relation generates, as one of its strict extensions, a preference relation of firm f that
belongs to a different equivalence class of the one to which P; belongs to and thus, with a

different Core for some subprofile P_;.

Theorem 3 Let Py be a preference relation and assume - G=p,. Then, there exists a
strict extension Py of = such that = ﬁf%i Py -

Proof Since E gg]}f, there exist Sp,9; € Apf such that S i?.f‘f S5, but 51%32. By
(mi) in Definition 6, S, t?f Ss, implies that neither S; 2 S; nor Sy 2 S;. Let Py be a
strict extension of = with the property that S, PS;. Observe that none of the hypothesis
of conditions (se.1), (se.2), and (se.3) in Definition 7 hold; thus, there exists such extension
]3f. Then, S; # Ch(S; U Ss, ﬁf) Hence, t}?fgipf and S; i’]}f S, imply that, by Lemma

2, Sl tpf SQ; namely, 51 =Ch (Sl U SQ,Pf) . ThUS, tpf%t]gf . [ |

5 Final Remarks

We finish the paper with four remarks.

First, our approach has focused only on preference relations of firms. Hence, one may
ask whether a symmetric analysis could be performed from the point of view of the workers.
The answer is yes, although the analysis is trivial. Given a preference relation of a worker,

we could similarly construct its corresponding binary relation on the set of acceptable
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firms. However, this binary relation on the set of acceptable firms coincides with the initial
complete preference relation (on the set of acceptable firms) since the best firm of the union
of two different firms is always equal to the best of the two firms. Thus, from the point of
view of the workers’ preference relations all orderings (between pairs of acceptable firms)
are relevant for the set of Core matchings. This is the reason why preference relations of
workers have remained fixed while we identified equivalence classes of preference relations
of firms.

Second, an analogous literature in multi-unit auctions has evolved during the last years
wondering about the complexity for bidders of revealing their valuations of all subsets of
objects (see for instance Milgrom (2009)). However, this literature applies to settings where
bidders have cardinal preference relations on objects and/or subsets of objects. Then, bids
are related to valuations on those. In contrast here, as in a large literature on two-sided
matching models, we consider agents with ordinal preference relations.

Third, our results extend to the same partial orders in many-to-many matching markets
since the proofs of Theorems 1, 2 and 3 can be translated straightforwardly to the setting
where preferences of workers are defined on 2" instead of FU{@} and matchings are many-
to-many instead of many-to-one. Then our analysis can also be used to identify equivalence
classes of preference relations of workers (on all subsets of firms) leaving invariant the set
of Core matchings.

Fourth, we preliminarily address the computational aspect of our approach.’ Given
an arbitrary preference relation Py, to obtain its family of individually rational subset
of workers Ap, and its minimal binary relation =P, may be a complex task, difficult to
describe by a simple and systematic procedure. However, whenever the preference relation
Py is substitutable the first goal becomes easier.'”

Assume Py is substitutable. We ask the following question: is there any simple and

systematic procedure to compute the family of individually rational subsets of workers

9What follows has to be seen as a first step towards a more general and systematic analysis that is left

for future research.
10 Although restrictive, we think that our analysis still has interest because substitutability is a plausible

restriction in settings where workers exhibit low complementarities in shaping firms’ preference relations on
2W- this is the reason why a very large proportion of the literature on ordinal many-to-one matching models

assumes that firms have substitutable preference relations or even stronger conditions like responsiveness.
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Ap,7 We answer the question affirmatively by defining an algorithm that computes Ap,.

ALGORITHM

Input: A substitutable preference relation P; on 2.

Initialization: Set Ty = 2" and Ay = 0.

Step 1: Given Ty # 0 and Ay obtain S = Ch (W, Py). Define the families of subsets of

workers
T1:T0\{T€T0|€1theI'SngWOI'TgS}

and

If T} = () stop and let A; be the outcome of the algorithm; otherwise go to Step 2.

Step k: Given Ty_; # () and Aj_q, take S’ € Ty_; with the property that #S5" > #5” for
all " € Tj,_; and obtain S = Ch (5, Pf) . Define the families of subsets of workers

Tk = kal\{T € Tk,1 ’ either S g T - Sl or T - S}

and
Ak:Ak,lu{TEQW]TQS}.

If T}, = () stop and let A, be the outcome of the algorithm; otherwise go to Step k + 1.

Observe that the algorithm can be understood as a set of simple and precise instructions
given to the firm to compute Ap,. Although it takes as input the preference relation Py
on 2" it tries to minimize the number of times that the firm has to be asked about how
it orders pairs of subsets of workers and it only requires that the firm has three abilities.
Given any subset of workers, the firm is able to calculate its cardinality, to compute its
subsets, and to identify its most preferred subset.

The algorithm has several executions depending on the particular subsets S’ € T),_;
with largest cardinality chosen at each step & > 1, if any. The table below illustrates a
particular execution of the algorithm for the following substitutable preference relation (in
the table we omit brackets and commas when writing subsets of workers; for instance, wows

should be read as {ws, w3}):

Pf : {wla w2}> {wl}’ {w2}’ {w17 w?)}v {w?’}v {@}
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Step S/ S Tk Ak

1 | wywews | wyws | {wyws, wows, ws} {wwa, w1, we, T}

2 wiws wq {waws, ws} {wywe, wy, we, I}
3 Waws W {ws} {wywa, w1, we, T}
4 w3 w3 G} {wiwe, wy, we, ws, T}

Observe that the outcome of this execution is Ay = Ap,. The next proposition states that,

as long as P is substitutable, this is always the case.

Proposition 1 Let P; be a substitutable preference relation. Then, any execution of the

algorithm terminates in a finite number of steps and its outcome is Ap,.

Proof Let P; be a substitutable preference relation. It is immediate to check that,
at any step £ > 0 of the algorithm, 7, C T;_;. Thus, any execution of the algorithm
terminates after a finite number of steps, denoted by K. Moreover, A,_; C A,. We first
prove that Ax C Apf. Assume T € Ag. Then, there exists 0 < k£ < K and 5" € T,
such that 7" C S = Ch(S’, Pf). Hence, by substitutability of P, S = Ch(S, Py) and, by
substitutability again, T = Ch(T, P;). Thus, T € Ap,. To prove that Ap, C Ak, assume
T ¢ Agk. Note that T' € Ty. Let 0 < k < K be the step where T' € T, _; but T" ¢ T. Hence,
there exists " € Tj,_1 such that S = Ch(5’, Py) and either S C T'C S" or T' C S. If the later
holds then, T' € Ay which would contradict the hypothesis that T ¢ Ax since Ay C Ag.
Hence, S C T' C S’ holds. Since S = Ch(S’, Py), by substitutability, S = Ch(T, Py) # T.
Thus, T' ¢ Ap;. [

If Py is not substitutable the outcome of the algorithm Ay is not necessarily equal to

Ap,. To see that consider the non substitutable preference relation on olwiw2}
Py {wy, wo}, {2}

and take S’ = {wy,we} in Step 1. Then, S = {wy,we}, T1 = {@}, K =1, and A; =
Hwi, wa}, {wi}, {wa},{@}}. But, Ap, = {{wi,w2},{D}}. However, if the algorithm is
modified by setting, at each step k£ > 1,

T, = Tk_l\{T el | SCTC S/}
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and
A=A, 1US

then, the output of the algorithm Ay coincides with Ap, for any preference relation Pyt
Notice that in this case, the execution of the algorithm may require to ask to the firm all
binary comparisons and hence, the algorithm may not represent a computational improve-
ment with respect to directly ask Py.

Finally, we leave for further research the computational aspect of obtaining the min-
imal binary relation E];f on Ap,. Preliminary results suggest that, even for the case of

substitutable preference relations, this may not be an easy task.
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