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Abstract 

Purpose. Soil properties are the main explanation to the different toxicities obtained in different soils, due 

to their influence on chemical bioavailability and the test species performance itself. However, most 

prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects 

on test species performance are usually neglected. In our study we develop prediction models for the 

toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil 

properties. 

Materials and methods. The effects on the avoidance behaviour and on reproduction of the herbicide 

phenmedipham to the collembolan Folsomia candida is assessed in twelve natural soils and the OECD 

artificial soil. The toxicity outcomes in the different soils are compared and explanatory models are 

constructed by Generalized Linear Models (GLMs) using phenmedipham concentrations and soil 

properties. 

Results and discussion. At identical phenmedipham concentrations, the effects on reproduction and the 

avoidance response observed in the OECD soil were similar to those observed in natural soils, while 

effects on survival were clearly lower in this soil. The organic matter and silt content explained 

differences in the avoidance behavior in different soils; for reproduction, there was a more complex 

pattern involving several soil properties. 
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Conclusions. Our results highlight the need for approaches taking into account all the soil properties as a 

whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any 

particular soil. 
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1 Introduction 

In ecotoxicological studies, even when the same species and pollutant are assessed, the toxicity observed 

can differ between soils. In addition to the variability due to test species individual variability (Crouau 

and Cazes 2003) or genetic differences (Diogo et al. 2007), soil properties are the key factor explaining 

these inconsistencies through their direct influence on a pollutant’s bioavailability, as well as species 

performance itself. 

Soil properties explain differences in chemical bioavailability in different soils (Lock and Janssen 2001b, 

Amorim et al. 2005a, Amorim et al. 2005b), as they determine the sorption equilibrium of a pollutant 

between soil solid-phase and pore-water, thus the pollutant’s concentration in pore-water, which is widely 

accepted to be the main exposure route in soil-dwelling species (Smit and Van Gestel 1998; Van Gestel 

and Koolhaas 2004, EFSA 2009). In addition, soil properties directly influence test species performance 

according to their ecological niches, as suggested in several studies (Amorim et al. 2005b-d; Römbke et 

al. 2006, Domene et al. 2011).  

This inconsistency in the toxicity observed in different soils has partly been treated by the development of 

models which allow the extrapolation of toxicities from standard substrates to natural soils taking into 

account only some of the soil properties (organic carbon, pH or cation exchange capacity). However, the 

total influence of soil properties, including their effects on both chemical bioavailability and test species 

performance, is rarely used in the interpretation of results. The main reason for this omission is the 

existence of complex interactions between different soil properties, usually intercorrelated, which 

impedes the derivation of general guidelines to allow the toxicity extrapolation between soils. 

In our study we assess the influence of soil properties on the toxicity of the herbicide phenmedipham to 

the soil collembolan Folsomia candida. Phenmedipham has been proposed as reference substance to be 

tested on F. candida at least once a year for quality assurance of the results obtained in different 

laboratories (Fountain and Hopkin 2005). Our study has two main aims: (1) to compare the outcomes in 

OECD artificial soil with those observed in natural soils in order to show their representativeness, and (2) 

to show how to cope with the variability of toxicity results in different soils through models derived from 

empirical data. This work can be taken as an exercise on how to improve the toxicity risk prediction for 

soils with known properties. 

 

2 Materials and methods 

2.1 Test organism 

The test organism was the soil collembolan Folsomia candida (Isotomidae), a species commonly used in 

soil ecotoxicity tests. Cultures were maintained in polyethylene containers 17.5 cm x 12.5 cm x 7.5 cm, 
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filled with a 1 cm layer of a wet plaster of Paris and charcoal mixture (9:1, v/v). Cultures were kept in 

darkness in a climatic chamber at a constant temperature of 21ºC. The assay was performed in the 

different soils according to ISO 11267 (ISO 1999), using ten individuals aged 10 to 12 days old per 

replicate. The effects on survival and reproduction at increasing concentrations of the test chemical were 

assessed after 28 days of exposure. 

 

2.2 Chemical 

The tested chemical was phenmedipham, a phenylcarbamate herbicide also known as the commercial 

product Betosyp (Stähler Agrochemie, 157 g l-1 a.i.). Phenmedipham is a broadleaf herbicide that inhibits 

photosystem II (Abbaspoor and Streibig 2007), but toxic effects of phenmedipham have been reported for 

fishes, birds, mammals and aquatic invertebrates (EPA 2005), as well as soil invertebrates (Amorim 

2005a, 2005b, 2005c, 2005d, Idinger et al. 2006, Kuperman et al. 2006). 

Based on a preliminary assay, five different test concentrations were selected for each soil tested, which 

corresponded to phenmedipham concentrations of 0, 1.5, 3, 6, 12, 24 and 48 mg kg-1 in the avoidance 

tests, and 0, 0.75, 1.5, 3, 6, 12, 24, and 48 mg kg-1 in the reproduction tests. 

 

2.3 Soils collection and preparation 

Twelve natural soils were selected for this study, all from European Mediterranean regions: Alentejo 

(Portugal), Catalonia (Spain), and Liguria (Italy). Soils were mainly agricultural, without agrochemical 

treatments the last 5 years, and the remainder were collected from fallows and pastures. The main criteria 

for their selection was the obtention of a set of soils with widely-ranging physico-chemical and organic 

content properties. Topsoil samples (0-20 cm depth) were collected, 5-mm sieved, and air-dried. Then 

soils were defaunated by two freezing-thawing cycles of -20ºC for 4 days followed by 4 days at 20ºC. 

OECD artificial soil was prepared according to OECD (1984) and used in order to compare their 

outcomes with those of natural soils.  

Soil properties together with heavy metal contents shown in Table 1 were analysed by the methods 

reported in Domene et al. (2011). Soil water content for the tests was adjusted in order to provide to each 

soil a moist and crumbly substrate, which corresponded to a range between 35 and 60 percent of the 

maximum water holding capacity (WHC). The reason for choosing a moisture content below 40% of the 

WHC in some of the soils was to avoid a doughy structure in the more fine textured soils. The moisture 

content in Table 1 corresponded to soil moisture at the beginning of the test. Water losses were negligible, 

since tests were carried out in sealed containers periodically aerated. 

 

2.4 Experimental procedure 

2.4.1. Avoidance tests 

Tests were performed according to ISO (2010). Each experimental unit consisted of a translucent 

cylindrical container (7 x 6 cm) filled with two adjacent 30 g wet soil portions (control and test soil), each 

occupying half the container. Then, 20 F. candida individuals (10 to 12-days old) were transferred to the 

centre of the container, and left under controlled climatic conditions for 48 h (20±2ºC and 16:8 h 

light:dark photoperiod). After this period, each soil portion was taken separately, poured into a 200-mL 
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Erlenmeyer flask and flooded with water. Soil was gently stirred in order to force the individuals to float 

on the water surface and enable counting.  

For each of the soils, all of the combinations of the unpolluted soil (control soil, left side) and each of the 

different test concentrations (test soil, right side) were prepared. The main interest of these tests was 

determining the influence of phenmedipham together with soil properties on the avoidance behaviour of 

this species. In order to determine if the individuals’ distribution was affected by factors other than soil 

properties, we carried out control-dual tests, where both portions were composed of the same soil (Hund-

Rinke and Wiechering 2001). Both for the control-dual tests and the avoidance tests, 5 replicates were 

prepared for each pairwise comparison of soils. 

  

2.4.2 Reproduction tests 

28-day reproduction was determined in the twelve natural soils and in OECD artificial soil according to 

the ISO Guideline 11267 (ISO 1999). Five replicates were prepared for each soil, consisting of a wet soil 

(30 g dry weight) in a sealed 150-mL glass flask. The test ran for 28 days under constant climatic 

conditions (20±2ºC and 16:8 h light:dark photoperiod). At the start of the test and the 14th day, 3 mg of 

granulated yeast were added to each replicate as a food source. At the end of the test period, soil was 

poured into a 200-mL Erlenmeyer flask and flooded with water and stirred in order to float the individuals 

on the water surface. After that, a picture was taken in order to count the adults and juvenile collembolans 

by the image the analysis software ImageTool 3.0 (University of Texas, Health Science Center, San 

Antonio, USA). 

 

2.5 Statistical treatment 

2.5.1 Avoidance tests 

The avoidance rate was assessed in each experimental unit, calculated by the equation A = [(C-

T)/N]*100, where A = % avoidance, C = number of individuals in the control soil, T = number of 

individuals in the test soil, and N = total number of individuals, as described in the draft of ISO 17512 

(ISO 2007). A positive value indicates avoidance of the test soil, a value of zero indicates equal 

distribution in both sides, and a negative value indicates that individuals are attracted by the test soil. 

Using the avoidance rate for each replicate, we calculated, for each soil, the avoidance median effective 

concentration values (EC50) and their 95% confidence limits by probit regression (Minitab version 13.2, 

State College, PA, USA). A normal or a logistic distribution was assumed based on the Kolmogorov-

Smirnov normality test. The positive avoidance values were used for regression, while the negative 

avoidance values (lack of avoidance) were also included in the regression but transformed to zero. 

In order to relate avoidance behaviour to the phenmedipham concentrations together with soil properties, 

we constructed a regression model through generalized linear models (GLM) (Brodgar version 2.5.2, 

Highland Statistics Ltd, Newburgh, UK). In this model, the response variable was the number of 

individuals in test soil, while the explanatory variables were phenmedipham concentration and known soil 

properties. The inclusion of the chemical concentration as explanatory variable in the model allowed the 

prediction of response at a given concentration in any particular soil whose soil properties were in the 

range of the set of soils used to derive the model. To our knowledge this approach has never been used, 
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since typically IC50 values are used as response without including phenmedipham toxicity as explanatory 

variable (e.g. Son et al. 2009), an approach which allows the comparison of the potential toxicity of the 

chemical in different soils but not the prediction of the actual effects. 

The explanatory variables showing high intercorrelation were not used for the model construction (those 

showing correlation coefficient>0.8 or VIF>10). The explanatory variables retained were used for the 

model construction assuming a Poisson distribution and using logarithm as link function. After different 

trials, the model containing the variables with the best adjustment to our data was obtained by an 

automatic backward selection procedure. We assumed that models with a low value of Akaike 

Information Criteria (AIC) were most suitable. The suitability of the model was evaluated by the 

assessment of the homogeneity of the residuals (visual checking of the residuals versus fitted values), and 

their normality (by means of a normal Q-Q-plot). 

 

2.5.2 Reproduction tests 

Median lethal concentration (LC50) and reproduction median effective concentration (EC50) were 

calculated for phenmedipham in each soil type using Statistica 6.0 (Stat Soft, Inc., Tulsa, USA). These 

values and their 95% confidence intervals were calculated from suitable regression models (Gompertz, 

hormesis or linear), based on best fit. 

The assessment of the phenmedipham concentrations and the main soil properties influencing the 

reproduction of F. candida was done by the construction of a regression model through generalized linear 

models (GLM) with Brodgar 2.5.2 (Highland Statistics Ltd, Newburgh, UK). In this model, we used as 

response variable the number of juveniles in the replicates of each test concentration. In addition, we 

also constructed another model using the percent of reproduction (percent of juveniles compared to that 

in controls) as response variable. In both cases, the explanatory variables were phenmedipham 

concentration and known soil properties. The reason for using both the absolute number of juveniles and 

the percent of reproduction as response variables was to compare the resulting models. This comparison 

allows the identification of properties which influenced both the bioavailability of phenmedipham and 

thus the direct impact on the reproduction outcome (model based on the number of juveniles) and soil 

properties influencing bioavailability (model based on percent of reproduction). The percent of 

reproduction was taken as a standardized measure of reproduction (based on the reproduction in controls), 

allowing the construction of a model that minimizes the direct influences of soil properties on 

reproduction and maximizes the influence on phenmedipham’s bioavailability. 

As before, the explanatory variables displaying high intercorrelation were not used for the models’ 

construction, while the explanatory variables retained were then used for the models construction 

assuming a Poisson distribution and using logarithm as link function. Using an automatic backward 

selection procedure, we selected the model containing the variables with the best adjustment to our data, 

which corresponded to that with lower value of Akaike Information Criteria (AIC). The model suitability 

was assessed by the homogeneity and normality of the residuals. 

 

3 Results 

3.1 Avoidance tests 
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The number of dead or missing individuals during the assay was generally below 10% in all treatments, 

fulfilling the validity criteria of the ISO Guideline 17512-2 (ISO 2010). The only the exception was PRA 

soil, with 24 to 38% of the initial individuals absent in the different test concentrations, and agreeing with 

the results in reproduction tests, where all the individuals died after a month. This outcome suggested 

unreported pesticide or fertilizer application in this agricultural soil, something that made us exclude this 

soil from further statistical analysis. The EC50 values for effects for avoidance are shown in Table 2.  

As a general rule, avoidance was observed in all the soils tested. In most soils an attraction to the polluted 

soil was observed in the lowest phenmedipham concentrations, as indicated by their negative avoidance 

rate. However, at higher concentrations collembolans showed higher avoidance rates with increasing 

phenmedipham concentrations (Fig. 1). 

According to the GLM model, the number of individuals in the test soil was significantly influenced by 

the phenmedipham concentration, %WHC (soil moisture expressed as percent of the WHC), and silt and 

carbon content (Table 3). The model was described by the equation #Individuals (T) = e^[(2.518-

(0.102*Phenmedipham)-(0.011*%WHC)+(0.004*Silt)+(0.213*C)], where T is the number of individuals 

in test soil. The model was able to explain 60% of the variance in the avoidance response ([(null 

deviance-residual deviance)/(null deviance)]*100). 

 

3.2 Reproduction tests 

Concerning the validity of reproduction tests, mortality was below 20%, the number of juveniles in 

controls was above 100 and the variation coefficient was always below 30% in the controls of all soils, 

fulfilling the validity criteria. The only exception was PRA soil, where all the original individuals died. 

As already mentioned, we excluded this soil from further statistical analysis.  

Reproduction was inhibited with increasing phenmedipham concentrations, with hormesis in the lowest 

concentrations in some of the soils (Fig. 2). 

The LC50 for phenmedipham was above 12 mg kg-1 in most soils, and above 24 mg kg-1 in OECD soil. 

LC50 values below 10 mg kg-1 were observed in BR, GAN, GRA and IT4 soils. 

Regarding phenmedipham’s EC50 values for reproduction, most soils presented values ranging from 5 to 

10 mg kg-1, while GAN presented an EC50 of 2.5 mg kg-1 (see Table 2). 

According to the GLM model, the number of juveniles was significantly influenced by the 

phenmedipham concentration, moisture, pH, coarse sand, silt, clay, and total nitrogen contents, C/N ratio 

and CEC. The model was described by the equation: #Juveniles = e^[(7.518)-

(0.142*Phenmedipham)+(0.062*Moisture)-(0.283*pH)-(0.017*Coarsesand)+(0.004*Silt)-(0.026*Clay)-

(1.211*N)+(0.005*C/N)+(0.049*CEC)]. The model explained 72% of the variance of the reproduction 

response expressed as number of juveniles. 

Concerning the model derived for reproduction (the number of juveniles in controls), this parameter was 

influenced by the phenmedipham concentration, pH, coarse sand, silt, clay and total nitrogen content, and 

C/N ratio (Table 4). The model was described by the equation: Reproduction (%) = e^[(4.713)-

(0.142*Phenmedipham)-

(0.056*pH)+(0.003*Coarsesand)+(0.004*Silt)+(0.006*Clay)+(0.331*N)+(0.003*C/N)]. The model for 

the reproduction response, expressed as the percent of reproduction, explained 70% of the variance. 
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4 Discussion 

4.1 Fate of phenmedipham in the environment 

Phenmedipham, applied as herbicide, is released into the environment in sprays, concentrates or other 

routes of application, directly or indirectly by dry or wet deposition. Phenmedipham remains in the top 

layers of soil after herbicidal applications and has a low leaching potential (Laitinen et al. 2006; NLM 

2012).  

Phenmedipham is a xenobiotic compound but that be easily degraded by some soil bacteria and fungi 

(Bellinck and Mayaudon 1979; Knowles and Benezet 1981; Bellinck and Mayaudon 1983a, 1983b; 

Pohlenz et al. 1992), but also by chemical hydrolysis and photolysis (NLM 2012). At recommended 

application rates, the half-life of phenmedipham is about 23-39 days (Tena et al. 1982; WSSA 1989; 

Wauchope et al. 1992). Higher persistence has been shown in a slightly acidic soil with low humus 

content (50% remaining after 28-55 days) (Kossmann 1970), while lower persistence has been described 

in alkaline soils (11% after 32 days) (Sonawane and Knowles 1971). The US Department of Agriculture's 

Pesticide Properties Database lists for this pesticide a soil half-life of 30 days, but the rate can be slower 

in acidic soil or faster in alkaline soil (NLM 2012). Degradation is also enhanced with the addition of an 

organic matter source to soil (Bellinck and Mayaudon 1983c). According to the information available, the 

exposure to phenmedipham was ensured during the whole experimental time both in the avoidance and 

reproduction tests. 

 

4.2 Representativeness of results from OECD artificial soil 

Ecotoxicological soil studies are usually performed in standard soils such as the artificial soil OECD soil 

or the natural German soil LUFA 2.2, with soil properties generally different than those in natural soils. 

Hence, toxicity results obtained in the laboratory with standard soils might strongly differ from those 

obtained from natural soils, and even more with respect to studies carried out at field conditions. This is 

why regulatory agencies have began to emphasize the importance of assessing chemical toxicity in 

natural soil types instead of artificial soil (Kuperman et al. 2006). 

Several studies have pointed to the underestimation of toxicity of metals when the OECD artificial soil is 

used compared to natural soils (Spurgeon and Hopkin 1995; Lock and Janssen 2001a; Lock and Janssen 

2001b), but also for some organic pollutants (Amorim et al 2005a; Amorim et al. 2005c; Amorim et al. 

2005d). Other authors have indicated similar toxicities to those obtained in natural soils (Martikainen 

1996). The main reason is the high organic content, fine texture, and high CEC of OECD and other 

similar artificial soils, which results in a lower pollutant bioavailability (Boyd and Williams 2003, Crouau 

and Tan Tchiam 2006). For this reason, some authors have suggested reducing the peat content of the 

OECD from 10% to 5% in order to increase its field relevance (Amorim et al. 2005c). As an example the 

mite reproduction test (OECD Guideline 226) uses only 5% peat (OECD 2008). Furthermore, besides its 

contrasted soil properties with respect to natural soils, it has been indicated that OECD soil is not 

completely representative of real situations because it contains an uncommon clay mineral in natural soils 

(kaolin) that lacks of aluminium, iron, and manganese oxides, which are important in the bioavailability 

of metals (Römbke et al. 2006). On the contrary, other studies have suggested an overestimation of heavy 
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metals toxicity in OECD compared to naturally polluted soils due to ageing processes acting in these soils 

(Spurgeon and Hopkin 1996, Fountain and Hopkin 2004). 

In our study, the mortality caused by phenmedipham in OECD soil was lower compared to natural soils. 

The same trend was generally observed for reproduction, where OECD showed an EC50 of 8 mg kg-1, 

below the values reported in similar studies, ranging from 13.3 to 50  (Indiger et al. 2006; Diogo et al. 

2007), but still within the range of the set of natural soils tested in our study. In avoidance tests, the 

avoidance behaviour to phenmedipham, however, appeared at lower concentrations in OECD soil (see 

Table 2). These contradictory results can only be attributed to the different mechanisms influencing each 

biological endpoint. 

It should be remarked that these apparent biases are small for avoidance and reproduction, since the 

values obtained in OECD soil are always within the range of toxicity values observed in the natural soils 

studied. The only exception was where the phenmedipham effect on survival in OECD soil was clearly 

lower compared to the other soils (over 24 mg kg-1). 

In addition, there is a positive correlation between EC50 values for avoidance and reproduction (Pearson, 

r=0.630, p=0.028), agreeing with the proposed use of the avoidance test with this species as early 

screening tools (Natal-da-Luz et al. 2004). 

 

4.3 Influence of soil properties in test results 

The toxicity observed in soil ecotoxicological tests is strongly influenced by soil properties through their 

direct effects on the bioavailability of chemicals but also by the ecological preferences of the test species. 

Soils far from the ecological requirements of the test species could overestimate the toxicity of the 

chemical since the toxic stress adds to the stress derived from an unsuitable environment (Højer et al. 

2001). Several studies have shown how test species performance change in different soils according to 

their ecological preferences (Van Gestel et al. 1992; Sandifer and Hopkin 1996; van Gestel and van 

Diepen 1997; Crouau et al. 1999; Greenslade and Vaughan 2003; Jänsch et al. 2005; Amorim et al. 

2005b-d; Römbke et al. 2006, Domene et al. 2011). 

It has been suggested that in collembolans the uptake process is mainly associated with solid soil phases, 

in contrast to soft-bodied oligochaete species and plants, which are more strongly influenced by pore-

water characteristics (Vijver et al. 2001). Other studies have supported the validity of the soil pore-water 

hypothesis for F. candida (Martikainen and Krogh 1999; Lock and Janssen 2003). In the context of the 

derivation of general rules for the extrapolation of toxicity data between soils, the establishment of cause-

and-effect relationships between bioavailability and soil properties is impaired by the fact that most soil 

properties are intercorrelated. As an example, CEC is generally related to pH, as cation-exchange sites are 

pH-dependent, but it is also related to clay and organic carbon content, because they contain cation-

exchange sites (Dayton et al. 2006). It is widely accepted that pH, cation exchange capacity (CEC), and 

clay and organic matter content are the most important soil parameters affecting the toxicity of pollutants 

(Van Gestel et al. 1995; Lock et al. 2000; Boyd and Williams 2003; Simini et al. 2004). However, for 

each pollutant, and combinations of soil properties, the main influencing properties may differ (Van 

Gestel 1997; Peijnenburg et al. 1999). Thus, approaches assessing the influence of all soil properties have 

not been used to date.  
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In our study, we assessed the influence of soil properties on the toxicity of phenmedipham to Folsomia 

candida through an integrated approach which took into account all the soil properties as a whole by 

means of generalized linear models. Different results were obtained in 48 h avoidance tests and 28 day 

reproduction tests. 

In the avoidance tests, we found that avoidance was higher at higher phenmedipham concentrations and 

soil moisture (expressed as %WHC), while it was lower at high silt and carbon contents in the tested 

soils. The response to increasing concentrations of phenmedipham is obvious, since this species is able to 

avoid polluted soil over a certain threshold. It is also meaningful that the observed lower avoidance to 

phenmedipham occurred in soils with an expected lower bioavailability, since fine textured soils (Simini 

et al. 2004) and also those with high organic content (Martikainen 1996) show a lower toxicity of organic 

pollutants. On the contrary, the higher avoidance in soils with higher moisture is difficult to explain, and 

contradicts the known significant role of soil moisture in avoidance behaviour of this species (Domene et 

al. 2011), but also given the low solubility in water of this chemical (4.7 mg l-1 at 25ºC). In any case, 

these are the most influential properties, since they explained most of the variation in the avoidance 

behaviour of the set of soils studied. 

A lower number of juveniles was produced at higher phenmedipham concentrations, pH, coarse sand, 

clay and total nitrogen content. A higher number of juveniles was produced at increasing soil moisture, 

silt content, C/N ratio and CEC. The positive effect on reproduction of moisture and the lower offspring 

in soils with very coarse/fine texture in this species is in accordance with a previous study carried out by 

the authors using a wider set of soils (Domene et al. 2011). The model derived for reproduction is 

integrating both the indirect influence of soil properties on reproduction through the bioavailability and 

the direct influence on reproduction.  However, if we look at the model developed for the percent of 

reproduction, the direct influence should have been removed, since it is a standardized measure of 

reproduction, expressed with respect to the reproduction in controls, and hence should only reflect the 

influence on bioavailability. When the percent of reproduction is used as response variable, the model did 

not change importantly, since lower percent of reproduction were observed at higher phenmedipham 

concentrations and pH values. On the other hand lower percent of reproduction were observed at lower 

coarse sand, silt, clay, and total nitrogen content and C/N ratio. This suggests that the changes in the 

toxicity observed are mainly related to changes in the bioavailability of phenmedipham rather than the 

direct effects of soil properties on the test species. This also agrees with the consideration of this species 

as relatively insensitive to soil properties (Jänsch et al. 2005). 

The fact that organic matter content did influence avoidance to phenmedipham but not reproduction is 

surprising given its known influence on decreasing the bioavailability and toxicity of other organic 

chemicals (Martikainen 1996; Martikainen and Krogh 1999; Phillips et al. 2002; Simini et al. 2004). The 

reason might be a phenmedipham degradation which was faster than expected according to the available 

literature, which have reported half-degradation times around 28-55 days (Kossmann 1970), less in 

alkaline soils according to NLM (2012). Hence, the phenmedipham loss during the 28-day reproduction 

test could have hidden the influence of organic matter in avoidance tests. In addition, it has been shown 

for this species that higher C/N values were associated with a lower toxicity of phenmedipham (Amorim 

et al. 2005b), which is in agreement with the results from our study. 
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Regarding soil pH, it has been shown that decreasing pH enhances the toxicity of some organic chemicals 

(Phillips et al. 2002) but we found the opposite trend for phenmedipham, with higher toxicity with 

increasing alkalinity. This relationship is strong, but goes against the known easier degradation of this 

chemical when soil pH is alkaline (NLM 2012). Phenmedipham’s half life in aqueous solution ranged 

from 7.5 days to 1.8 hours at pHs of 6 and 8 respectively (WSSA 1989). This apparent contradiction 

could be explained by the limited range of pH covered by the soils used on this study, mostly alkaline 

(only three soils were acidic, with pH around 5.3). 

The total nitrogen content is also very influential: it decreased the number of juveniles but increased 

percent of reproduction. The direct influence of nitrogen on individual performance has been suggested in 

literature for soil fauna after amendments with organic or nitrogenated fertilizers (Neher 1999; Seniczak 

et al. 1994; Domene et al. 2007), but the influence on bioavailability in this study remains unclear. 

Regarding the influence of texture, it is widely accepted that fine textured soils generally show lower 

toxicity of heavy metals (Lock and Janssen 2001a) and organic pollutants (Simini et al. 2004) due to a 

lower bioavailability. However, in our study, the toxicity for reproduction, measured as the number of 

juveniles, was higher in soils with extreme textures (high percentage of coarse sand or clay content). This 

result agrees with the suggested negative influence of extreme textures in the number of juveniles 

produced in an unpolluted soil (Natal-da-Luz et al. 2008). However, when toxicity was measured as 

percent of reproduction, this trend disappeared, and coarse sand, silt and clay contents appeared 

associated with a lower toxicity, but their low estimate values in the model suggests a low influence of 

texture in the final outcome. 

There is a positive influence of moisture on the number of juveniles produced, but any influence 

disappears when the percent of reproduction is assessed. This agrees with the known influence of this 

parameter in the reproduction of collembolans (Pedersen et al. 1997; Crouau et al. 1999), and also with its 

low influence on bioavailability if maintained in the range of tolerance of this species (Van Gestel and 

Van Diepen 1997). Moisture could only have a negative influence if it would be below the tolerance limit, 

i.e. when a synergistic interaction between the toxic chemical and drought stress appears (Bauer and 

Römbke 1997; Ven Gestel and Van Diepen 1997; Højer et al. 2001).  

CEC did not influenced the percent of reproduction, suggesting a low influence on the bioavailability of 

phenmedipham of this parameter, as expected due to the neutral charge of this chemical, in contrast to 

heavy metals. Unexpectedly, a positive influence of CEC on the number of juveniles produced was 

observed, something that can only be an artefact. 

In order to ensure the validity of the models derived in this study, the significant correlation between the 

predicted and the observed toxicity values should be assessed in a different set of soils, something that we 

did not address given the scope of our study. 

 

5 Conclusions 

In toxicity tests using F. candida as test species and phenmedipham as test chemical, the validity of 

OECD soil as a surrogate of natural soils was evaluated as acceptable for avoidance and reproduction 

tests. However, concerning effects on survival, toxicity was clearly lower in OECD soil. This suggests 
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that results obtained using this substrate for the extrapolation of effects to natural soils should be 

interpreted with care and that its use should be restricted to standardization purposes. 

Avoidance test results correlated with those in reproduction tests, thus demonstrating the usefulness of 

avoidance tests with this species as an early screening tool. In avoidance tests, phenmedipham presented 

lower effects in soils with higher carbon and silt contents, probably due its lower bioavailability. This 

pattern, found in the 48 hour avoidance tests, disappeared in the 28 day reproduction tests, in which many 

other soil properties were influencing the results. More precisely, reproduction was mainly affected by the 

pH and total nitrogen content of the tested soils. 

The results from our study showed that it is difficult to predict the toxicity of chemicals if only based on 

few soil properties. At the same time, the simultaneous consideration of all soil properties added variables 

to the explanatory models that are sometimes difficult to interpret. Approaches taking into account soil 

properties as a whole are necessary to increase our understanding of these complex interactions, which is 

the basis of an improved prediction of the toxicity of a chemical in soil. 
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FIGURE CAPTIONS 

 

Fig. 1  Avoidance (%) of Folsomia candida to increasing phenpedipham concentrations in the different 

soils. Avoidance = [(C-T)/N]*100, where C = number of individuals in the control soil, T = number of 

individuals in the test soil, and N = total number of individuals. Bars indicate standard deviation 

 

Fig. 2  Reproduction of Folsomia  candida with increasing phenmedipham concentrations in the different 

soils, expressed as percent compared to the reproduction in controls. Bars indicate standard deviation 
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Table 1. Properties of the soils used to determine the effect of soil properties on the toxicity of phenmedipham to Folsomia candida. The soils were collected 

in three European Mediterranean regions: Alentejo (BR, LIT, LUV and PZ), Catalonia (GAN, GRA, POR, PRA, RIU), and Liguria (IT2, IT3 and IT4). Coarse 

sand = 2 - 0.2 mm; Fine sand = 0.2 - 0.02 mm; Silt = 0.02 – 0.002 mm; Clay = < 2 µm; C = organic carbon; N = total nitrogen; CEC = cationic exchange 

capacity; MaxWHC = maximum water holding capacity; %WHC av = soil moisture in avoidance tests expressed as percent of the maximum WHC; %WHCav = 

soil moisture in avoidance tests expressed as percent of the maximum WHC; %WHCrep = soil moisture in avoidance tests expressed as percent of the 

maximum WHC; Moisture av = soil moisture in avoidance tests; Moisture rep = soil moisture in reproduction tests. All the values are referred to the dry matter.  

 

Soil Use pH Coarse 
sand 

Fine 
sand Silt Clay C N CEC MaxWHC %WHCav %WHCrep Moisture 

av 
Moisture 

rep Cd Cr Cu Ni Pb Zn 

  
soil:water 

1:5 % % % % % % 
meq 

/100 g % % % % % 
mg 
kg-1 

mg 
kg-1 

mg 
kg-1 

mg 
kg-1 

mg 
kg-1 

mg 
kg-1 

OECD Artificial soil 7.0 9.7 76.9 2.7 10.7 3.36 0.03 7.0 63.1 59.4 55.5 37.5 35.0 0.1 8.0 20.0 3.0 10.0 15.0 
BR Fallow 7.6 10.0 17.9 23.6 48.5 1.45 0.11 26.8 61.1 39.9 40.0 24.4 24.4 <5.6 67.0 46.0 66.0 18.0 55.0 

GAN Vineyard 8.3 1.5 74.5 12.0 12.0 0.35 0.04 6.0 37.6 37.0 36.2 13.9 13.6 <0.1 16.0 20.0 32.0 11.0 32.0 
GRA Olive field 8.2 2.1 25.7 48.5 23.7 0.99 0.11 14.2 49.8 35.9 36.2 17.9 18.1 0.2 19.0 26.0 28.0 10.0 42.0 
IT2 Agricultural 7.7 23.6 15.7 44.4 16.3 2.78 0.25 18.6 39.8 52.3 50.0 20.8 19.9 0.6 61.0 172.0 48.0 59.0 170.0 
IT3 Fallow 7.7 23.1 28.1 36.4 12.4 1.62 0.16 18.4 43.3 50.1 50.0 21.7 21.7 <0.1 71.0 48.0 54.0 18.0 76.0 
IT4 Fallow 7.9 20.2 29.1 34.7 16.0 1.62 0.13 18.8 47.4 50.0 50.0 23.7 23.7 <0.1 67.0 34.0 54.0 21.0 76.0 
LIT Fallow 5.2 41.9 24.8 21.6 11.7 2.44 0.16 8.6 42.4 50.0 50.0 21.2 21.2 <5.6 21.0 40.0 48.0 16.0 67.0 
LUV Pasture 5.5 29.8 38.2 20.3 11.3 1.16 0.08 9.9 32.1 49.9 50.0 16.0 16.0 <5.6 24.0 23.0 28.0 19.0 54.0 
POR Vineyard 6.9 46.2 21.4 20.5 11.9 2.49 0.22 18.6 38.8 36.9 36.9 14.3 14.3 0.2 67.0 92.0 46.0 147.0 420.0 
PRA Grainfield 5.1 42.4 35.0 12.1 10.6 1.28 0.12 11.2 39.4 38.1 32.2 15.0 12.7 <0.1 13.0 38.0 5.5 40.0 86.0 
PZ Pasture 5.3 69.8 21.3 5.8 3.2 1.28 0.07 4.0 30.7 50.5 50.0 15.5 15.4 <5.6 <16 <15 <28 7.0 6.0 
RIU Grainfield 7.3 23.7 34.9 13.8 27.6 1.10 0.13 14.9 45.0 34.7 33.8 15.6 15.2 <0.1 22.0 26.0 18.0 19.0 64.0 
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Table 2. Phenmedipham toxicity values in Folsomia candida in the different soils, expressed as 

mg·kg-1. and with the 95% confidence intervals shown between brackets. See Table 1 for soil 

abbreviations. 

 

Soil EC50 avoidance EC50 reproduction LC50 
OECD 9.23 (8.60, 9.87) 8.04 (6.14. 10.4) >24 

BR 8.00 (7.67, 8.36) 6.12 (5.42. 6.89) 6.46 (4.39. 9.35) 
GAN 5.28 (5.13, 5.45) 2.50 (2.15. 2.90) 5.14 (4.33. 6.94) 
GRA 10.8 (10.4, 11.2) 6.25 (4.84. 7.99) 8.45 (7.18. 9.92) 
IT2 11.8 (11.3, 12.4) 8.02 (6.57. 9.75) >12 
IT3 9.18 (8.50, 9.86) 5.10 (3.89. 6.61) >12 
IT4 10.0 (9.65, 10.5) 6.19 (5.37. 7.12) 8.59 (0.52. 59.5) 
LIT 15.2 (14.5, 15.9) 10.4 (8.45. 12.7) >12 
LUV 7.25 (6.83, 7.70) 8.69 (7.57. 9.96) >12 
POR 15.1 (14.5, 15.7) 7.74 (6.14. 9.70) >12 
PRA 12.7 (11.6, 13.9) - - 
PZ 7.27 (6.38, 8.13) 7.21 (5.35. 9.61) >12 
RIU 8.36 (7.88, 8.86) 6.45 (5.19. 7.97) >12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Table 3. Model fit of the generalized linear model (using a Poisson distribution) and numerical 

output for the avoidance behaviour of Folsomia candida to phenmedipham, expressed as the 

number of individuals in the polluted soil side. 

 

 Estimate Standard error t-value p-value 

Intercept 2.518    0.161  15.60 <0.001 
Phenmedipham -0.102    0.005 -21.41 <0.001 
%WHC -0.011    0.004  -2.814 0.005 
Silt 0.004 0.002 0.015 <0.001 
Carbon 0.213 0.033 6.497 <0.001 
 
Null deviance: 1318.04 on 324 degrees of freedom 

Residual deviance: 560 on 320 degrees of freedom. AIC: 1558 
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Table 4. Model fit of the generalized linear model (using a Poisson distribution) and numerical 

output for the reproduction of Folsomia candida expressed as the number of juveniles in soil 

polluted with phenmedipham according to different soil properties. 

 

 

 Estimate Standard error t-value p-value 

Intercept 7.518 0.0427 175.9 <0.001 
Phenmedipham -0.142 0.0008 -169.4 <0.001 
Moisture 0.062 0.0014 45.84 <0.001 
pH -0.283 0.0048 -59.03 <0.001 
Coarse sand -0.017 0.0004 -43.27 <0.001 
Silt 0.004 0.0004 9.302 <0.001 
Clay -0.026 0.0005 -52.48 <0.001 
Nitrogen -12.11 0.0551 -22.00 <0.001 
C/N 0.005 0.0001 41.39 <0.001 
CEC 0.047 0.0010 48.97 <0.001 
 
Null deviance: 73979 on 359 degrees of freedom 

Residual deviance: 20443 on 350 degrees of freedom. AIC: 23113 
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Table 5. Model fit of the generalized linear model (using a Poisson distribution) and numerical 

output for the reproduction of Folsomia candida expressed as the rate of juveniles produced 

(compared to control soil) in soil polluted with phenmedipham according to different soil 

properties. 

 

 

 Estimate Standard error t-value p-value 

Intercept 4.713 0.0893 52.801 <0.001 
Phenmedipham -0.142 0.0022 -65.210 <0.001 
pH -0.056 0.0101 -5.560 <0.001 
Coarse sand 0.003 0.0007 3.427 <0.001 
Silt 0.004 0.0009 4.434 <0.001 
Clay 0.006 0.0007 8.625 <0.001 
Nitrogen 0.331 0.1342 2.470 0.013 
C/N 0.003 0.0003 8.817 <0.001 
 
Null deviance: 8944.4 on 359 degrees of freedom 

Residual deviance: 2719.1 on 352 degrees of freedom. AIC: 4761 

 

 

 

 

 

 

 
 
 
 



Figure 1 
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Figure 2 
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