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This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic
tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex
information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which
it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation.
As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The
use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the
operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic
tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors

Group at the Autonomous University of Barcelona.

1. Introduction

Recently, in our laboratories, we have been exploring a new
concept in the work with chemical sensors and biosensors,
which is the electronic tongue [1]. This new concept in
sensor science entails the use of sensors with reduced selec-
tivity, grouped in arrays with cross-response characteristics.
Accompanying this, the processing of the complex-generated
information is completed with appropriate chemometric
tools, in order to fulfil an analytical application. Variants can
be a classical quantitative determination, where a number of
substances may be determined in a single, direct operation,
or the determination of a substance in the presence of its
interferents, provided their separation is not needed [2—4].
Also, the concept can provide more interesting applications,
such as identification of varieties or establishing the member-
ship to a group or class, when pattern recognition procedures
are applied. The latter qualitative applications are of great
interest, as they can be the basis of automated detection
principles in fields like food, beverages, or pharmaceutics,
where alternatives to the human expert are in demand [5].
It is also possible to correlate a characteristic or property, for
example, a perception, to the contribution of the different
species sensed. In our studies, the preferred chemometric
tool for the processing of data has been artificial neural

networks (ANNs) [6]. These are known to be powerful
nonlinear modellers, applicable for quantitative and also
qualitative applications. In this sense, our approach is
doubly biomimetic; firstly, the use of groups of sensors with
cross-response is the sensing scheme in the taste buds of
animals, and, secondly, employing ANNs which are parallel
information processing tools inspired in the animal nervous
system, whose maximum expression is the human brain.

The agreed definition of an “electronic tongue,” as
defined by significant research groups working in this
topic can be summarized as [7] “an analytical instrument
comprising an array of non-specific, poorly selective chem-
ical sensors with partial specificity (cross sensitivity) to
different compounds in a solution, coupled to an appropriate
chemometric tool for data processing,” or the recent [UPAC
report on the topic defines it as [8] “a multisensor system,
which consists of a number of low-selective sensors and
uses advanced mathematical procedures for signal pro-
cessing based on Pattern Recognition and/or Multivariate
data analysis—Artificial Neural Networks (ANNs), Principal
Component Analysis (PCA), and so forth.”

With respect to the type of sensors that can be used
in an electronic tongue, practically all the main families of
chemical sensors have been used to form the sensor array,
namely, potentiometric, voltammetric, resistive, gravimetric,
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TasLE 1: Examples of different families of sensors used to form the sensor array in an electronic tongue.

Sensor family Research group Example Reference
Electrochemical, . . Determination of h metals with an
ect ochemica Legin (Russia) eterminatio of heavy etals with a 30]
potentiometric array of chalcogenide membrane sensors
Electrochemical, Bratov (Spain) Determination of several ions for water 31]
ISFETs P characterization
Electrochemical, . . haracterization of rs with an arr.
ectroche lica Winquist (Sweden) Characterization of waters with an array 32]
voltammetric of noble metals
Electrical, resistive Mattoso (Brazil) Conducting polymer sensors [33]
Optical Mc.Devitt (USA) Microspheres with immobilized dyes [34]
Gravimetric Gardner (UK) Surface acoustic wave (SAW) sensors [35]
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F1Gurk 1: Evolution in the number of papers published (a) and citations received (b) on e-tongues along the last years (consulted: 11 October
2011). Graphs extracted from Thomson Reuters’ Web of Science, using keywords “electronic tongue” or “artificial taste.”

and optical, if main sensor families need to be quoted. Table 1
sketches the different approaches that can be listed when
inspecting the specialized literature. Even, hybrid systems
have also been proposed, mainly those combining poten-
tiometric and voltammetric sensors. The combination of
electronic noses and electronic tongues to improve detection
or identification capabilities in a sensor fusion approach has
also been proposed.

As can be seen in Figure 1, the establishment of “elec-
tronic tongues” as a consolidated research topic is clear. Near
to 500 papers have been already published at the ending of
2011, and growing numbers of citations (ca. 10 000) are
accumulated. Every year, new groups contribute to the field,
and, specially, the application-type works are increasing.
This section will describe the basics of electronic tongue
systems, both of qualitative and of quantitative type; it will
focus succinctly on different applications developed in our
laboratories, employing arrays of electrochemical sensors
of the potentiometric and voltammetric families; even, the
development of applications employing arrays of biosensors
will be described. For a convenient automated operation of
the developed devices, some of them have been implemented
with the flow injection or sequential injection techniques.

1.1. Data Processing Tools. Let us consider the situation of
a sensor array with cross-response features as the departure
point. Since all the sensors may respond to all the analytes,
a great amount of complex data is generated that must
be processed using a multivariable calibration approach.
Chemometrics is in charge then, for extraction of the
information sought by appropriate processing. This coupling
has been declared one of the more clear benefits accounted
for in the combination of chemometrics and electrochemical
sensors [9]. Depending on the type of application, different
methods are available for the processing of data; two of
these are ANNs and PCA, as it has already been mentioned.
Curiously and as already discussed, if the system employs
ANNs, a double biomimicry circumstance occurs, given
ANNs are also inspired by the physiology of the animal
nervous system. One can classify the different available
techniques according to the type of application. If this is
a qualitative goal, PCA is the first step as it will either
visualize if the samples can be separated in classes (classified)
or will identify a specific variety. After this, some pattern
recognition or means to predict the membership to any of the
classes will be needed; for this, tools like linear discriminant
analysis, nearest neighbour, soft independent modelling of
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class analogy (SIMCA), or ANNs can be used. When the
purpose is quantitative, different tools are available, given
the numeric information is the end result. Some of these are
principal component regression (PCR), which departs from
a first PCA transformation to build a multivariate regression,
partial least squares regression (PLS), or ANNs. When the
departure information is extremely complex, a previous
feature extraction is needed, which useful to suppress redun-
dant, nonsignificant information and to retain key data.
Some examples of procedures used for feature extraction
are PCA, fitting of splines or other functions, for example,
Legendre polynomials, or Fourier or Wavelet transform.

When one needs to develop a qualitative application
with an electronic tongue, the processing of multicomponent
data generated by nonspecific sensors is normally performed
using principal component analysis (PCA). The aim is to
reduce the amount of variables to new latent variables (prin-
cipal components) in a reduced variable space to facilitate
identification or classification; additionally, this new space
simplifies the interpretation of the variability contained in
the available information. Here, the difficulty is to find an
explanation to these principal components according to the
sample composition. PCA is a powerful linear unsupervised
pattern recognition method that reduces the dimensionality
of a multivariate problem and helps to visualize the different
categories of multivariate profiles by highlighting similarities
and differences between sample clusters. In essence, PCA
performs a change of axis directions of the data space in a
way to obtain as the first axis those with maximum variance
variation. In mathematical terms, X being the original data
matrix, it is recalculated in approximation as the product of
two new matrices of reduced dimension X = TPT, where
P is the loadings matrix, that is the transformation in the
new directions, and T is the matrix of scores, that is the
coordinates in the new directions. Normally, T and P are
calculated in a way that most of the original variance (ideally
more than 90-95%) is preserved in the first 2—4 directions.
In this way, a low dimensional hyperplane is analyzed to
examine groupings or trends of X. The calculation of the
eigenvector (X'X) of the loadings permits to rank them in
% of variance explained.

If the quantitative application is the case, let us consider
this example, a multidetermination application employing
an array of Ion Selective Electrodes (ISEs) as input data. In
a rather complex system, where a number of interferents
may be present for a given primary ion, a thermodynamical
relation can be established using the Nicolsky-Eisenmann
expression that defines the response of a sensor (i) towards
the activities of the interfering ions, as

Ei = K +silogai + KIS+ ()" + K - (@)% + - |,

(1)

where a; is the primary ion of this sensor, and aj, ai,
and so forth the interfering ions of charge z;, and z, K,
and s; the electrode constant and sensitivity, respectively.
The cross-sensitivity is expressed through the potentiometric
selectivity coefficient, klff;,t, a measure of how an interfering
ion h generates a distorting response when measuring the
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FIGURE 2: Schematic representation of the perceptron, as data
processing element.

species (1). Given that the number of ISEs will be larger
than the number of species, for any cross-response situation
considering more than two ions, the subsequent equation
system that is obtained represents a challenge for any
chemometrics specialist.

But instead of the thermodynamical model, various
authors propose the use of an ANN for the processing of data
obtained through an array of ISEs. Since ANNs are powerful
in the modelling of nonlinear systems and the subjacent
phenomena are highly nonlinear, preliminary results were
very promising, permitting both qualitative and quantitative
analysis. Other research groups support the use of PLS
regression ahead of ANNG.

The basic processing unit of an ANN (or its building
block) is called perceptron, which is a crude approximation
to the biological neuron, the cell in the nervous system. It
is a decision-making unit with several input connections
and a single output, as sketched on Figure2. A signal x;
which is delivered from input j is multiplied on arrival by
a connection weight wy j, so that each signal appears at the k
perceptron as the weighted value wy,; - x;. The perceptron
sums the incoming signals and adds a bias 6 to give a
total signal yx. To this sum, a transfer function, normally a
stepfunction, is applied to produce the output ai. Inspired
by its physiology, if the sum of inputs is below a threshold
value, the neuron is quiescent and remains “off.” If the sum
reaches the threshold level, the neuron is turned “on” and a
message is sent out. Apart from this, the nonlinear processing
capability resides in the choice of the transfer function, as
when the activation is produced, it can also take a nonlinear
profile.

Therefore, the behaviour of the perceptron to certain
input information is determined by the weights of its input
connections and by the level at which the threshold is
set. The transfer function used will also define the shape
of the transition step. Knowledge is stored as the values
of adjustable parameters (wy,;j), so initially the connection
weights are set to small random values. Learning is then the
process of adjusting the values in a way that roughly parallels
the training of a biological system. A unique condition must
be fulfilled: the problem has to be linearly separable, but most
significant scientific problems are not.
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F1GURE 3: The electronic tongue concept applied for multidetermination employing a neural network model.

Putting it into mathematics, the cumulative input is
calculated as

Yk = Zwk,j CXj+ Ok. (2)

And the firing of the neuron happens if the threshold, as
defined by a transference function used, is surpassed:

ax =FT{yk}. (3)

Although a single perceptron is a limited data processing
strategy, a much more powerful approach is the use of
sets of associated perceptrons for the final configuration.
This can be done in two different ways: first giving the
perceptrons neighbours to form a layer of units which
share inputs from the environment; secondly by introducing
further layers, each taking, as their input, the output from
the previous layer. In this way, the network of perceptrons
(or artificial neural network, ANN) used for numerical
models is known as the multilayer feedforward network and,
in its more simple expression, uses a first layer for input
information (input layer), a second layer of perceptrons,
which are the ones actually computing the model (hidden
layer), and a final layer to get results (output layer). An
ANN used to process the readings from a sensor array is
sketched in Figure 3; the scheme represents the approach for
a simultaneous calibration model of two species, A and B,
departing from the readings of four ISE sensors. As can be
tracked in the figure, departure information (the potential
sensor readings, E;) enters directly into the input layer, whose
purpose is just to distribute incoming signals to the next
layer; it does not perform any thresholding; thus, these units
are not perceptrons in its right sense. Perceptrons in the
second layer constitute a hidden entity; as they communicate
with the environment only by sending or receiving messages
to units in neighbour-connected layers. This hidden layer
normally employs one layer of perceptrons for simplicity,
but nothing impedes to use more. The output layer provides

a link between the artificial network and the outside world,
submitting the processed information (here, the sought
concentrations). Notice that every perceptron is connected to
all units in the adjoining layers, but there are no connections
between units in the same layer. That is why it is called a
fullyconnected layered feedforward network—messages flow
in the forward direction only.

Mathematically, each output represents just a specific
linear combination with specific weights from each preced-
ing perceptron, though passage from layer to layer is also
modulated by the transfer functions used (usually there is a
certain transfer function for all nodes in certain layer):

[X] = FTouwsefgo + > wo - FThidden (S o0k -+ 0f)],
(4)

where the superscripts o and h indicate output and hidden
layers, respectively, and the input information (Ex) is the
different readings from the ISEs. The operation, then, is
formed by two stages: first, the ANN response model is built,
using some training data, and next the model can be used for
prediction of unknown samples.

In this approach, there are many conditions to fix before
the training of the ANN can be started. In fact, this is
a delicate part of the modelling, as there are too many
variants, and experience is the unique way to arrive to a
good configuration [10]. First, there is to decide if the input
data must suffer any kind of pretreatment. A recommended
step here is to normalize the range of the different input
channels to avoid any imbalance between them. A second
point is to decide the topology of the network; although
the number of input and output neurons is fixed by the
nature of input and output information, there is no guide
as to infer which number of neurons in the hidden layer
will yield better ANN models. Concerning architecture of
the multilayer network, almost all the recorded chemistry
situations employ single hidden layers. To deduce the best



International Journal of Electrochemistry

ak

ak

Yk

Purelin

(a)

Satlins

(b)

Yk Yk

Tansig

(c)

FIGURE 4: Representation of three commonly used transfer functions purelin, satlins, and tansig.

number of neurons, the recommendation is trial and error,
beginning with a large number and decreasing it until the
model gets worse. In this way, like when fitting polynomials,
some degree of adjustment is firstly obtained, subsequently
improved reducing the number of neurons, and once it
deteriorates due to a manifestly simple network, the optimal
configuration is met. Another factor is the kind of transfer
functions used, normally the same for the whole layer. The
input layer, playing only a distributive, role uses a linear
transfer function, called purelin, while the hidden and output
layers can use one among around a dozen possible functions.
Some of the transfer functions that can be used are shown on
Figure 4. It is common to use sigmoidal transfer functions
in the hidden layer, like the log-sigmoidal (logsig) and the
tan-sigmoidal (tansig). The logsig function generates outputs
between 0 and 1, at which the sum of the outputs goes toward
infinity. The tansig-function is very similar to the logsig,
but it generates outputs between —1 and 1. A saturated-
linear function (satlins) represents a linear correspondence
but with a way to avoid saturation at its output. Which
transfer function will be best for our problem will depend on
the nature of the relationship considered, and again, different
possibilities have to be checked for a given case. Other factors
to consider are how to accomplish the “learning” of the
network, how to check the progress of this learning process,
and how to avoid some vices that can arise during learning.

If we consider now the process of learning, in the
elementary perceptron, the learning rules are unambiguous:
for a set of known samples, the weights wy, ; are adjusted until
the obtained outputs agree with the expected values. Matters
are more complicated in a network, because it must be
established how changes in the connection weights should be
allocated to connections between different layers to promote
learning.

A common solution to this problem is backpropagation.
Let us represent as oy the output of perceptron k for a
sample p in the training set, calculated with an expression
like (5); analogously, let us represent as f, the target value.
The error signal (¢,x — 0p) is calculated, and a proportion of
the error signal is allocated to the various connections in the
network (backpropagated), tuning the values of connection
weights (wg;). The goal of this procedure is to reduce
the error signal. Using standard backpropagation, the error
signals are collected for all output units and all training

targets, and the connection weights are adjusted at the end
of every epoch, that is, after all samples in the training set
have been shown to the network once.

Backpropagation therefore adjusts the weights to min-
imize the error function F,, defined as the semisum of
the individual output unit errors for all samples (k) in the
training set:

sz (5)

%Z(t}?k - Opk)z.

k

In this way, the learning process of an ANN is equivalent
to a minimization in a multidimensional space (the space
of connection weights). A means to accomplish this is to
use the gradient-descent algorithm, an iterative optimisation
procedure in which the connection weights are adjusted in a
fashion which reduces the error most rapidly, by moving the
system downwards in the direction of maximum gradient.
The weight of a connection at stage (¢ + 1) of the training is
related to its weight at stage (¢) by (6):

wij(t+1) = wy;(t) —

r
—r 6
3w, (6)
where # is a gain term, known as the training rate factor; next,

it is reexpressed as

wij(t+1) = wij(t) +népk - 0prs (7)
where 8 is the size of change; the product 8, - 0, represents
the gradient contribution. The training rate factor varies
between 0 and 1 and accelerates or slows down the descent
towards the global minimum of the system; numbers around
0.5 are of typical use here. It is possible to derive expressions
prescribing the size of the changes that must be made at the
connection weights to reduce the error signal.

For the output layer,

8pk = kopk<1 — Opk) (tpk — 0pk)~ (8)
For the hidden layer,
51,1( = kopk(l - Opk)Z(Spiwki. 9)



Training

Standard:
Ancarcs Validation (internal)

Test (external)

4

Figure 5: Subdivision of the sample set in the different subsets
recommended to prepare the training process of an ANN model.

These expressions, which are known as the generalized
delta rule, show that the extent of the adjustment of
connection weights to hidden layers depends upon errors
in the subsequent layers, so modifications are made first to
the output layer weights, and then the error is propagated
successively back through the hidden layers—this is referred
to as backpropagation (of error). Each unit receives an
amount of the error signal which is in proportion to
its contribution to the output signal, and the connection
weights are adjusted by an amount proportional to this error.

Backpropagation by gradient descent is generally a
reliable procedure; nevertheless, it has its limitations: it is not
a fast training method, and it can be trapped in local minima.
To avoid the latter, a variant of the above algorithm called
gradient-descent with momentum (GDM) introduces a third
term, f3, referred to as the momentum:

ij(t-i— 1) = ij(t) + ﬂapkopk +ﬂAij(t). (10)

P takes a fixed value between 0 and 1 and serves to reduce
to the probability of the system being trapped in a local
minimum.

One of the problems that may occur during neural
network training is called overfitting. This situation occurs
when the error on the training set is driven to a very small
value, but the new data presented to the network shows a
large error. The overfitting concept means that the network
has memorized the training examples, but the generalization
to new situations is incorrect. In practice, there are two
methods that can be used to avoid overfitting, Bayesian
regularization, and Early stopping. In the first case, the
idea is to select the simplest network possible, and this is
simplified by eliminating nodes whose weight connections
are not significant enough. In the second case, three subsets
of data are employed, see Figure 5. A first subset is used for
training the model, a second (validation set) is used to check
if overfitting is taking place (detected as an increase in the
validation error), and a third set (the external test set) is used
only to compare performance between different models.

All these precautions represent an increased experimen-
tal effort in generating data for the numerical model, which
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can be one of the drawbacks when working with ANNs.
In order to achieve convergence with a proper modelling
ability and a demanded level of accuracy and precision, two
independent data sets are used at least, a training set and
an (internal) test or validation set, although the third set is
also suggested. Each set contains two kinds of information
that interrelate. The first type is formed by the responses of
the sensor array (patterns); the second is their corresponding
searched information (targets), in a quantitative application
case, the concentration values of the analytes. This training
set must be large enough and contain sufficient variability
to yield a proper modelling of the response. In order to
assure the quality of the final results, some system validation
is required. For this purpose, the second set of data, the
validation set, is used. From the total of generated cases,
one can equally distribute the available cases between the
different subsets or reserve the largest part of the data (up to
50%) for training. Reference authors in the field recommend
the use of 5-10 training samples per connection weight in
the ANN model, which can reach hundreds or thousands
of cases for complex network structures. Ways to generate
the complete set is through experimental design schemes, for
example, a factorial design or others. When working with
electronic tongues employing ISEs, two other situations are
also typical, the use of a collection of sample varieties (juices,
wines, an intermediate industrial product, etc.) that need to
bring some reference value (target, e.g., a parallel analytical
determination) in order to build the training set, or a set
of examples generated by accumulated microadditions of a
certain standard in a predefined background.

2. Electronic Tongues Employing
Potentiometric Sensors

Qualitative applications will be shown departing from an
array of eight PVC-membrane potentiometric sensors, clas-
sifying food varieties and predicting properties of fruit juices,
in combination with principal component analysis (PCA)
[11]. The first attempt was to classify synthetic samples
prepared with controlled variability. Once this ability is
proven, satisfactory classification results are presented for
commercial waters, orange-based drinks, and tea samples.
An interesting correlation is achieved between the natural
juice content and its first calculated component, which allows
for a very simple tool for screening purposes.

A similar array of potentiometric sensors, this time
with devices sensitive to alkaline ions, can be used for the
monitoring of ammonium without the removal of sodium
and potassium interfering ions [12]. The case involved the
use of a nonactin-based potentiometric membrane, plus
sensors for sodium and potassium, as well as some of generic
response to the alkaline family. The described case is of
environmental relevance as it may form the base for the
unattended determination of ammonium pollutant in sur-
face waters [13]. An array of eight nonspecific potentiometric
sensors with PVC membranes was used in combination with
multivariate calibration for the simultaneous determination
of the alkaline species. Their exact formulation is presented
in Table 2. Signals were processed by using a multilayer
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TasLE 2: Formulation of the ion selective membranes employed in the construction of the potentiometric sensor array.

Sensor PVC (%) Plasticizer (%) Recognition element (%)

NH," 33 Butylpentyladipate (66) Nonactin (1)

K* 30 Dioctylsebacate (66) Valinomycin (3)?

Na* 22 Nitrophenyloctylether (70) Bis[(12-crown-4)methyl]-2-dodecyl-2-methylmalonate (6)*
H* 33 Dioctylsebacate (66) Tridodecylamine (1)?

Cl~ 30 Nitrophenyloctylether (65) Tetradodecylammonium chloride (5)

NO;~ 30 Dibutylphtalate (67) Tetraoctylammonium nitrate (3)

Generic 1 29 Dioctylsebacate (67) Dibenzo (18-crown-6) (4)

Generic 2 29 Dibutylphtalate (65) Tetraoctylammonium bromide (4)

“The formulation includes potassium tetrakis(4-chlorophenyl)borate as an additive.

artificial neural network (ANN). The ANN configuration
used was optimized by using 8 neurons in the input layer,
5 in the hidden layer and 3 in the output layer. Use of the
Bayesian regularization algorithm allowed the rapid building
of an accurate model, as confirmed by random multistarting
of network weights. The system was used to analyze synthetic
and river water, waste water, and fertilizer samples. Correct
results were obtained for the three ions in synthetic and real
water samples; in fertilizers, ammonium ion can be deter-
mined, while sodium and potassium show biased results.

A similar case was derived from the latter, which is the
monitoring of nutrients in recirculated feed solutions of
greenhouse facilities [14]. There, the need was to monitor
nutrients like ammonium, potassium, and nitrate and,
simultaneously, detect the presence of undesired species like
sodium or chloride, which accumulate during long-time
operation. The case for cations was attempted with sensors
sensitive to alkaline ions plus a generic response membrane;
the anions were resolved employing PVC membrane sensors
for nitrate and chloride and a generic response to anions unit.
Temperature dependence was also counterbalanced through
measurement and modelling of its effect. The response
model was built employing ANNs and samples prepared
from a factorial experimental design. A further evolution of
the system for the determination of ammonium consisted
of the conversion of ammonium sensors to urea biosensors
through covalent immobilization of urease. With this array,
which incorporated urea biosensors plus ammonium and
alkaline-ion sensors, it was possible to determine urea in
clinical samples without the need to separate endogenous
ammonium or interfering sodium and potassium ions [15].

2.1. Use of Flow Systems. In the work with electronic tongues,
soon we realized the large experimental efforts related with
the generation of information to fed the chemometric
tools. In the qualitative application, the workload is the
introduction and measurement of a sufficiently large set
of samples representing the different possible cases. For a
multidetermination case, it stands on the preparation of
a large set of standards, with different proportions of the
considered substances, a huge task if the number of species
is large. In both cases, the use of flow systems may help in the
operation of electronic tongues [16], especially to facilitate
the processing of large sets of samples. This was first demon-
strated with a FIA system employing different flow-through

Sensor array Stock solutions

FiIGUre 6: Image of the sequential injection analysis system
employed to develop automated electronic tongues.

sensors for nitrate and chloride that demonstrated its utility
in removing the chloride interference for the determination
of nitrate [17]. The use of large sets of samples is also forced
by ANNS, since a larger number of samples than the number
of interconnections is recommended to build the model
[10]. For this reason, we developed an automated system
employing the sequential injection analysis technique, capa-
ble of preparing arbitrary mixtures of samples from more
concentrated stock solutions [18]. With this system, sketched
in Figure 6, it is possible to generate automatically ca. 100
samples and obtain their measurements. Different applica-
tions will be described, such as the combined determination
of alkaline ions [19] or the combined determination of
alkaline-earth ions [20], each from an array of 5 tubular flow-
through PVC-membrane electrodes.

In this case, the simultaneous determination of Mg?",
Ca’", and Ba?' in water was done using a PVC-membrane
potentiometric sensor array and multivariate calibration.
The response model was based on the use of a multilayer
artificial neural network (ANN). The information needed
for training or generation of the model was obtained with
the aid of an automated analytical system based on the



sequential injection analysis (SIA) technique. The modelling
ability was verified with an external set of standards, and
then the determinations were performed in real samples of
mineral waters, where close results for Mg?* and Ca®" were
obtained to those obtained with reference methods. The
determination of Ba?" can be considered as semiquantitative
for synthetic samples—due to the absence of Ba?* in mineral
waters, its concentration in real samples was not measured.

More recently, the use of the automated system has
permitted us to adapt our procedures to record the transient
response corresponding to a sample step [21]. The novelty
is the use of the dynamic components of the signal in
order to better discriminate or differentiate a sample. An
electronic tongue based on the transient response of an
array of non-specific-response potentiometric sensors was
thus developed. As before, the SIA system was used in order
to automate its training and operation. The use of the
transient recording entails the dynamic nature of the sensor’s
response, which can be of high information content, of
primary ions, and also of interfering ions; these may be better
discriminated if the kinetic resolution is added. In the study,
significant information contained in the transient response
of each sensor from a sensor array formed by five all-solid-
state potentiometric sensors was extracted carefully. The
tool employed for this purpose was the Fourier transform,
from which a number of coefficients were fed into an
artificial neural network (ANN) model, used to perform a
quantitative multidetermination. The studied case was the
analysis of mixtures of Ca>*, Na*, and K*. Obtained perfor-
mance was compared with the more traditional automated
electronic tongue using final steady-state potentials, showing
an improved modelling capability. A similar study was
performed for anions, where nitrate, chloride, and hydrogen
carbonate were simultaneously determined from an array of
ISEs for anions [22].

3. Electronic Tongues Employing
Voltammetric Sensors

Some examples will also be described with the use of
voltammetric sensors, for example in the classification
of foods or beverages, or quantification of mixtures of
oxidizing substances. Differently to the potentiometric case,
the voltammetric signal is inherently linear, although its
dimension is greater. That is, different oxidizable compounds
present in a sample contribute in a certain proportion to the
current signal, although a vector of currents is generated per
each electrode used in the array:

iW(V)=i,+k -Ci+ky-Co+ks-C5+---, (11)

where i (V) is the vector of currents of electrode k and
the concentrations of the different oxidizable compounds
present in a sample are denoted by C,, C;, Cs, and so forth.
One important fact associated with voltammetric elec-
tronic tongues is the higher dimensionality that characterizes
them, making the data treatment process much more
difficult. Normally, each voltammogram may be formed
by several dozen, even hundreds of current intensities;
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although one voltammogram may be easily processed by
the algorithms intrinsically doing data reduction, such as
PCA or PLS, this is not the case if ANNs are used.
Also, the use of several electrodes in the array, providing
a vector measure per each sample, also complicates the
situation. The three-way matrix which is generated (samples
X currents X sensors) is then too complex for the ordinary
data treatment procedures. Approaches to cope with this
are the unfolding, for example, combining of the sensor
signals into one single vector, although its excessive length
or the introduced discontinuities may be a problem. Other
approaches used are to compress the data to some reduced,
compressed values, that may represent the original measure
and allow the application of, for example, ANNs. This has
been accomplished by performing feature extraction from
the original signals, if the measured signals have clear shapes
or profiles to interpret, or, in a more generic way, by reducing
complexity through data compression strategies, like PCA,
Fourier, or Wavelet transforms. And, finally, there are the
multiway treatment procedures, like PARAFAC or N-PLS,
capable of treating the three-way data matrix directly, very
rarely employed up to this moment with electronic tongues,
probably due to the high complexity involved.

A new approach towards a voltammetric electronic
tongue was developed in our laboratories [23]. Automation
of the system was achieved with the use of an SIA sys-
tem. Design and construction of a small detection device
containing 3 working electrodes was carried out. Platinum,
gold, and epoxy-graphite discs were used for this purpose.
An Ag/AgCl reference electrode was integrated into the
measuring cell in order to minimise electrical noise. Three
oxidizable compounds of clinical interest, that is, ascorbic
acid, uric acid, and paracetamol, could be quantified by
the system. Employing the voltammograms as departure
information, artificial neural networks (ANN) have been
used as chemometric tool for the modelling of the system
(see Figure 7). The three voltammograms were added up,
summing the currents for each polarization potential, and
simplifying the original data to a simple vector, that were
then easily processable by ANNs. An interesting similar work
employing a FIA system was developed for environmental
application, permitting a quick estimation of the chemical
oxygen demand [24].

The use of arrays of voltammetric sensors has recently
enabled an application very much desirable from the indus-
trial sector, which is the use of electronic tongue systems
to monitor and to detect defects during production of
wine [5]. In our case, we have proposed the use of an
array of 6 voltammetric electrodes modified with different
nanocomponents or conducting polymers, in order to
generate a sufficiently differentiated response [25]. Table 2
summarizes the composition of the sensors used. The system
has been successfully applied in the identification of wine
classes and in the identification of some types of spoilage.
In a second study, the same sensor array could be used
to differentiate between different fabrication variants of
the catalan cava sparkling wine, in what is known “brut,”
“brut-nature,” “dry;” “medium-dry;,” or “sweet” [26], an
application that almost rivals sommeliers in cava tasting. In
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F1GURE 7: Concepts in a voltammetric electronic tongue performing a quantitative application.

TasLE 3: Composition of the voltammetric sensors included in the
array.

Sensor % graphite Modifier (%) % epoxy
GEC 50 — 50
PC 48 Cobalt phthalocyanine (2) 50
Pt 48 Platinum nanoparticles (2) 50
Cu 48 Copper nanoparticles (2) 50
PPY 48 Polypyrrole (2) 50
PANI 48 Polyaniline (emeraldine salt) (2) 50

both cases, the data processing involved was the unfolding
of voltammograms and the qualitative transformation PCA
(Table 3).

4. Electronic Tongues Employing Biosensors

The biosensor array for the determination of urea [15]
has already been described, as it was formed essentially by
potentiometric sensors. As an example of a voltammetric
electronic tongue employing biosensors, the determination
of different phenolic compounds from the overlapped
spectra obtained from a tyrosinase enzyme biosensor is an
important example. Determination of phenols is significant

given their toxicity, even at very low concentration levels.
Amperometric determination of phenols is a simple tech-
nique available. Direct oxidation of phenols can be used,
but another possibility is the use of polyphenol oxidase
(tyrosinase) enzyme biosensors that oxidises the phenolic
compounds into their corresponding quinones. Reduction of
the resulting quinones accomplishes the amplification of the
amperometric signal, as long as the result of the reduction
process is the corresponding cathecol, this being able to
be oxidised again by the polyphenol oxidase immobilized
on the surface of the biosensor. In this communication,
simultaneous determination of different phenols was carried
out combining biosensor measurements with chemomet-
ric tools, in what is known as electronic tongue. The
departure information used was the overlapped reduction
voltammogram generated with the amperometric biosensor
based on polyphenol oxidase. ANNs were again used for
extraction and quantification of each compound. Phenol,
cathecol, and m-cresol formed the three-analyte study case
resolved in this work. Good prediction ability was attained,;
hence, the separate quantification of these three phenols was
accomplished [27]. The proposal of electronic tongues has
also been extended to the use of inhibition-based biosensors,
such as those employed for the determination of pesticides
[28]; the principle, here, is to use enzymes from different
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biological origins, that may show different inhibitory degree
to a set of substances. The use of biosensors in the sensor
array has coined the term bioelectronic tongue [1, 5].

5. Conclusions

The growing demand for (bio)chemical information in the
different economic sectors or in the environment and the
public concern on health and quality are clearly driving
for new trends in analytical methodologies. Electrochemical
(bio)sensors are a clear option for a fast, simple, and
cheap gathering of information, although sensors alone
cannot solve all the existing situations. In the last decade,
a new trend in the sensor field has appeared which is to
couple multidimensional sensor information with advanced
computer processing strategies; this approach, known as
electronic tongue, can take profit of electrochemical sensors
and biosensors from the potentiometric and voltammet-
ric families, among others [29]. In perspective, electronic
tongues can be one of the clearest benefits of the application
of chemometrics in (bio)sensor research. One of the clearest
fields of application for electronic tongues can be the food
field, where the automated sensory control of fabrication
batches and detection of production defects can be an
irreplaceable contribution, 24/7. Examining the progress
trend, the field seems to be now mature, and perhaps
a more complete commercial dissemination is the only
event still to observe. Some research lines that seem to be
active for the next years are the increase in complexity of
new electronic tongues, with higher number of sensors, or
with more complex information generated, for example,
incorporating the dynamic dimension or other additional
dimensions in the signal. Therefore, the multiway processing
in electronic tongues will be a must. Also, the use of
hybrid electronic tongues, joining in their array sensors from
different nature, and in demand for special data treatment
approaches too, in this case that may be named data
fusion. Finally, the irruption of electronic tongues into the
biotechnological field seems a natural trail of progress, where
the progressive incorporation of biosensors of different kinds
in the operation of electronic tongues is already an initiated
trend.
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