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Abstract 15 

This work reports the application of a voltammetric Electronic Tongue system (ET) 16 

made from an array of modified graphite-epoxy composites plus a gold microelectrode 17 

in the qualitative and quantitative analysis of polyphenols found in wine. Wine samples 18 

were analyzed using cyclic voltammetry without any sample pretreatment. The obtained 19 

responses were preprocessed employing Discrete Wavelet Transform in order to 20 

compress and extract significant features from the voltammetric signals, and the 21 

obtained approximation coefficients fed two multivariate calibration methods (ANN and 22 

PLS) which accomplish the quantification of total polyphenol content. External test 23 

results were compared with the ones obtained with the Folin-Ciocalteu method and UV 24 

absorbance polyphenol index (I280) as reference values, with highly significant 25 

correlation coefficients of 0.979 and 0.963 in the range from 50 to 2400 mg L-1 gallic 26 

acid equivalents, respectively. In a separate experiment, qualitative discrimination of 27 

different polyphenols found in wine was also assessed by Principal Component 28 

Analysis. 29 
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1. Introduction 33 

Wine is an important analytical field, taking special attention to new 34 

methodologies for its characterization and elaboration control [1]. One important wine 35 

parameter, determining some organoleptic and sensorial properties, is its polyphenol 36 

content [2]. Phenolics in plants may act as phytoalexins, antifeedants, attractants for 37 

pollinators, contributors to plant pigmentation, antioxidants and protective agents 38 

against UV light, among others [3]. Meanwhile in food, phenolics may contribute to the 39 

bitterness, astringency, color, flavor, odor and oxidative stability of food. In addition to 40 

health-protecting capacity and some properties other than nutritional of plants, 41 

phenolics are of great importance to both consumers and producers. 42 

In grapes, synthesis of polyphenols is induced by factors such as grape cultivar, 43 

developmental stage of the berry and maturation, climatology and UV radiation and 44 

viticultural practices; it can also be affected by fungal infection (Botrytis cinerea) and 45 

injuries [4-6]. In wine, phenolics are responsible of pigmentation (in red but also in 46 

white wines), aging, oxygen-depleting compounds and bitter and stringent components, 47 

which are determinant for the wine taste and character. 48 

Several methods to quantify total phenols and polyphenols have been described 49 

in the literature [7]. The Folin-Ciocalteu (FC) method is widely employed in the wine 50 

industry [8]. This spectrophotometric method measures the sample reducing capacity. 51 

As a faster alternative to this method, the use of what is known as polyphenol index 52 

(I280) is now arising [9]; in this case wine absorbance is measured directly at 280 nm 53 

and straightly correlated with phenolic content. Another spectrophotometric method 54 

widely used is the reaction with 4-aminoantypirine [10], a generic reaction for phenols. 55 

On the one hand, these methods yield a total phenol content value, and therefore do not 56 

allow for the discrimination between individual constituents. However there are some 57 

spectrophotometric methods, developed for quantification of phenolics in plants, that 58 

brings some specificity; these assays are based on differential reactivity principles and 59 

are used to determine different structural groups concominant in phenolic compounds 60 

[11]. On the other hand, there is also the use of chromatographic techniques such as 61 

HPLC [12] or GC [13], which are able to perform individual determination of phenolic 62 

compounds; however these methods need complex and time-consuming sample pre-63 

treatment procedures, and are not suitable for on-site analyses. Nowadays, biosensors 64 

are arising as an alternative to the traditional techniques given their low cost and their 65 
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ease of use to carry out on field analyses. Therefore, biosensors represent an attractive 66 

alternative also for the detection of polyphenolic compounds. For this aim, biosensors 67 

have been developed incorporating enzymes such as Laccase [14], Tyrosinase [15] or 68 

Peroxidase [16], and even by the coimmobilization of two enzymes in the same 69 

biosensor [17]. 70 

The present work reports the application of an Electronic Tongue (ET) in the 71 

analysis of polyphenols. The ET is a recent trend from the sensory field, which entails 72 

the use of an array of sensors capable of giving a wide and complete response of the 73 

analyzed species, plus a chemometric processing tool able to interpret the chemical 74 

signals and extract meaningful data from the complex readings [18, 19]. Although there 75 

are only a few number of papers related to ETs and wine, they have been previously 76 

applied to distinguish different wine varieties and tastes [20-22], to quantify some 77 

analytical parameters of wines [23-25] or even to detect wine adulterations [26, 27]. 78 

Potentiometric sensors have been used as well, and their signal correlated to polyphenol 79 

content of wines [28]. 80 

The ET is, in this sense, the hybrid formed between sensors and the use of 81 

chemometrics, such as Artificial Neural Networks (ANNs); these advanced signal 82 

processing variants allows the interpretation, modelling and calibration of complex 83 

analytical signals [29, 30]. Despite great advantages provided by the use of ANNs, 84 

when voltammetric sensors are used, the high complexity of the generated data matrix 85 

hinders their treatment. The straightforward solution is the use of multiway processing 86 

methods (samples x sensors x polarization potential), but the complexity of this 87 

technique is also critical [31, 32]. One solution when dealing with a set of 88 

voltammograms is to employ a preprocessing stage for data reduction; this option 89 

permits to gain advantages in training time, to avoid redundancy in input data and to 90 

obtain a model with better generalization ability. This compression stage may be 91 

achieved by the use of methods such as Principal Component Analysis (PCA), “kernels” 92 

[33] or Discrete Wavelet Transform (DWT) [34]. In this sense the last one, is 93 

particularly interesting because of its ability to compress and denoise data. 94 

Here we report a multidimensional ET aimed for the determination of the total 95 

polyphenol content, formed by an array of six voltammetric sensors: a Au 96 

microelectrode plus five epoxy-graphite composite sensors, four of them bulk-modified 97 

with cobalt phtalocyanine, different nanoparticles (Pt and Cu) and polypyrrole powder 98 

(a conducting polymer). This array is designed in this manner to produce differentiated 99 
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catalytic responses to specific phenolic compounds present in the wines [27]. Obtained 100 

responses were preprocessed employing DWT in order to extract the significant 101 

information present and the resulting approximation coefficients fed the different 102 

multivariate calibration methods (ANN and PLS-2 models), specially trained to predict 103 

the total polyphenol indexes, in what might be considered a bioinspired analytical 104 

method that uses artificial intelligence tools. 105 

 106 

 107 

2. Experimental 108 

 109 

2.1 Samples under study 110 

 A total of 20 wine samples of different varieties from 2008 and 2009 vintage 111 

were analyzed; all of them were from the Penedès region (Catalonia, Spain). Samples 112 

were selected as to obtain a set with sufficiently differentiated total polyphenol indexes 113 

and grape varieties, with values ranged from 54 to 2374 mg L-1 gallic acid equivalents. 114 

Table 1 summarizes detailed information about the wines used. 115 

 116 

<TABLE 1> 117 

 118 

2.2 Reagents and solutions 119 

All reagents used were analytical reagent grade and all solutions were prepared 120 

using deionised water from a Milli-Q system (Millipore, Billerica, MA, USA). Gallic 121 

acid, catechin, p-coumaric acid, caffeic acid, catechol, m-cresol, copper and platinum 122 

nanoparticles (<50nm), polynailine and polypyrrole were purchased from Sigma-123 

Aldrich (St. Louis, MO, USA). KCl was purchased from Merck KGaA (Darmstadt, 124 

Germany). Folin-Ciocalteu’s Reagent and Sodium Carbonate were purchased from 125 

Panreac Química (Barcelona, Spain). A solution containing 0.1 M KNO3 (Fluka) was 126 

used to activate the gold (Au) microelectrode. 127 

 128 

2.3 Determination of polyphenol content by Folin-Ciocalteu method and 129 

spectrophotometric measurements 130 

For comparison purposes, Folin-Ciocalteau (FC) index of the wines was also 131 

analyzed spectrophotometrically [35]. The FC test was carried out according to the 132 
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following procedure: 1mL of sample (wines were diluted 1:100 or 1:50), 6mL of 133 

deionized water, 0.5 mL of Folin-Ciocalteu reagent and 2mL of a 20% sodium 134 

carbonate solution were added in this order to a 10mL beaker and diluted to volume 135 

with deionized water. The resulting solution was stirred and allowed to react for half an 136 

hour at room temperature in darkness. The absorbance was then read at 760nm by a 137 

spectrophotometer Perkin Elmer Lambda 20 UV/VIS. Total phenolic content, expressed 138 

in gallic acid equivalents, was evaluated from the absorbance value by interpolation into 139 

the calibration plot obtained with gallic acid standard solutions, multiplying the 140 

resulting value by 10 and by the proper dilution rate. Different dilution factors were 141 

applied given when carrying out specthrophotometric measurements absorbance must 142 

be around 0.3 [35]. 143 

For the determination of the total content of polyphenolic compounds in wines 144 

the polyphenol index I280 was also considered: wine was diluted with water (1:100 or 145 

1:50) and the absorbance was measured directly at 280 nm. The value of I280 for each 146 

sample was given as the absorbance multiplied by the proper dilution rate. In both 147 

methods the blank solution was a hydro-alcoholic solution (12%, v/v ethanol) of tartaric 148 

acid 3 g/L. 149 

 150 

2.4 Electrochemical measurements 151 

 Samples were analysed with two types of amperometric sensors: an array of 5 152 

graphite-epoxy voltammetric sensors made with different modifiers added to the bulk 153 

mixture, selected according with previous experiments in our laboratory [27, 36], and a 154 

microfabricated Au microelectrode [37, 38]. Electroanalytical experiments were carried 155 

out at room temperature (25 ºC) under quiescent conditions, and without any pre-156 

treatment or dilution of the sample. Electrodes were cycled in saline solution in order to 157 

get stable voltammetric responses before performing the measurements with real 158 

samples. 159 

 160 

2.4.1 Composite electrodes 161 

Working electrodes were prepared following the conventional methodology 162 

previously established in our research Group [39]. A resin EpoTek H77 (Epoxy 163 

Technology, Billerica, MA, USA) and its corresponding hardener compound were 164 

mixed in the ratio 20:3 (w/w); afterwards a 15% of graphite (w/w) and a 2% of the 165 

modifier (w/w) were added to the previous mixture before hardening, obtaining the 166 
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composite. Then, it was manually homogenized for 60 min, and afterwards composite 167 

paste was allowed to harden during 3 days at 80 ºC. Finally, electrode surface was 168 

polished with different sandpapers of decreasing grain size, with a final electrode area 169 

of 28 mm2. 170 

In this manner, an array of 5 different graphite-epoxy voltammetric sensors were 171 

prepared using bare graphite C, adding different modifiers such as cobalt phtalocyanine, 172 

conducting polymer as polypyrrole and nanoparticles of copper and platinum to the bulk 173 

mixture – one component per electrode. 174 

 175 

2.4.2 Gold microelectrode 176 

Also a conventional Au microelectrode fabricated according to standard 177 

photolithographic techniques was used [40]. The Au microelectrode was firstly 178 

chemically cleaned successively with ethanol 96%, H2SO4 6.0 M and de-ionized water. 179 

Next, an electrochemical activation was carried out in 0.1 M KNO3, where the electrode 180 

was cycled from +0.8 to -2.2 V for at least 20 times. 181 

 182 

2.4.3 Amperometric measurements 183 

Amperometric measurement cell was formed by the 6-sensor voltammetric array 184 

and a reference double junction Ag/AgCl electrode (Thermo Orion 900200, Beverly, 185 

MA, USA) plus a commercial platinum counter electrode (Model 52–67, Crison 186 

Instruments, Barcelona, Spain). Cyclic Voltammetry measurements were taken using a 187 

6-channel AUTOLAB PGSTAT20 (Ecochemie, Netherlands), in a multichannel 188 

configuration, using GPES Multichannel 4.7 software package. 189 

Potential was cycled between -1.0 V and 1.3 V vs Ag/AgCl (-0.5 V and 1.6 V 190 

for the Au microelectrode), with a scan rate of 100 mV s-1 and a step potential of 9 mV. 191 

Apart, all experiments were carried out without performing any physical surface 192 

regeneration of the working electrodes. In order to prevent the accumulative effect of 193 

impurities on the working electrode surfaces, an electrochemical cleaning stage was 194 

done between each measurement applying a conditioning potential of +1.5 V during 40 195 

s after each experiment, in a cell containing 25 ml of distilled water [36]. 196 

 197 

2.5 Spiked samples 198 

 Beyond wine samples summarized in Table 1, some spiked samples were 199 

prepared in order to assess the discrimination ability shown by the sensor array. For 200 
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this, a reference wine was spiked with different quantities of a stock solution of certain 201 

polyphenols. Polyphenols considered were selected according to major polyphenols 202 

found in wine [41, 42]; gallic acid, catechin, p-coumaric acid, caffeic acid, catechol and 203 

m-Cresol were the ones tested. It must be reckoned that average total polyphenol 204 

content measured by the Folin method is higher than the individual content of each 205 

polyphenol [41, 43]. For example, total polyphenol content is around 2160 mg L-1 for 206 

red wine, 820 mg L-1 in rosé wine and 320 mg L-1 for white wines; however individual 207 

polyphenol concentration is much lower with values under 300 mg L-1 for red wine and 208 

50 mg L-1 for white wines [43]. 209 

In this manner, a rosé wine was choosen as the one to which phenolic 210 

compounds will be added given their lower polyphenolic content. Then, from it, 35 211 

different samples were prepared based on 7 groups (one for each of the 6 polyphenols 212 

under study plus another for the unspiked wine). To confirm that differentiation 213 

between compounds was not due to different amount of phenolic compounds being 214 

added, in all the cases the same amount was added. Thus, for each class 5 µmols of 215 

polyphenolic compound were added to 25 mL of wine, which represents approximately 216 

an increase of 36 mg L-1 (200 µM). 217 

 218 

2.6 Data processing 219 

Chemometric processing was done by specific routines in MATLAB 7.0 220 

(MathWorks, Natick, MA) written by the authors, using Neural Network and Wavelet 221 

Toolboxes (v.4.0). Partial Least Squares (PLS) regression was done employing The 222 

Unscrambler (CAMO Software AS, Oslo, Norway) informatics package. Sigmaplot 223 

2000 (Systat Software Inc, California, USA) was used for graphic representations of 224 

data and results. 225 

The whole cyclic voltammograms obtained from each sensor were included in 226 

the data processing stage. In order to reduce the multidimensional data matrix generated 227 

in each measurement, a preprocessing stage employing the Discrete Wavelet Transform 228 

(DWT) was used [44]. In this way, and using the proposed sensor array, the 229 

corresponding compressed voltammograms were processed employing either an 230 

Artificial Neural Network (ANN) or Partial Least Squares (PLS-2). Both models 231 

allowed carrying out the quantification of the FC index and the I280 values. 232 

In order to find the appropriate ANN model, significant effort is needed to 233 

optimize the configuration details that determine its operation. Normally, this is a trial-234 
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and-error process, where several parameters (training algorithms, number of hidden 235 

layers, transfer functions, etc.) are fine-tuned in order to find the best configuration to 236 

optimize the performance of the model.  237 

Given the complexity of the data set, also a linear model like PLS-2 was 238 

evaluated; PLS-2 was chosen given its ability to model several variables together, 239 

unlike PLS-1 or PCR. Therefore obtained model would be equivalent to the one built 240 

with ANN. In this case, the parameter that must be taken into account are the number of 241 

PCs used to build the PLS-2 model; to optimize this parameter, it was taken into 242 

account the model that gives the lower total Normalized Root Mean Square Error 243 

(NRMSE) for predicted values. Also, as done in the case of ANN voltammetric signals 244 

were preprocessed employing DWT before adjusting PLS, given this data reduction 245 

improves model prediction and generalization abilities [45].  246 

Given the reduced size of the data set, a jack-knife method was used [46, 47]. 247 

Jack-knife method was suggested for use in statistics to describe a general approach for 248 

testing hypotheses and calculating confidence intervals in situations where apparently 249 

no better methods can be used. With this procedure, standard errors are calculated from 250 

different resampling with random distribution and repeating the modelling stage. In this 251 

manner, it could be used either leaving one sample out each timer or even many samples 252 

out each time [47]. 253 

In our case, it was applied using 15 samples for training process and leaving 5 254 

samples out each time which were used to evaluate model’s response; then, this 255 

subdivision of the original data set was repeated 25 times leaving 5 different samples 256 

out each time, which were selected randomly. Once all the responses from the models 257 

were obtained, data was grouped depending if it was intervening in the training process 258 

or used as external test.  259 

Also Principal Component Analysis (PCA) was used to visualize the 260 

discrimination capability derived from the voltammetric signals acquired, and combined 261 

with cluster analysis tools to build a preliminary recognition model. PCA allows to 262 

project the information carried by the original variables onto a smaller number of 263 

underlying (“latent”) variables called principal components (PCs) with new coordinates 264 

called scores, obtained after data transformation. Then by plotting the PCs, one can 265 

view interrelationships between different variables, and detect and interpret sample 266 

patterns, groupings, similarities or differences [27]. Moreover, PCA is a useful method 267 

to reduce the dimensionality of large data sets, such as those from arrays of 268 
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voltammetric sensors. Cluster analysis tools allow constructing clusters from data using 269 

pairwise distance between observations (usually Euclidean distance), as linkage to 270 

construct the hierarchical cluster tree.  271 

 272 

3. Results and Discussion 273 

 274 

3.1 Voltammetric responses and feature extraction 275 

Different voltammetric responses are observed for each kind of sensor, as shown 276 

in Figure 1. These signals presumably contribute in different manner with the data 277 

needed for model quantification. Differentiated signals are obtained for each type of 278 

sensor used. Catalytic oxidative signals seem to originate from the sensors using metal 279 

nanoparticles, which may be due to a catalytic oxidation of saccharides and/or 280 

polyphenols. Similarly, sensors modified with conducting polymers bring new 281 

information with completely different waveforms. Gold electrode would provide the 282 

most generic redox behaviour of the sample. At the same time, it can be seen how 283 

currents increase in the same way as FC index increases and with different behaviour 284 

for each sensor; meanwhile each sensor shows its distinctive profile, generating very 285 

rich data that is very useful as departure point. For developing an ET, the first necessary 286 

condition is to have analytical signals responding to the phenomena to which the 287 

objective is aimed, with variability among them and the different sensors forming the 288 

sensor array. As demonstrated, bulk modification of voltammetric electrodes is an easy 289 

way to enrich the cross-response of the sensor array to different aspects of the solution 290 

under study [27]. Even the extreme complexity of the generated signals (the set of 291 

voltammograms) hinders the processing step. As already commented, all these data is 292 

used performing a compression step, required to gain advantages in training time, to 293 

avoid redundancy in input data and to obtain a model with better generalization ability. 294 

An additional reason is the need to extract reduced and significant information 295 

compatible with the ANN structure [44]. This was accomplished by use of the DWT. 296 

 297 

<FIGURE 1> 298 

 299 

3.2 Estimation of the polyphenol indexes 300 
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A DWT preprocessing stage was performed employing Daubechies wavelet and 301 

a sixth decomposition level, the best choice from preliminary tests and previous 302 

experience [34, 44]. The DWT allowed compressing the original data set information up 303 

to 97.27% without any loss of relevant information. From the proposed 6-sensor array, 304 

the corresponding voltammograms were compressed, and the obtained coefficients were 305 

fed into multivariate calibration methods in order to predict the total polyphenol content 306 

in wines. In this sense, two different methods were evaluated: an ANN as a non-linear 307 

data modelling tool and PLS-2 as a linear one. A simplified scheme of the procedure 308 

followed for data treatment and ANN architecture can be observed in Figure 2. 309 

 310 

<FIGURE 2> 311 

 312 

After a systematic evaluation of topologies, the final DWT-ANN architecture 313 

model had 84 input neurons (corresponding to the 14 wavelet approximation 314 

coefficients obtained from wavelet analysis of each of the 6 sensor signals), 10 neurons 315 

and logsig function in the hidden layer and 2 output neurons and purelin function in the 316 

output layer corresponding to FC and I280 indexes.  Although, individual ANN models 317 

to predict separately these two indexes may also be developed. Bayesian regularization 318 

was used to train the network, this algorithm has the advantage of avoiding overfitting 319 

without the need of an internal validation subset [44], then this precaution is not 320 

performed. 321 

For the optimization of PLS model only two considerations were taken into 322 

account: the differences obtained when using the 84 DWT coefficients instead of the 323 

raw voltammetric data and the number of PCs used to build the model. Despite PLS has 324 

no need of a preprocessing stage, it was found that better models were obtained when 325 

this was performed (total NRMSE improved from 0.31 to 0.20 for predicted values). 326 

Thus, the final model was a DWT-PLS2 with 7 PCs, which has a total explained 327 

variance ca. 95.2%.  328 

After building the models, which were evaluated for training with 75% of the 329 

data and tested with the remaining 25%, a jack-knife method was employed to visualize 330 

dependence of predictions from the specific subdivision of data. Then, in order to 331 

characterize the accuracy of the identification models and obtain unbiased data, 332 

train/test data division was repeated randomly 25 times using a 5-fold cross validation 333 
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process; this precaution ensured that performance indicators were independent of the 334 

subsets used. 335 

Comparison graphs for each model were built grouping the replicas for each 336 

individual sample, differentiating when it was intervening in the training process and 337 

when used as external test. The predicted indexes were then plot against the expected 338 

ones and fitted with linear least-squares regression. To give the same weight to all 339 

points, weighed regression was used. The obtained results for the ANN model can be 340 

seen on Figure 3 for the Folin-Ciocalteu Index and Figure 4, for the I280 index. In the 341 

same way, results from the DWT-PLS2 model can be seen in Figure 5 for the FC index, 342 

and Figure 6 for the I280 index. In both cases, an estimation of prediction errors 343 

(intervals calculated at the 95% confidence level) corresponding to the average of the 25 344 

jack-knife calculations, taken from the dispersion of the replicas, can be also visualized. 345 

 346 

<FIGURE 3> 347 

<FIGURE 4> 348 

<FIGURE 5> 349 

<FIGURE 6> 350 

 351 

As usual in multivariate calibration methods work, training stage behaviour 352 

shows better agreement and reduced errors than testing stage. The general behaviour is 353 

also good in both cases, although individual prediction errors are largely increased, 354 

especially for certain samples that were more dependant on the specific data used in 355 

training. Despite the good trend in both cases, larger uncertainties were obtained with 356 

the DWT-PLS2, thus meaning ANN model is slightly more robust. Regardless of this, 357 

Table 2 presents the results of the weighed regressions, where the good correlation 358 

coefficients and the small associated errors stand out (intervals calculated at the 95% 359 

confidence level). The obtained comparison results are close to the ideal values, with 360 

intercepts near to 0 and slopes and correlation coefficients around 1, meaning that there 361 

are no significant differences between the values predicted by the multivariate 362 

calibration methods and the reference ones.  363 

 364 

<TABLE 2> 365 

 366 

3.3 Classification of polyphenols 367 
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Employing the same ET and following equivalent procedure for the data 368 

treatment, spiked wine samples with typical polyphenolic compounds present in wine, 369 

as described in Section 2.5, were measured as before but in random order. An extract of 370 

the results is shown on Figure 7, corresponding to the polypyrrole sensor; which was 371 

selected for being the one where the most clearly differentiated cathodic response is 372 

obtained for each compound. Then the information obtained from the complete set of 373 

voltammograms was evaluated using PCA and groups were formed using cluster 374 

analysis tools. 375 

 376 

<FIGURE 7>  377 

 378 

The PCA analysis was done, and with the two first PCs, the explained variance 379 

accumulated was ca. 95 %; a large value which means that nearly all the variance 380 

contained in the original data is explained. By plotting them, different clusters were 381 

obtained as can be seen in Figure 8; patterns in the figure evidence that wine samples 382 

are grouped based on which polyphenol was added. These well established clusters 383 

clearly separate the main classes of samples corresponding to: (I) Wine, (II) Gallic acid, 384 

(III) Catechin, (IV) p-Coumaric acid, (V) Caffeic acid, (VI) Catechol and (VII) m-385 

Cresol. 386 

 387 

<FIGURE 8> 388 

 389 

The fact that gallic acid and catechin clusters were so close one to the other, and 390 

also from the wine cluster, is due to the fact that these two compounds are the ones 391 

present in higher concentration in wine. As expected, p-Coumaric and caffeic acids 392 

clusters were more separated to the wine cluster and close between them, given both are 393 

hydroxycinnamic acids differing only by one alcohol group. Finally, m-Cresol and 394 

Catechol were clearly far away from the rest of clusters and mainly represented by PC2. 395 

The position of these clusters could be explained by the fact that these components are 396 

found in less proportion in wine and their chemical structure is quite different from the 397 

others. 398 

In this interpretation of polyphenol identification, we could see that individual 399 

groups were obtained for each phenolic compound; moreover, compounds with 400 

structural similarity arranged closely between them, meaning there is some background 401 
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relationship. Although the good results obtained with those spiked samples, it should be 402 

taken into account that the quantification of individual polyphenols in a complex sample 403 

such as wine is very difficult, but the results obtained suggest this possibility. In 404 

essence, the study demonstrates the capabilities of the proposed ET, both in the 405 

quantification of total polyphenol content and in the differentiation of different 406 

polyphenols found in wine. 407 

  408 

 409 

4. Conclusions 410 

An electronic tongue based on voltammetric sensors with different modifiers 411 

(metallic nano-sized particles, conducting polymers and cobalt phtalocyanine) was 412 

developed in order to create a tool capable of quantifying total polyphenol content in 413 

wines. Complex voltammetric data required the use of a preprocessing stage that was 414 

achieved by the use of DWT, which provides a good compression of data preserving 415 

relevant information. While the use of ANN or PLS-2 allowed predicting phenolic 416 

content indexes obtained with two different reference methods (Folin-Ciocalteu and I280 417 

indexes). In a more qualitative application of the technique, we have been also able to 418 

differentiate between different polyphenols found in wine samples by the use of PCA, 419 

clearly discriminating them in an application comparable to much more complex 420 

analytical techniques such as HPLC. 421 

Finally, superior performance of ET combined with the use of chemometric 422 

tools as ANN in tasks multivariate calibration or pattern recognition has been again 423 

demonstrated, presenting the proposed ET as an alternative to traditional methods for 424 

polyphenols quantification and even distinction of different polyphenols present in 425 

wine. 426 

 427 
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Table 1. Detailed information of the wine samples under study. 520 
 521 

Sample Variety FC Index 
(mg L-1) 

I280 
(arb.unit) 

S1 Trepat 149 7.53 
S2 Trepat 54 3.78 
S3 Ull de llebre 1199 27.25 
S4 Picapoll negre 933 31.28 
S5 Marselan 1598 30.64 
S6 Ull de llebre 1239 37.39 
S7 Cabernet sauvignon 1467 42.47 
S8 Merlot 1583 41.08 
S9 Cabernet sauvignon 1366 46.97 
S10 Petit verdot 1645 45.72 
S11 Cabernet sauvignon 1468 46.27 
S12 Cabernet sauvignon 1392 46.44 
S13 Malbec 1351 48.51 
S14 Sumoll 1613 59.61 
S15 Merlot 1358 47.46 
S16 Merlot 1355 46.10 
S17 Cabernet sauvignon 1913 58.58 
S18 Cabernet sauvignon 2054 63.73 
S19 Petit verdot 2153 69.80 
S20 Calddoc 2374 72.91 

522 
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Table 2. Fitted regression lines of the comparison between obtained vs. expected results 523 

provided by the proposed ET, both for Folin-Ciocalteu and I280 indexes, averaging each 524 

value per sample as pertaining to the training or external test subsets for the 25 525 

replicated calculations. 526 

 527 

 Folin-Ciocalteu Index 
 ANN  PLS2 
 Correlation Slope Intercept RMSE  Correlation Slope Intercept RMSE 

Train subset 0.998 0.959±0.029 53.0±30.6 89  0.999 1.006±0.020 -11.8±3.6 92 
Test subset 0.979 0.952±0.093 -43.6±28.7 366  0.932 1.017±0.184 -149±162 404 

 I280 Index 
 ANN  PLS2 
 Correlation Slope Intercept RMSE  Correlation Slope Intercept RMSE 

Train subset 0.994 0.965±0.049 1.24±1.68 3.5  0.995 0.983±0.047 0.30±0.71 3.8 
Test subset 0.963 0.914±0.119 0.87±3.77 10.1  0.968 0.974±0.118 -2.64±0.69 9.5 

 528 

529 
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Figure captions 530 

 531 

Figure 1. Some cyclic voltammograms obtained with the sensor array for some of the 532 

wine samples with different Folin-Ciocalteu index: (S1) 149 mg L-1, (S4) 933 mg L-1, 533 

(S11) 1468 mg L-1 and (S18) 2054 mg L-1 gallic acid equivalents. Also the signals with 534 

different sensors are shown: (A) Graphite-epoxy sensor, (B) Platinum nanoparticle 535 

sensor, (C) Copper nanoparticle sensor and (D) Au microelectrode. 536 

 537 

Figure 2. Processing scheme for building the quantification model. After optimization 538 

of the ANN, the final model has 84 approximation coefficients obtained from wavelet 539 

analysis of the sensor signals in the input layer, 10 neurons and logsig transfer function 540 

in the hidden layer and 2 neurons and purelin transfer function in the output layer. 541 

 542 

Figure 3. Modelling ability of the optimized ANN. Comparison graph of expected vs. 543 

obtained concentrations for Folin-Ciocalteau indexes, both for (A) training and (B) 544 

testing subset. Dashed line corresponds to theoretical diagonal line. 545 

 546 

Figure 4. Modelling ability of the optimized ANN. Comparison graph of expected vs. 547 

obtained concentrations for polyphenol indexes (I280), both for (A) training and (B) 548 

testing subset. Dashed line corresponds to theoretical diagonal line. 549 

 550 

Figure 5. Modelling ability of the PLS model. Comparison graph of expected vs. 551 

obtained concentrations for Folin-Ciocalteau indexes, both for (A) training and (B) 552 

testing subset. Dashed line corresponds to theoretical diagonal line. 553 

 554 

Figure 6. Modelling ability of the PLS model. Comparison graph of expected vs. 555 

obtained concentrations for polyphenol indexes (I280), both for (A) training and (B) 556 

testing subset. Dashed line corresponds to theoretical diagonal line. 557 

 558 

Figure 7. Example of cyclic voltammograms obtained with polypyrrole sensor (from 559 

the sensor array) for some of the spiked samples. 560 

 561 
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Figure 8. Score plot of the first two components obtained after PCA of the spiked 562 

samples. A total of 35 samples were analysed. As can be seen, clear discrimination is 563 

obtained for the different polyphenols: (I) Wine, (II) Gallic acid, (III) Catechin, (IV) p-564 

Coumaric acid, (V) Caffeic acid, (VI) Catechol and (VII) m-Cresol. 565 
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