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ON THE INFIMUM OF A QUASICONVEX VECTOR FUNCTION OVER AN
INTERSECTION

JUAN-ENRIQUE MARTÍNEZ-LEGAZ AND ANTONIO MARTINÓN

Abstract. We give su¢ cient conditions for the in�mum of a quasiconvex vector function f over

an intersection
T
i2I Ri to agree with the supremum of the in�ma of f over the Ri�s.

1. Introduction

Let S be a set, (Ri)i2I be a family of subsets of S, C =
S
i2I Ri its union, R =

T
i2I Ri its

intersection and E be a complete ordered space. Given a map f : C �! E, we are interested in

�nding conditions which ensure the following equality:

inf
x2R

f(x) = sup
i2I

inf
x2Ri

f(x) : (1.1)

Of course, the inequality � is always satis�ed.
In [13] we have considered several settings. Our main results about equality (1.1) were obtained

in the case when S = V is a linear space, C is a convex subset of V , E = R, f is a quasiconvex

function and the family (Ri)i2I satis�es certain conditions, basically Ri \ Rj = R (i 6= j). These
results were applied to the case when S = X is a normed space, C � X is a convex subset, x 2 X is

a given point, and f is the distance function d(x; �) : C �! R, which is convex, hence quasiconvex,

and we obtained the equality

d (x;R) = sup
i2I

d (x;Ri) : (1.2)

Equality (1.2) has been studied by many authors in di¤erent situations [3, 4, 6, 12, 14, 15, 17, 18, 19].

In this paper we obtain analogous results to those of [13] for the case when f is an order bounded

quasiconvex vector function taking values on an order complete Riesz space E. We observe some

di¤erences between the scalar and vector cases. Indeed, under certain conditions, the equality

inf
x2R

f(x) = inf
x2Ri

f(x) (1.3)

holds for every i 2 I except at most one if f is scalar; however, under similar requirements, it is
possible to have

inf
x2R

f(x) 6= inf
x2Ri

f(x)
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for every i 2 I if f is a vector function, although (1.1) is still true. If E � RD is a complete

function space, for example if the positive cone of E is a Yudin cone (see de�nitions in Section

5), it is possible to obtain better results: the equality (1.3) holds for any i 2 I n ID, where the
cardinality of ID is less than or equal to the cardinality of D.

These general results are applied to the vector distance (or cone distance) derived from a vector

norm (or cone norm) and to obtain the validity of the equality (1.2) for vector distances. That is,

in the vector case we prove that, under some requirements about the sets Ri, the distance from a

point x to the intersection
T
i2I Ri coincides with the supremum of the distances from x to each

Ri. In [9] vector normed spaces, also called Kantorovich spaces, and their relation with certain

optimization problems are considered.

2. Quasiconvex vector functions

A nonempty subset K of a (real) vector space E is said to be a pointed convex cone if it satis�es

the following properties [2, De�nition 1.2]: (1) K +K � K; (2) �K � K, for all scalars � � 0; (3)
K \ (�K) = f0g. In this case, K de�nes an order x � y () y� x 2 K on E which is compatible

with its vector structure and we say that E is an ordered vector space. If every pair x; y 2 E has

a maximum and a minimum we say that E is a Riesz space.

Throughout this paper E denotes an order complete Riesz space; that is, E is a Riesz space

such that any order bounded subset A of E has a supremum supA and an in�mum inf A. Recall

that the in�nite distributive laws are valid ([2, Exercise 1.3.11] [11, Theorem 2.12.2]): given a 2 E
and a family (ai)i2I of vectors of E, we have

inffa; sup
i2I

aig = sup
i2I

inffa; aig ; supfa; inf
i2I
aig = inf

i2I
supfa; aig : (2.4)

The next well-known notion is basic in this paper:

Let V be a linear space, C � V a convex set and E be a Riesz space. The function f : C �! E

is called quasiconvex if, for every x; y 2 C and 0 � t � 1, we obtain

f(tx+ (1� t)y) � supff(x); f(y)g ;

equivalently, for every e 2 E, the set fx 2 C : f(x) � eg is convex ([10, Prop. 5.9]).
Several authors (see, for example, [5]) introduce the following de�nition: given linear spaces V

and W , a convex cone K 6= f0g in W and a nonempty subset C of V , the map f : C �! W is

called quasiconvex if, for any b 2 W , the set fa 2 C : f(a) 2 b � Kg is a convex set. If K is a

pointed convex cone, hence W is an ordered vector space, and if moreover W is a Riesz space and

C is convex, then both de�nitions coincide.

Remark 2.1. Assume that V is a linear space, C � V a convex set, E a Riesz space and f :

C �! E a map. Consider the following assertions:

A. For every e 2 E, the set Me = fx 2 C : f(x) < eg is convex.
B. For every e 2 E, the set Ne = fx 2 C : f(x) � eg is convex.
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If E = R, then it is well known that A () B. In the general complete Riesz space case we

have A =) B. In fact, for every e 2 E, the equality

Ne =
\
g>e

Mg

holds. Indeed: for every g > e,

Ne = fx 2 C : f(x) � eg � fx 2 C : f(x) < gg =Mg ;

hence Ne �
T
g>eMg; on the other hand, if x 2

T
g>eMg, then, for every g > e, we have f(x) < g,

so f(x) is a lower bound of fg : g > eg, hence f(x) � inffg : g > eg = e. As the sets Mg are

convex, we obtain that Ne is convex.

The implication B =) A is not valid, as shown in the next example.

Example 2.2. Let V = R, C = [0; 1] � V , E = R2 with the usual order. Let f : [0; 1] �! R2,

f = (f1; f2), de�ned by

f1(x) =

8>>>><>>>>:
�4x+ 1 if 0 � x < 1

4

4x� 1 if 14 � x <
1
2

1 if 12 � x � 1

f2(x) =

8>>>><>>>>:
1 if 0 � x < 1

2

�4x+ 3 if 12 � x <
3
4

4x� 3 if 34 � x � 1

As f1 and f2 are quasiconvex, we have that f is quasiconvex. Moreover, the set

M(1;1) = fx 2 [0; 1] : f(x) < (1; 1)g

= fx 2 [0; 1] : f1(x) < 1 or f2(x) < 1g =]0; 1=2[[]1=2; 1[

is not convex.

3. Separation

Let V be a vector space. Denote by [x; y] the segment with endpoints x and y, that is, [x; y] :=

ftx+ (1� t)y : 0 � t � 1g.
For nonempty subsets R1; R2; R of V , we say that R separates the sets R1 and R2 if [r1; r2]\R 6=

;, for every r1 2 R1 and r2 2 R2 [16, page 489].
We generalize the above notion in the following way: for a family (Ri)i2I of nonempty subsets

of V containing at least two members, we say that a subset R of V separates the family (Ri)i2I if

R separates the sets Ri and Rj for every i; j 2 I, i 6= j. Notice that in this situation
T
i2I Ri � R.

In [16, Proposition 2.3] it is proved that if A;B are nonempty convex algebraic closed subsets

of a vector space V , the set A \ B separates the sets A and B if and only if the union A [ B
is a convex set. Observing that the proof of the "only if" part of that statement does not use

the algebraic closedness assumption, one easily gets the following result: given a family (Ri)i2I of
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nonempty convex subsets of a vector space V such that
T
i2I Ri separates (Ri)i2I , we have that

Rj [Rk is convex for every j; k 2 I.
Similarly to [16, Proposition 2.3], the following result characterizes convexity in terms of sepa-

ration. We leave the simple proof to the reader.

Proposition 3.1. Let C be a nonempty subset of a vector space V . The following assertions are

equivalent:

(1) C is convex.

(2) There exists a family (Ri)i2I of nonempty convex subsets of V containing at least two

members such that
S
i2I Ri = C and

T
i2I Ri separates (Ri)i2I :

(3) There exists a family (Ri)i2I of nonempty convex subsets of V containing at least two

members such that
S
i2I Ri = C and Rj [Rk is convex for every j; k 2 I.

4. The infimum over an intersection

In this section we give the main results of this paper: under certain conditions we obtain that

equality (1.1) holds.

Proposition 4.1. Let V be a vector space, C � V be a convex set, (Ri)i2I be a family of nonempty
subsets of C containing at least two members; R :=

T
i2I Ri, E be an order complete Riesz space,

and f : C �! E be an order bounded quasiconvex function. If R separates (Ri)i2I then, for i; j 2 I
with i 6= j;

inf
x2R

f(x) = supf inf
x2Ri

f(x); inf
x2Rj

f(x)g : (4.5)

Hence equality (1.1) holds.

Proof. Let i; j 2 I with i 6= j, and let ri 2 Ri and rj 2 Rj . There exists z 2 [ri; rj ] \ R. As f is
quasiconvex we obtain

f(z) � supff(ri); f(rj)g ;

that is, for all ri 2 Ri and rj 2 Rj ,

inf
x2R

f(x) � supff(ri); f(rj)g :

Fix ri 2 Ri, apply the in�nite distributive laws (2.4) and obtain

inf
x2R

f(x) � inf
x2Rj

supff(ri); f(x)g = supff(ri); inf
x2Rj

f(x)g :

Also

inf
x2R

f(x) � inf
x2Ri

supff(x); inf
x2Rj

f(x)g = supf inf
x2Ri

f(x); inf
x2Rj

f(x)g :

As R � Ri, we have infx2Ri
f(x) � infx2R f(x) for all i 2 I, from which we obtain the converse

inequality; so (4.5) is proved. Equality (1.1) follows from (4.5) and the assumption that the index

set I has at least two elements. �

The following example shows that, even in the case when the index set I is �nite, under the

assumptions of the preceding proposition one may have infx2R f(x) 6= infx2Ri f(x) for every i 2 I:
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Example 4.2. Let L denote the vector subspace of R[0;1] consisting of all continuous functions of

bounded total variation, and consider the cone

K = ff 2 L : f � 0; f is increasingg;

then L is order complete [2, Problem 1.3.20]. We write f � g if f(x) � g(x) for any x 2 [0; 1].
Notice that the order � associated to K is de�ned by

f � g () f � g and g � f is increasing:

We take the functions a; b; c 2 L de�ned in the following way:

a(x) =

(
2x if 0 � x < 1

2

�2x+ 2 if 1
2 � x � 1;

b(x) =

(
2x� 1 if 0 � x < 1

2

0 if 1
2 � x � 1;

c(x) =

(
�2x if 0 � x < 1

2

2x� 2 if 1
2 � x � 1:

Let f : [0; 1] �! L be de�ned by

f(t) =

8>><>>:
a if 0 � t < 1

2

b if t = 1
2

c if 1
2 < t � 1:

The function f is order bounded and quasiconvex, because from supfa; cg (x) = 2x for all x 2 [0; 1]
it follows that b � supfa; cg. Consider the sets R1 = [0; 1=2] and R2 = [1=2; 1], so R = R1 \R2 =
f1=2g and R separates R1 and R2. We obtain

inf
t2R1

f(t)(x) = inffa; bg(x) =
(

2x� 1 if 0 � x < 1
2

�2x+ 1 if 1
2 � x � 1

and

inf
t2R2

f(t)(x) = inffb; cg(x) =
(
�2x� 1 if 0 � x < 1

2

�2 if 1
2 � x � 1:

One has

supf inf
t2R1

f(t); inf
t2R2

f(t)g = supfinffa; bg; inffb; cgg = inffb; supfa; cgg = b = inf
t2R

f(t);

but

inf
t2R

f(t) 6= inf
t2R1

f(t) and inf
t2R

f(t) 6= inf
t2R2

f(t):
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The next proposition deals with sequences of linearly closed sets. We recall that a subset S of

a set C in a vector space V is said to be linearly closed in C if the intersection of S with every

straight line L is closed in C\L; this latter set being endowed with its natural topology as a subset
of the straight line L.

Proposition 4.3. Let V be a vector space, C � V be a convex set, R � C; (Ri)i2N be a sequence

of nonempty subsets of C consisting of linearly closed sets in C such that
S
i2NRi = C and

Ri \ Rj = R, for i; j 2 N with i 6= j, E be an order complete Riesz space, and f : C �! E be an

order bounded quasiconvex function. Then R 6= ; and, for i; j 2 N with i 6= j;

inf
x2R

f(x) = supf inf
x2Ri

f(x); inf
x2Rj

f(x)g : (4.6)

Hence equality (1.1) holds.

Proof. In view of Prop. 4.1, we only have to prove that if rh 2 Rh and rk 2 Rk with h; k 2 N and

h 6= k, then the segment [rh; rk] satis�es [rh; rk] \R 6= ;. For i 2 N we denote Si := Ri \ [rh; rk].
As [rh; rk] =

S
i2N Si is a continuum (compact, connected and Hausdor¤ topological space) and no

continuum can be written as the union of countably many disjoint closed sets [21, Problem 28E.2],

we have Si \ Sj 6= ; for some i; j 2 N with i 6= j, hence we obtain [rh; rk] \R = Si \ Sj 6= ;. �

Proposition 4.4. Let V be a vector space, C � V be a convex set, E be an order complete Riesz

space, f : C �! E be an order bounded quasiconvex function, R � C; R1; R2; :::; Rn � C (n � 2)
be nonempty and linearly closed in C satisfying

nS
i=1

Ri = C and such that, for a certain h = 1; :::; n

and for every j = 1; :::; n with j 6= h; Rh \Rj = R and

inf
x2Rh

f(x) � inf
x2Rj

f(x) : (4.7)

Then R 6= ; and
8j = 1; :::; n; j 6= h; inf

x2R
f(x) = inf

x2Rj

f(x);

hence equality (1.1) holds.

Proof. Let r 2 Rh, s 2 Rj (1 � j � n, j 6= h) and, assuming that r 6= s; let L be the straight line
that contains the segment [r; s] � C. De�ne

� := supf� 2 [0; 1] : (1� �)r + �s 2 Rhg

and t := (1 � �)r + �s. We have t 2 Rh. If � = 1, then t = s 2 [r; s] \ Rh \ Rj . Let

S := (
S
k 6=hRk) \ [r; s]. If � < 1, for every p = 1; 2; 3::: there exists yp 2 S such that yp :=

(1� �p)r + �ps, being � < �p � �+ 1=p. As S is the �nite union of the sets Rk \ [r; s], there is a
subsequence (ypm)m�1 of (yp)p�1 contained in some Rk \ [r; s]. Since Rk \ [r; s] is closed in C \L;
it is clear that t is the limit of a sequence of points of Rk \ L and, consequently, t 2 Rk; hence
t 2 Rh \Rk = R = Rh \Rj . Hence R separates the family fRh; Rjg. Then apply Proposition 4.1
to this family fRh; Rjg to conclude that, for j 6= h,

inf
x2R

f(x) = sup

�
inf
x2Rh

f(x); inf
x2Rj

f(x)

�
= inf

x2Rj

f(x) ;

due to (4.7). From this we obtain the result. �
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5. Function spaces

If E is a coordinate space we can work with the components of the function f . More precisely, in

[1, 1.1 De�nition] the following de�nition is given: a set E of real functions on a nonempty set D is

a function space if it is a vector subspace of RD under pointwise addition and scalar multiplication

and is closed under �nite pointwise suprema and in�ma. Every function space in the sense of the

above de�nition is a Riesz space under the pointwise ordering [1, 8.1 (8) Example]. We say that

the function space E is a complete function space if E is an order complete Riesz space under the

pointwise ordering.

Assume that E is a complete function space with E � RD. Let (gj)j2J be a family of functions

in E. For every d 2 D we have�
inf
j2J

gj

�
(d) = inf

j2J
gj(d) ;

�
sup
j2J

gj

�
(d) = sup

j2J
gj(d).

Consider now a convex subset C of a vector space V . Given a function f : C �! E, we consider

its components fd (d 2 D):

fd : C �! R ; fd(x) = f(x)(d) (x 2 C; d 2 D) :

It is easy to prove that

f is quasiconvex () 8d 2 D; fd is quasiconvex

and

f is order bounded () 8d 2 D; fd is bounded .

We will next improve Proposition 4.1 in the case E is a complete function space. In order to

stress the di¤erences between the scalar and vector cases, we �rst recall the following scalar result:

Proposition 5.1. [13, Proposition 3.1] Let V be a vector space, C � V be a convex set, (Ri)i2I be
a family of nonempty subsets of C containing at least two members; R :=

T
i2I Ri and f : C �!

R = [�1;1] be a quasiconvex function. If R separates (Ri)i2I , then

inf
x2R

f(x) = inf
x2Ri

f(x) (5.8)

for every i 2 I, except perhaps only one i. Hence equality (1.1) holds.

Proposition 5.2. Let V be a vector space, C � V be a convex set, (Ri)i2I be a family of nonempty
subsets of C containing at least two members, R =

T
i2I Ri, E be a complete function space with

E � RD, for some set D 6= ;, and f : C �! E be an order bounded quasiconvex function. If R

separates (Ri)i2I , then (1.1) holds. Moreover, for some set ID � I with cardinality less than or

equal to the cardinality of D one has

inf
x2R

f(x) = inf
x2Rk

f(x) (5.9)

for every k 2 I n ID.
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Proof. Use Proposition 4.1 to conclude that (1.1) holds. Fix d 2 D and apply Proposition 5.1 to

get hd 2 I such that

inf
x2R

fd(x) = inf
x2Ri

fd(x) ;

for i 2 I n fhdg. Put ID := fhd : d 2 Dg. Then

inf
x2R

fd(x) = inf
x2Ri

fd(x) ;

for every d 2 D and i 2 I n ID. This shows (5.9). �

In the vector case it is not possible to guarantee equality (5.8) for every i 2 I except only one
i, as we show in the next examples.

Example 5.3. Let V = R, C = [�1; 1], E = R2 endowed with the usual (pointwise) order,

f : C �! E de�ned by f(x) = (x+ 1; x2 + 1), which is quasiconvex and order bounded. Let

R�1 =

�
�1;�1

3

�[�
1

3

�
; R0 =

�
�1
3
;
1

3

�
; R1 =

�
�1
3

�[�
1

3
; 1

�
;

hence

R = R�1 \R0 \R1 =
�
�1
3
;
1

3

�
:

It is clear that R separates the family (R�1; R0; R1). Then

inf
x2R

f1(x) =
2

3
= inf

x2R0

f1(x) = inf
x2R1

f1(x) > 0 = inf
x2R�1

f(x) ;

inf
x2R

f2(x) =
10

9
= inf

x2R�1
f2(x) = inf

x2R1

f2(x) > 1 = inf
x2R0

f(x) :

Consequently,

inf
x2R

f(x) =

�
2

3
;
10

9

�
= inf

x2R1

f(x) ;

but

inf
x2R

f(x) 6= inf
x2R�1

f(x) and inf
x2R

f(x) 6= inf
x2R0

f(x) :

Therefore, infx2R f(x) coincides with only one of the values infx2Rk
f(x).

Example 5.4. Let V = R, C = [0; 1[� V , E = `1 with the usual order. Let

R =

�
2k

2k + 1
: k = 1; 2; 3:::

�
and Rk = R [

�
2k � 2
2k � 1 ;

2k

2k + 1

�
(k = 1; 2; 3:::) :

Then [ri; rj ] \ Ri \ Rj 6= ;, for every ri 2 Ri and rj 2 Rj (i; j = 1; 2; 3::: with i 6= j), and

C =
S1
k=0Rk; moreover R =

T1
k=0Rk and Ri \ Rj = R for i; j = 1; 2; 3::: with i 6= j). Let
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f : [0; 1[�! `1 be de�ned by f = (fn)1n=1, where fn : [0; 1[�! R is given by

fn(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1 if 0 � x � 2n�2
2n�1

�2n(2n� 1)x+ (2n� 1)2 if 2n�22n�1 < x �
2n�1
2n

2n(2n+ 1)x� (2n� 1)(2n+ 1) if 2n�12n < x � 2n
2n+1

1 if 2n
2n+1 < x < 1

The function f is quasiconvex since all the fn are quasiconvex. Moreover, f is order bounded: for

every x 2 [0; 1[ we have (0; 0; 0:::) � f(x) � (1; 1; 1:::). Note that

inf
x2R

f(x) = (1; 1; 1:::) and inf
x2Rk

f(x) = (1; 1; :::; 1; 0; 1:::) ;

being 0 = fk(x). Then, for every n = 1; 2; 3::: and every k 6= n,

inf
x2R

fn(x) = 1 and inf
x2Rk

fn(x) = 1 > 0 = inf
x2Rn

fn(x) :

Hence, for every k = 1; 2; 3:::,

inf
x2R

f(x) = sup
k�1

inf
x2Rk

f(x) > inf
x2Rk

f(x) :

Consequently, none of the values infx2Rk
f(x) coincides with infx2R f(x).

A cone K of a vector space E is called a Yudin cone if K is generated by a Hamel Basis (ed)d2D
of E; that is, K is the smallest cone that includes all the ed (d 2 D) [2, De�nition 3.15]. If K
is a Yudin cone of the vector space E, then E ordered by K is an order complete Riesz space [2,

Theorem 3.17]. For y 2 E we write

y =
X
d2D

yded (yd 2 R) : (5.10)

By [2, Theorem 3.17] we have y � 0 if and only if yd � 0 for all d 2 D. Moreover, if A � E is a

bounded from above set, then

sup
y2A

y =
X
d2D

�
sup
y2A

yd

�
ed ; (5.11)

analogously, if A � E is a bounded from below set, then

inf
y2A

y =
X
d2D

�
inf
y2A

yd

�
ed : (5.12)

Given a vector space E, we �x a Hamel basis (ed)d2D. We can identify E with the subspace of

RD consisting of all �eventually zero" real functions on D:

E = f(ed)d2D 2 Rd : yd = 0 for all but a �nite number of dg ;

that is, E = c00(D) [2, p.129]. Hence we can consider a vector space E endowed with a Yudin cone

K as a complete function space and then we can apply the above result.

The following proposition can be proved in analogous way to Proposition 5.2



10 J.-E. MARTÍNEZ LEGAZ AND A. MARTINÓN

Proposition 5.5. Let V be a vector space, C � V be a convex set, R � C; (Ri)i2N be a sequence

of nonempty subsets of C consisting of linearly closed sets in C such that
S
i2NRi = C and

Ri \ Rj = R, for i; j 2 N with i 6= j, E be a complete function space with E � RD, for some set

D 6= ;, and f : C �! E be an order bounded quasiconvex function. Then R 6= ; and the equality
(1.1) holds. Moreover, for some set ND � N with cardinality less than or equal to the cardinality

of D one has (5.9) for every k 2 N nND.

6. A topological result

In [12, Theorem 5] it is proved that if X is a metric space with distance d, C � X is a closed

subset and x 2 X, then the following assertions are equivalent:

(1) C is x-boundedly connected; that is, for every " > 0, the set fy 2 C : d(y; x) < "g is
connected.

(2) If R and S are closed subsets of X with R [ S = C, then the equality d(x;R \ S) =
maxfd(x;R); d(x; S)g holds.

The next result is an analogue to the above one. If X is a topological space and E is an

ordered linear space, the map f : X �! E will be called upper level closed if the upper level set

fx 2 X : e � f (x)g is closed for any e 2 E.

Proposition 6.1. Let X be a topological space, E be an order complete Riesz space, and f : X �!
E be an upper level closed and order bounded function. The following assertions are equivalent:

(i) The set fx 2 X : e 6� f (x)g is connected for every e 2 E:
(ii) If R and S are nonempty closed subsets of X and R [ S = X then at least one of the

equalities

inf
x2R\S

f (x) = inf
x2R

f (x) , inf
x2R\S

f (x) = inf
x2S

f (x) : (6.13)

holds true.

Proof. (i) =) (ii). Let e := infx2R\S f (x) : We clearly have infx2R f (x) � e and infx2S f (x) �
e: Assume that both inequalities hold strictly and set U := fx 2 X : e 6� f (x)g : By (i), U is

connected; hence, as R \ U and S \ U are closed in U and nonempty and (R \ U) [ (S \ U) =
(R [ S)\U = X\U = U; we have R\S\U 6= ;: But this is impossible, since every y 2 R\S satis�es
e = infx2R\S f (x) � f (y) and hence does not belong to U:
(ii) =) (i). Suppose that U := fx 2 X : e 6� f (x)g is not connected for some e 2 E: Then there

exist two closed sets eR; eS � X such that eR\U 6= ;; eS\U 6= ;; � eR [ eS�\U = U and eR\ eS\U = ;:
De�ne R := eR[(X n U) and S := eS[(X n U) : These sets are closed; moreover, R\U = eR\U 6= ;;
S \ U = eS \ U 6= ;; R [ S = eR [ eS [ (X n U) �

�� eR [ eS� \ U� [ (X n U) = U [ (X n U) = X
and R \ S \U = eR \ eS \U = ;: Take y 2 R \U and z 2 S \U: We have infx2R f (x) � f (y) and
infx2S f (x) � f (z) ; hence, as y; z 2 U; we have

e 6� inf
x2R

f (x) and e 6� inf
x2S

f (x) : (6.14)

On the other hand, since R \ S \ U = ;; for every x 2 R \ S one has x =2 U; that is, e � f (x) ;
therefore e � infx2R\S f (x) ; which, together with (6.14), contradicts (ii). �
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7. Application to the distance function on a Kantorovich space

In this last section we apply the results of the above sections to the distance function de�ned on

a vector (or cone) normed space or Kantorovich space [8]. Recently research in Kantorovich spaces

has had a great development: see, for example, [7], [20] and [22]. In [9] the interaction between

certain optimization problems and such spaces is shown.

Let us begin with the de�nition: let X be a vector space and E be an order complete Riesz

space. A map k � k : X �! E is said a vector norm (or cone norm) on X if, for x; y 2 X and

� 2 R,

(1) kxk � 0;
(2) kxk = 0() x = 0;

(3) k�xk = j�jkxk;
(4) kx+ yk � kxk+ kyk:

In this situation we say that X endowed with k � k is a vector normed space (or cone normed
space, or Kantorovich space). From a vector norm k � k we can derive a vector distance (or cone
distance) d(x; y) = kx� yk which satis�es the usual properties of a distance.
Given a vector normed space X with k�k taking values in a order complete Riesz space, if x 2 X

and ; 6= C � X, then one de�nes the vector

d(x;C) = inf
y2C

d(x; y) :

Consider now the map

d(x; �) : C �! E ; y 2 C 7�! d(x; y) 2 E :

If C is convex, then d(x; �) is convex, hence quasiconvex, for any x.
The propositions of the previous sections can be applied in this context. For example, from

Proposition 4.1 we obtain the next result:

Proposition 7.1. Let X be a vector normed space with norm k � k taking values on an order
complete Riesz space. Let C � X be a convex set, (Ri)i2I be a family of nonempty subsets of C

containing at least two members and R :=
T
i2I Ri. If R separates (Ri)i2I , then, for i; j 2 I with

i 6= j;
d(x;R) = supfd(x;Ri); d(x;Rj) ;

for every x 2 X. Hence equality (1.2) holds.

Similar results to propositions 4.3, 4.4, 5.2, 5.5 and 6.1 are obtained.

Acknowledgments The authors are thankful to the referees for their helpful comments.

References

[1] C. D. Aliprantis, K. C. Border: In�nite Dimensional Analysis, third edition. Springer, 2006.

[2] C. D. Aliprantis, R. Tourky: Cones and Duality. American Mathematical Society, 2007.

[3] J. M. F. Castillo, P. L. Papini: Approximation of the limit distance function in Banach spaces. J. Math. Anal.

Appl. 328 (2007) 577-589.



12 J.-E. MARTÍNEZ LEGAZ AND A. MARTINÓN

[4] G. Chacón, V. Montesinos, A. Octavio: A note on the intersection of Banach subspaces. Publ. Res. Inst. Math.

Sci. 40 (2004) 1-6.

[5] G. Y. Chen, X. Q. Yang, H. Yu: A nonlinear scalarization function and generalized quasi-vector equilibrium

problems. J. Global Optim. 32 (2005) 451-466.

[6] A. Ho¤mann: The distance to the intersection of two convex sets expressed by the distance to each of them.

Math. Nachr. 157 (1992) 81�98.

[7] A. G. Kusraev: Banach-Kantorovich spaces. Siberian Math. J. 26 (1985) 254-259.

[8] A. G. Kusraev: Kantorovich spaces and the metrization problem. Siberian Math. J. 34 (1993) 688-694.

[9] A. G. Kusraev, S. S. Kutateladze: Kantorovich spaces and optimization. J. Math. Sciences 133 (2006) 1449-

1455.

[10] D.T. Luc: Generalized convexity in vector optimization. In: N. Hadjisavvas, S. Komlósi and S. Schaible (EDS.),

Handbook of generalized convexity and generalized monotonicity, pp. 195�236, Springer, 2005.

[11] W. A. J. Luxemburg, A. C. Zaanen: Riesz Spaces. Volume I. North-Holland, 1971.

[12] J.-E. Martínez-Legaz, A. Martinón: Boundedly connected sets and the distance to the intersection of two sets.

J. Math. Anal. Appl. 332 (2007) 400-406.

[13] J.-E. Martínez-Legaz, A. Martinón: On the in�mum of a quasiconvex function on an intersection. Application

to the distance function. J. Convex Anal. 18 (2011), to appear.

[14] J.-E. Martínez-Legaz, A. M. Rubinov, I. Singer: Downward sets and their separation and approximation

properties. J. Global Optim. 23 (2002) 111-137.

[15] A. Martinón: Distance to the intersection of two sets. Bull. Austral. Math. Soc. 70 (2004) 329-341.

[16] D. Pallaschke, R. Urbanski: On the separation and order law of cancellation for bounded sets. Optimization

51(3) (2002) 487-496.

[17] A. M. Rubinov: Distance to the solution set of an inequality with an increasing function. In: A. Maugeri and

P. Danilele (eds.), Equilibrium Problems and Variational Models, pp. 417-431, Kluwer Acad. Pub., 2003.

[18] A. M. Rubinov, I. Singer: Best approximation by normal and conormal sets. J. Approx. Theor. 107 (2000)

212-243.

[19] A. M. Rubinov, I. Singer: Distance to the intersection of normal sets and applications. Numer. Funct. Anal.

and Optimiz. 21 (2000) 521-535.

[20] A. Sonmez, H. Cakalli: Cone normed spaces and weighted means. Math. Comp. Modelling 52 (2010) 1660-1666.

[21] S. Willard: General Topology. Addison-Wesley, 1970.

[22] P. P. Zabrejko: K-metric and K-normed linear spaces: survey. Collecttanea Math. 48 (1997) 825-859.

Juan-Enrique Martínez-Legaz

Departament d�Economia i d�Història Econòmica

Universitat Autònoma de Barcelona

08193 Bellaterra (Barcelona), Spain

e-mail: JuanEnrique.Martinez.Legaz@uab.es

Antonio Martinón

Departamento de Análisis Matemático

Universidad de La Laguna

38271 La Laguna (Tenerife), Spain

e-mail: anmarce@ull.es




