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ABSTRACT. We analyze the least increment function, a convex function of n
variables associated to an n-person cooperative game. Several dual representa-
tions of cooperative games are proposed in [3, 4]. Chronologically, the first one
is the indirect function [3], which is closely related to the conjugation theory of
discrete convex analysis. The maximum average value function [4] constitutes
another dual representation of a (nontrivial nonnegative) cooperative game by
a convex function but, unlike the indirect function, which faithfully represents
any game, the maximum average value function requires total balancedness
of the game for the full validity of the duality relations. The least increment
function shares with the maximum average value function the fact that it only
preserves all the information on the game if the game is totally balanced.
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1. INTRODUCTION

A cooperative game is a pair (N,v), where N = {1,...,n} is a finite set and
v:2¥ — R is a function satisfying the condition v(f)) = 0. Given a game (N,v)
and a coalition S C N, the subgame (S,v) is obtained by restricting v to 2°. To
every coalition S C N is associated its characteristic vector 1g € {0,1}"™, where
1s(i)=1ifie S, and 15(¢) =0ifi ¢ S.

In view of economic applications, it is convenient to distinguish between profit
games and cost games. Since the definitions of most concepts relative to games
depend on whether the game in question is regarded as a profit or a cost game,
one should make that distinction explicit at a formal level. To this aim one can
redefine, in a more rigorous way, a game as a pair (v,o) consisting of a function
v:2¥ — R and a sign o € {1, -1} indicating whether the game is a profit (o = 1)
or a cost (0 = —1) game. Even though we adopt this point of view, we shall always
identify the game (v, o) with v, and shall distinguish between profit and cost games
by explicitly mentioning the type. When the type will not be mentioned, we shall
be referring to games that may be of either type.
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For a cost game ¢ : 2V — R and a profit game v : 2V — R we define the
polyhedra
Plc) = {zeR":2(5)<c¢(S) forall SC N},
Pv) = {xeR":x(S)>v(S) foral SC N},

)
)

Cle) = {zePc):x(N)=c(N)},
) = {xe€Pw):x(N)=v(N)},

where z (S) = (1s,z) = >,c g #i. Note that P(c) # 0 if and only if ¢ () > 0, and
P(v) # 0 if and only if v (§) < 0. Thus, the polyhedra P(c) and P(v) associated to
profit and cost games ¢ and v, respectively, are nonempty. The polyhedra C(c) and
C(v) are called the cores of the respective games. Games with a nonempty core are
called balanced games. A game is totally balanced if each subgame is balanced. A
useful reference for these concepts is [6].

For C C R”, we denote by bd C its boundary, and by

N(Cux)={z*eR": (z",y—2) <0 foraly e C}

its normal cone at x € R™. Notice that if there are no supporting hyperplanes to C'
through z, then N (C,z) = {0}.

For a function ¢ : ¢ C R®™ — R, we consider the convex conjugate function
¢* :R" —» R = RU{&oc}, given by (see [7])

¢ (z) = sup {(z",z) — ¢ (2")},
z*eC
and its subdifferential at x € C':
of (x)={a"eR": f(y)— f(z) > (", y—xz) forally e C}.

2. THE INDIRECT FUNCTION

In this section we study a representation of n-person cooperative games by func-
tions of n variables. As in [3], where this representation was introduced, we shall
restrict the presentation to profit games; of course, a parallel theory can be devel-
oped for cost games:

Definition 2.1. The indirect function of a profit game v : 2N — R is the function
Ty : R" = R given by m,(z) = max{v(S) —z(S5) : S C N} for all z € R™.

The indirect function admits an economic interpretation. Let us regard the
players of the profit game as workers, and v(S) as the profit (measured in money
units) that coalition S yields when its members work together, provided that they
have available the resources needed for production. Suppose that an employer,
owning these resources, wishes to choose those workers who would provide him
with the maximum possible profit. If the subset .S is selected then the total amount
of money that S will yield is v(S). If z = (21,...,2,) is the vector of (possibly
negative) salaries demanded by the workers then m,(x) represents the maximum
net profit the employer can obtain under those given salaries.

Theorem 2.1. Let v: 2V — R be a profit game. Then, for all S C N, one has
v(S) =min{z (S) + m,(z) : z € R"}. (1)
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The importance of the preceding theorem lies in that it shows that the indirect
function 7, of a profit game v contains all the information on the game, as it allows
to recover v from m,.

Indirect functions of profit games are characterized in [3] by three properties,
two of which are expressed in terms of the convex analytic subdifferential:

Theorem 2.2. Let 7 : R® — R. There exists a profit game v : 2 — R such that
m = m, if and only if m satisfies the following properties:

(1) on(z){-1,0}" #0, for allz € R™.

(2) {-1,0}" C U, crn O ().
(3) min{r(z):z € R"} =0.

The following alternative characterization of indirect functions in terms of gra-
dients, instead of subdifferentials, was given in [4].

Theorem 2.3. Let m : R® — R and let V7 denote the gradient mapping of .
Then there exists a profit game v : 2V — R such that ©# = m, if and only if 7
satisfies the following properties:

(1) 7 is convex.
(2) The range of V is {—1,0}™.
(3) min{7r(z):z € R"} =0.

Many concepts in the theory of cooperative profit games can be easily expressed
in terms of indirect functions; we refer the reader for details to [3]. In particular,
totally balanced (profit) games, an important class of games that will be dealt with
in the subsequent sections, are characterized by their indirect functions in [5].

3. THE LEAST INCREMENT FUNCTION

This section is devoted to a different way of representing profit games by convex
functions, namely, by the so-called least increment functions. The interested reader
can adapt this representation to the case of cost games.

Definition 3.1. The least increment function of a profit game v : 2V — R is the
function €, : R™ — R, given by

() = min {y(N) — 2(N) : y € P(v), y > x}.

Since y > x implies y(N) —z(NN) > 0, we obtain €,(x) > 0 for all x € R™. Notice
also that P(v) C €,1(0). To prove the reverse inclusion, suppose that e,(z) = 0.
Then ),y (i — ;) = 0 for some y € P(v) such that y > z, and hence = = y.
This establishes

€, (0) = P(v).

v

The least increment function admits the following interpretation. Suppose that a
payoff vector z € R™ is offered to the players. Then €,(z) is the least amount
y(N) — x(N) by which the total payoff (N) should be incremented to make the
resulting payoff vector acceptable by all coalitions (y(S) > v(S) for all S C N) and
preferred to the initial one by all players (y > x).
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Example 3.1. Let ({1},v) be a profit game. By identifying v with v({1}), we get

€(z) = min{y—z:y>vandy >z} =min{y —x:y > max{v,z}}
= min{y:y>max{v,z}} — 2z =max{v,z} — =z
_ v—z if z<w,
- 0 if x>w.

Proposition 3.1. The least increment function €, of a profit game (N,v) satisfies

eo(r) =max{ > Asw(S)—z(9)]: > Asls€[0,1]", AseRY . (2)

SCN SCN
Proof. The duality theorem of linear programming implies

&) = min{(y,y—2z):y—22>0, (ls,y—z) >2v(S) —z(5), VS C N}

= max{ > As[u(S) -z (9)]: Y Asls <1y, As € R
SCN SCN

O

According to the preceding definition, the least increment function is the op-
timum value function of A parametric linear programming problem. Using the
duality theorem of linear programming, it easily follows that, like the indirect func-
tion, the least increment function is a polyhedral convex function. The following
proposition compares both functions.

Proposition 3.2. Ifv: 2N — R is a profit game then, for all x € R",
() > my(2).
Proof. For each S C N and for each y € P(v) such that y > z, we have
y(N) = y(S) +y(N\S) = v(S) + z(N\ 9),
and therefore
min {y(N) —x(N) :y € P(v), y > a} > max {v(S) —z(S) : S C N} = 7, (x).
O

Example 3.2. Let us consider N = {1,2} and v : 2V — R given by v(0) = 0,
v({1}) = vy, v({2}) = ve, and v({1,2}) = T. We consider at first the case in which
v1 + ve <. For the polyhedron

P(W)Z{y€R2¢y12U17 Y2 > Vo, Y1+ Y2 > T}
there are the following boundary lines:
Y1 =01, Y2 =72, Y1 +Y2=7.

Then there are two extreme points (v1,U —v1) and (T — ve,ve) of P (v). Further-
more, the core of v is the segment defined by these extreme points. Proposition 3.2
implies that

€(x) > v1 — 21, €(x) > v —z2, €(r) >T—x1 — 22,
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for all x = (w1, 12) € R2. Taking suitable vectors in the boundary lines of P (v), we
obtain

0 if x€ P(v),

V] — X1 if 13 <wv1, 23>0 — vy,
€(x) = _ : 7

Uy — T if x1 >0 —v2, T2 < Vo,

U—x1—y if 21 <V —vy, X2 <V —w1, o1+ T2 <.

In the case v1 + vo > U, the only extreme point of P (v) is (v1,v2) and the core of
v 18 empty. Then the least increment function is given by

0 if x€ P(v),
) i if x1 < v, x2 > vo,
() = _ : S p
Vg — T if T1 > vy, xo < wg,

v +vy =21 — 22 if 1 L, 22 < vl

Shapley [8] introduced convex (profit) games as follows:
Definition 3.2. A profit game v : 2N — R is called convex if
v(SUT)4+v(SNT) > ov(S)+v(T)
for all S,T C N. A cost game c : 2N — R is concave if the reverse inequality holds.

Definition 3.3. The vector rank function of a concave cost game c : 2V — R is
re : R™ — R, given by r. (u) = min{c(S) +u(N\S):SC N}.

The function 7. is related to P(c) by the min-max equation
re(u) =max{z (N):z € P(c), z < u}, (3)

which is an immediate consequence of the following generalization of the intersection
theorem for polymatroids due to Edmonds [1]:

Theorem 3.3. For distributive lattices Fr1,Fa C 2V, letci : F1 — R, co: Fo — R
be concave cost games. If there exists a set S € Fy such that N \ S € Fy, then we
have

min{c; (S)+c2 (N\S):Se€F, N\ S e F}
=max{z(N):x € P(c1)NP(c2)}.

Moreover, if ¢1 and co are integer valued, then the maximum is attained by an
integral vector.

Proof. See Fujishige [2, Theorem 4.9]. O

We shall next give a sufficient condition for the inequality in the preceding propo-
sition to hold with the equal sign.

Theorem 3.4. Ifv: 2N — R is a convezx profit game then e, = m,.
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Proof. The result follows from (3) applied to the concave cost game —wv:

e@) = min{y(N)— (V) :y € P(v), y > 1}
— min{y(N):y € P(v), y > o} — 2(N)
= min{y(N): -y € P(—v), y >z} — z(N)

= —max{z(N):z € P(—v), z< —zx} —x(N)
= —min{—v(S) —z(N\S):SCN}—=z(N)
= max{v(S)+z(N\S):SCN}—z(N)

= max{v(S) —=z(S): SC N}

= ().

O

A natural question to ask is whether the convexity assumption can be removed
in the preceding theorem. In other words, do the indirect function and the least
increment function of any profit game coincide? If this were the case, according
to (1) the expression min{z (S) + €,(z) : £ € R™} would coincide with v(S) for
any profit game and any coalition S. However, from the next theorem it follows
that the equality v(S) = min{z (S) + €,(z) : © € R"} is characteristic of totally
balanced profit games. To give the definition of this class of games, we first need
to recall the notion of z-balanced collection:

Definition 3.4. For x € R}, {Ar}rcn is an x-balanced collection if Ap > 0 for
allT C N and ZTQN)‘T 1r = x.

Definition 3.5. A profit game v : 2V — R is totally balanced if for all S € 2V and
all 1g-balanced collection {Ar}rcn it satisfies Y pc y Ar v(T) < v(S).

The class of totally balanced profit games is closed under pointwise infimum,
that is, if {v;},; is an arbitrary nonempty family of totally balanced profit games
then the profit game v : 2V — R defined by v(S) = inf;c;v;(S) for all S € 2V
is totally balanced, too. Besides, any profit game v : 2V — R admits a totally
balanced majorant, i.e., a totally balanced profit game w : 2V — R satisfying
w(S) > v(S) for all S € 2V Indeed, one can take, e.g., the (additive) game defined
by w(S) = k|S| for all S € 2V, with

kZmaX{l](Sﬁ):Se2N\{®}}.

In view of these properties, the following concept is well defined:

Definition 3.6. The totally balanced cover of a profit game v : 2V — R is the
profit game v : 2V — R defined by

v(S) = inf {w(S) cw: 2N = R is a totally balanced majorant of v} .
From this definition the following result immediately follows:

Proposition 3.5. The totally balanced cover v : 2V — R of the profit game v :
2V — R is the smallest (in the pointwise sense) totally balanced majorant of v.
Therefore, v is totally balanced if and only if v = v.

The next proposition is well known [9, formula (4-4)] and easy to prove:
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Proposition 3.6. The totally balanced cover v : 2V — R of the profit game v :
2N - R is given by

v(S) = max Z Aro (T) : Z Arlr =15, A7 >0, VI C N
TCN TCS

We are now in a position to state the theorem announced above:

Theorem 3.7. For any profit game v : 2 — R, one has
9(S) = min {z (9) + €, (z) : x € R"} for all S €2V,
Proof. Let x € R™. We recall that
€(z) =min{(1y,2): 220, 2(T) >v(T) —z(T), VI C N}.

Then, for every coalition S € 27V,
min {z (S) + €,(z) : z € R"}
min{(1g,z) + (In,2) ;2,2 € R", 2> 0, z(T)+ 2 (T) >v(T), VT C N}

= max Z )\TU(T): Z >\T1T:]-S, Z )\T].TS]_N, )\TZO, VTQN
TCN TCN TCN

= max Z/\TU(T): Z)\T].T:]_S, /\TZO, VTQN
TCN TCN

= max{ Y Ao (T): Y Aplp=1g, Ap >0, VI C N 3 =5(5);
TCN TCS

for the latter equality see Proposition 3.6. ([

In view of Theorem 3.7, one can say that the least increment function provides
a dual representation of totally balanced profit games. Indeed, unlike the indirect
function, the least increment function of an arbitrary profit game does not contain
all the information on the game, but only on its totally balanced cover, since one
can prove that profit games having the same totally balanced cover have also the
same least increment function.

Based on Theorem 3.7, a plausible conjecture is that, even though indirect func-
tions and least increment functions do not generally coincide, they do in the case
of totally balanced profit games. However, the following example of a 4-players
totally balanced (but not convex, of course) profit game shows that this conjecture
is wrong.

Example 3.3. Let (N,v) be the game given by N = {1,2,3,4} and
v(@) = 0, v({i})=-2 forallie N, v({1,2}) =v({2,3}) =1,

v ({1,3}) v({1,4}) =v({2,4}) =v({3,4}) = -2, v({1,2,3}) =0,
v({1,2,4)) = -1, v({1,3,4}) =1, v({2,3,4}) = -1, v(N) = L.

We prove that this game is totally balanced, i.e., all the subgames (S,vg) are bal-
anced. Notice thatv ({i,7}) > v ({i})+v ({j}) for alli # j, and hence the subgames
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(S,vg) are convex and balanced for coalitions S such that |S| < 2. Moreover,
if S = {1,2,3} then (z1,22,23)=(-1,2,-1)€ C (vs);

if S = {1,2,4} then (x1,z2,24) = (0,1,-2) € C (vs);

if S = {1,3,4} then (x1,z3,24)=1(1/3,1/3,1/3) € C (vs);

if S {2,3,4} then (x2,23,24) = (1,0,-2) € C(vs);
if S = N then (x1,22,23,24) = (3/2,0,3/2,-2) € C (v).

The indirect function m, (0) = max {v(S) : S C N} = 1. Proposition 3.1 implies

€, (0) = max Z Asv (S) : Z Aslsg <1y, Ag >0 forallSC N
SCN SCN

We consider the collection F = {{1,2},{2,3},{1,3,4}} and define
1/2 if SeF,
As = :
0 if S¢F.
Since Y gcn Asls = (1,1,1,1/2) < 1y, we obtain

(0 (0)2 3 Asu(8) = 2.

SeF

In order to characterize least increment functions we will need the following
lemma:

Lemma 3.8. Let C C R™ be a convex polyhedron with nonempty interior and let
W C R™\ {0} be such that N (C,x) "W # 0 for all x € bd C. Then there exist
w; €W and r; € R, 1 =1,...,p, such that

C={xeR": (z,w;) <ry i=1,..,p}.
Proof. Let (z,xf) <b;, i =1,...,p, be a minimal system representing C, that is,
C={zeR": (z,2]) <b;, i=1,..,p}
and
C#{zxeR": (z,z])<b;, i €1}
if I is a proper subset of {1,...,p}. Let H; = {x € R : (z,a}) < b;},i=1,...,p. Let
i€{1,...,p}. We have ﬂ int H; ¢ int H;, since otherwise we would have m H; =

J#i Jj#i
p
cl int ﬂHj =cl ﬂint H; C clint H; = H; and hence C = ﬂHj = ﬂHj,
i J#i j=1 J#i

which is a contradiction with the minimality of the representation of C. Thus there
exists ¢; € R™ such that <xi,m;> < b; for all j # 4 and (z;,xF) < b;. Since C has
a nonempty interior, without loss of generality we can assume that (z;, zf) = b;.
Then x; € bd C. Let ¢ € N (C,x;) \ {0} and d € R™ be such that (d,z}) = 0.
For sufficiently small X\ € R, A(d,z}) < b; — (zs,2}) and hence z; + M\d € C.
Therefore A (d,c) < 0, which implies that (d,c) = 0. It thus follows that ¢ = ax}
for some o € R\ {0}. Given that x; — Sz € C for small enough 8 > 0, we have
0> (—Bz:,¢) = (—Bar, az?) = —Ba|zr|]*, so that a > 0. We have thus proved
that NV (C, ;) is the cone generated by =}, so that v,z € W for some -y, > 0. The
statement follows by setting w; = v,z} and r; = ,b;. O
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Theorem 3.9. Let € : R® — R. There exists a profit game v : 2V — R such that
€ = €, if and only if € satisfies the following properties:

1. 9e () N[=1,0]" # 0, for all x € R™.

2. [-1,0]" C Uxeefl(o) Oe (z) .

3. min{e(z): z € R"} = 0.

4. int 1 (0) #£ 0.

5. N (e71(0),z) N ({—1,0}"\ {0}) # 0, for all x € bd e~ *(0).
Among the games v satisfying € = €, there is exactly one that is totally balanced,
namely, the one defined by

v(S)=min{e(z)+2(S):z €R"} =min{z(S):z€e ' (0)}.
Proof. Let us first assume that € = ¢, for some game v. Let x € R™. Then there

exist nonnegative coefficients {A\g}gcy with > gy Asls € [0,1]" such that the
maximum in (2) is attained. For every y € R™ we have

ely) = D As[v(S)—y(9)]

SCN
= D As(S) =29+ Y As[z(S) —y ()]
SCN SCN
= e(x)+ <— Z )\Slsay_x>‘
SCN

Thus — ZSQN Aslg € O¢(x), and this proves property 1.
To prove property 2, we define ¢ : [—1,0]" — R by

¢ (¢7) = max {(z",y) : y € P(v)}.

For every x € R™ we have

vz = max {5 o) - e (@)
= Dax et e) —max{(aty) sy € P ()3}

= max (@) +min{(~a".y) 1y € P()})

From linear programming duality it follows that

min {{(—z*,y) : y € P (v)}

= max{ > Agv(S): Y Aslsg=—2", As >0, VSC N
SCN SCN
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Thus, by using Proposition 3.1, we have

* - Agv (S 2y S Aglg = —2*, \g € RY
p(x) = max  qmaxq > Asvo(S)+(a%e): Y Asls=—a® g€ RY
SCN SCN
= 11[1 1x max Z As [v z(9)]: Z Asls = —z*, Mg GRiN
SCN SCN

= max{ > As[u(S) -z ()] Y Asls €[0,1]", As € RZ
SCN

SCN
= €(z).

Let z* €

€ (z%)

[~1,0]". Since ¢ is convex, proper and lower semicontinuous, we have
©** (z%) = p (z*) = (x*,y) for some y € P (v) = ¢ 1(0), and hence
(x*,y) > (x,x") —e(x) forallz e R™.
This inequality and € (y) = 0 imply
e(x) —e(y) > (x*,x —y) forallz € R™.

Consequently z* € Je (y), which proves property 2.

Since € is nonnegative and takes the value 0 on the nonempty set P (v), we
obtain property 3.

Properties 4 and 5 are immediate consequences of the equality e~1 (0) = P (v).

To prove the converse, we asssume that e satisfies properties 1-5 and define the
game v : 2V — R by

v(S)=—€"(-1g) = igﬂ{n {z(S) +e(x)}.
For every S C N, we have —1g € [—1,0]". By property 2 there exists y € ¢! (0)
such that —1g € Oe(y) . Thus

e(r) —e(y) > (—1lg,z —y) for allz € R",
which is equivalent to

x(S)+e(x) >y(S) foralzeR™
Therefore, for every S C N, we obtain
v(9) = Hel]ilg {z(S)+e(z)} =min{z (S):z €' (0)}. (4)

Since v is the minimum game of a collection of additive games, we deduce that v

is totally balanced. Notice also that for every z* € [—1,0]" , property 2 implies the
existence of z € ¢! (0) such that

e(y) > (z*,y —x) for ally € R™.
This proves that

€ (2%) = sup {@"y) —e(W)} = x| (z*,x), (5)

for all z* € [—1,0]"
Let x € R™. We show that

e(r)= max {(z%,z)—€ (z")}. (6)

z*€[—1,0]"
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By definition €* (z*) > (z*,x) — e () for all z* € R™, and hence
€(z) > (z*,x) — " (z¥) for all z* € R™. (7)
It follows from property 1 that there exists xf € [—1,0]" such that z§ € de(z).
Then € (z) < (zf,x — y) + € (y) for all y € R™, which implies
e(x) < (xh,x) — (xf,y) forally e (0),

and therefore, by (5), € (x) < (zf, z) — €* (z), which, in view of (7), proves (6).

We will next prove that e 1 (0) = P (v). Since € is a convex (by property 1)
and continuous function (as it is a finite-valued), by property 3 the set ¢! (0)
is closed and convex. Moreover, by (4), e 1(0) C P (v). To prove the reverse
inclusion, suppose = ¢ ¢! (0) . Consequently, € (z) > 0 and therefore, by properties
4 and 5 and Lemma 3.8, there exists S C N such that (—1g,y) < (—1g,z) for
ally € e71(0). Since

€ (-1g) = max (—1g,y) < —z(S5),
y€e=1(0)

we obtain v (S) = —€* (—1g) > x (S) and hence z ¢ P (v). Thus, e ! (0) = P (v)
is proved. Combining this equality with linear programming duality, we get
e (z") = max{(z*,y):y e (0)}
= max{(z",y):y € P(v)}
= max{(z",y): =y (5) < —v(5), VS S N}

= min<{ — Z Asv (S) — Z Aslg = l‘*, As € R%'_N
SCN SCN

for all z* € [—1,0]" . Thus, inserting the above into (3) yields

e(x) = ;z:*en[lﬁfo]" (x*,x) — min ¢ — Z Asv (S): — Z Aslg =zx*, g € ]RiN
SCN SCN

= max<{ (", z) + Z Asv (S): — Z Aslg =a* € [-1,0]", \s € ]Rf_N
SCN SCN

= max <— Z )\515,$> + Z AgU (S) : Z Aslg € [0, 1]", As ERE_N

SCN SCN SCN

= max{ Y As[o(S) -2 ()] Y Asls €[0,1]", As € RZ
SCN SCN
for all x € R™. Therefore, Proposition 3.1 implies that € = ¢,.
It only remains to prove the uniqueness of a totally balanced game satisfying
€ = €,. This follows from the fact that every totally balanced game is the minimum
game of the collection of additive majorants, that is,

v(S)=min{z (S):2 € P(v)} =min{z(S):z e ' (0)}

for all S C N, as this shows that v is determined by its least increment function
€. (]
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We end this section by showing how the core of a profit game can be expressed
in terms of its indirect function.

Proposition 3.10. Let v: 2" — R be a balanced profit game. Then
Cw)={x € R": {—1x,0} C O¢,(z)} .

Proof. Suppose z € C(v). Then z € P(v) = ¢, 1(0) and hence
€ (Y) — () = €,(y) > 0 for ally € R™.

This gives 0 € Je,(z). Moreover, z (N) —y(N) =v(N) —y(N) < z2(N) —y(N)
for all y € R™ and z € P(v). Since

€o(y) = min{z(N) —y(N) : z € P(v), z > y}
for all y € R™, we obtain
z(N)—y(N) <e(y) forally € R".

Thus €,(y) — €,(z) > (=1n,y — z) for all y € R™ and hence —1y € J¢,(x).
In order to prove the reverse inclusion, suppose 0 € ¢, (x). Then, by Theorem
3.9,
€y(z) =min{e,(y) : y e R"} = 0.
Hence z € €, (0) = P(v). Now, if =1y € d¢,(z) then, taking y € C(v) C P(v) =
€,1(0), we have 0 = €,(y) > z(N) —y(N) > v(N) —y(N) = 0. We thus obtain
x(N)=y(N)=v(N), so that z € C(v). O
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