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Abstract. We analyze the least increment function, a convex function of n
variables associated to an n-person cooperative game. Several dual representa-
tions of cooperative games are proposed in [3, 4]. Chronologically, the �rst one
is the indirect function [3], which is closely related to the conjugation theory of
discrete convex analysis. The maximum average value function [4] constitutes
another dual representation of a (nontrivial nonnegative) cooperative game by
a convex function but, unlike the indirect function, which faithfully represents
any game, the maximum average value function requires total balancedness
of the game for the full validity of the duality relations. The least increment
function shares with the maximum average value function the fact that it only
preserves all the information on the game if the game is totally balanced.
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1. Introduction

A cooperative game is a pair (N; v) ; where N = f1; : : : ; ng is a �nite set and
v : 2N ! R is a function satisfying the condition v(;) = 0. Given a game (N; v)
and a coalition S � N , the subgame (S; v) is obtained by restricting v to 2S . To
every coalition S � N is associated its characteristic vector 1S 2 f0; 1gn; where
1S(i) = 1 if i 2 S; and 1S(i) = 0 if i =2 S:
In view of economic applications, it is convenient to distinguish between pro�t

games and cost games. Since the de�nitions of most concepts relative to games
depend on whether the game in question is regarded as a pro�t or a cost game,
one should make that distinction explicit at a formal level. To this aim one can
rede�ne, in a more rigorous way, a game as a pair (v; �) consisting of a function
v : 2N ! R and a sign � 2 f1;�1g indicating whether the game is a pro�t (� = 1)
or a cost (� = �1) game. Even though we adopt this point of view, we shall always
identify the game (v; �) with v; and shall distinguish between pro�t and cost games
by explicitly mentioning the type. When the type will not be mentioned, we shall
be referring to games that may be of either type.
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is a¢ liated to MOVE (Markets, Organizations and Votes in Economics).

1

1002494
Cuadro de texto
This is the submitted version of the article published by Elsevier: Bilbao, J.M; Martínez-Legaz, E. (2012) A convex representation of totally balanced games, Journal of Mathematical Analysis and Applications, 387 (2): 1167-1175. The final version is available at: https://doi.org/10.1016/j.jmaa.2011.10.026




2 J. M. BILBAO� AND J. E. MARTÍNEZ-LEGAZ��

For a cost game c : 2N ! R and a pro�t game v : 2N ! R we de�ne the
polyhedra

P (c) = fx 2 Rn : x(S) � c(S) for all S � Ng ;
P (v) = fx 2 Rn : x(S) � v(S) for all S � Ng ;
C(c) = fx 2 P (c) : x(N) = c(N)g ;
C(v) = fx 2 P (v) : x(N) = v(N)g ;

where x (S) = h1S ; xi =
P

i2S xi: Note that P (c) 6= ; if and only if c (;) � 0; and
P (v) 6= ; if and only if v (;) � 0: Thus, the polyhedra P (c) and P (v) associated to
pro�t and cost games c and v; respectively, are nonempty. The polyhedra C(c) and
C(v) are called the cores of the respective games. Games with a nonempty core are
called balanced games. A game is totally balanced if each subgame is balanced. A
useful reference for these concepts is [6].
For C � Rn; we denote by bd C its boundary, and by

N (C; x) = fx� 2 Rn : hx�; y � xi � 0 for all y 2 Cg

its normal cone at x 2 Rn: Notice that if there are no supporting hyperplanes to C
through x, then N (C; x) = f0g :
For a function ' : C � Rn ! R; we consider the convex conjugate function

'� : Rn ! R = R[f�1g ; given by (see [7])

'� (x) = sup
x�2C

fhx�; xi � ' (x�)g ;

and its subdi¤erential at x 2 C :

@f (x) = fx� 2 Rn : f (y)� f (x) � hx�; y � xi for all y 2 Cg :

2. The indirect function

In this section we study a representation of n-person cooperative games by func-
tions of n variables. As in [3], where this representation was introduced, we shall
restrict the presentation to pro�t games; of course, a parallel theory can be devel-
oped for cost games:

De�nition 2.1. The indirect function of a pro�t game v : 2N ! R is the function
�v : Rn ! R given by �v(x) = max fv(S)� x(S) : S � Ng for all x 2 Rn:

The indirect function admits an economic interpretation. Let us regard the
players of the pro�t game as workers, and v(S) as the pro�t (measured in money
units) that coalition S yields when its members work together, provided that they
have available the resources needed for production. Suppose that an employer,
owning these resources, wishes to choose those workers who would provide him
with the maximum possible pro�t. If the subset S is selected then the total amount
of money that S will yield is v(S). If x = (x1; : : : ; xn) is the vector of (possibly
negative) salaries demanded by the workers then �v(x) represents the maximum
net pro�t the employer can obtain under those given salaries.

Theorem 2.1. Let v : 2N ! R be a pro�t game. Then, for all S � N; one has

v(S) = min fx (S) + �v(x) : x 2 Rng : (1)
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The importance of the preceding theorem lies in that it shows that the indirect
function �v of a pro�t game v contains all the information on the game, as it allows
to recover v from �v:
Indirect functions of pro�t games are characterized in [3] by three properties,

two of which are expressed in terms of the convex analytic subdi¤erential:

Theorem 2.2. Let � : Rn ! R. There exists a pro�t game v : 2N ! R such that
� = �v if and only if � satis�es the following properties:

(1) @�(x)
T
f�1; 0gn 6= ;; for all x 2 Rn:

(2) f�1; 0gn �
S
x2Rn @�(x):

(3) min f�(x) : x 2 Rng = 0:

The following alternative characterization of indirect functions in terms of gra-
dients, instead of subdi¤erentials, was given in [4].

Theorem 2.3. Let � : Rn ! R and let r� denote the gradient mapping of �.
Then there exists a pro�t game v : 2N ! R such that � = �v if and only if �
satis�es the following properties:

(1) � is convex.
(2) The range of r� is f�1; 0gn:
(3) min f�(x) : x 2 Rng = 0:

Many concepts in the theory of cooperative pro�t games can be easily expressed
in terms of indirect functions; we refer the reader for details to [3]. In particular,
totally balanced (pro�t) games, an important class of games that will be dealt with
in the subsequent sections, are characterized by their indirect functions in [5].

3. The least increment function

This section is devoted to a di¤erent way of representing pro�t games by convex
functions, namely, by the so-called least increment functions. The interested reader
can adapt this representation to the case of cost games.

De�nition 3.1. The least increment function of a pro�t game v : 2N ! R is the
function �v : Rn ! R; given by

�v(x) = min fy(N)� x(N) : y 2 P (v); y � xg :

Since y � x implies y(N)�x(N) � 0; we obtain �v(x) � 0 for all x 2 Rn: Notice
also that P (v) � ��1v (0): To prove the reverse inclusion, suppose that �v(x) = 0:
Then

P
i2N (yi � xi) = 0 for some y 2 P (v) such that y � x; and hence x = y:

This establishes

��1v (0) = P (v):

The least increment function admits the following interpretation. Suppose that a
payo¤ vector x 2 Rn is o¤ered to the players. Then �v(x) is the least amount
y(N) � x(N) by which the total payo¤ x(N) should be incremented to make the
resulting payo¤ vector acceptable by all coalitions (y(S) � v(S) for all S � N) and
preferred to the initial one by all players (y � x):
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Example 3.1. Let (f1g; v) be a pro�t game. By identifying v with v(f1g); we get
�v(x) = min fy � x : y � v and y � xg = min fy � x : y � maxfv; xgg

= min fy : y � maxfv; xgg � x = maxfv; xg � x

=

�
v � x if x � v;
0 if x � v:

Proposition 3.1. The least increment function �v of a pro�t game (N; v) satis�es

�v(x) = max

8<:X
S�N

�S [v (S)� x (S)] :
X
S�N

�S1S 2 [0; 1]n ; �S 2 R2
N

+

9=; : (2)

Proof. The duality theorem of linear programming implies

�v(x) = min fh1N ; y � xi : y � x � 0; h1S ; y � xi � v (S)� x (S) ; 8S � Ng

= max

8<:X
S�N

�S [v (S)� x (S)] :
X
S�N

�S1S � 1N ; �S 2 R2
N

+

9=; :
�

According to the preceding de�nition, the least increment function is the op-
timum value function of A parametric linear programming problem. Using the
duality theorem of linear programming, it easily follows that, like the indirect func-
tion, the least increment function is a polyhedral convex function. The following
proposition compares both functions.

Proposition 3.2. If v : 2N ! R is a pro�t game then, for all x 2 Rn;
�v(x) � �v(x):

Proof. For each S � N and for each y 2 P (v) such that y � x; we have
y(N) = y(S) + y(N n S) � v(S) + x(N n S);

and therefore

min fy(N)� x(N) : y 2 P (v); y � xg � max fv(S)� x(S) : S � Ng = �v(x):
�

Example 3.2. Let us consider N = f1; 2g and v : 2N ! R given by v(;) = 0;
v(f1g) = v1; v(f2g) = v2; and v(f1; 2g) = v: We consider at �rst the case in which
v1 + v2 � v: For the polyhedron

P (v) =
�
y 2 R2 : y1 � v1; y2 � v2; y1 + y2 � v

	
there are the following boundary lines:

y1 = v1; y2 = v2; y1 + y2 = v:

Then there are two extreme points (v1; v � v1) and (v � v2; v2) of P (v) : Further-
more, the core of v is the segment de�ned by these extreme points. Proposition 3.2
implies that

�v(x) � v1 � x1; �v(x) � v2 � x2; �v(x) � v � x1 � x2;
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for all x = (x1; x2) 2 R2: Taking suitable vectors in the boundary lines of P (v) ; we
obtain

�v(x) =

8>><>>:
0 if x 2 P (v) ;
v1 � x1 if x1 � v1; x2 � v � v1;
v2 � x2 if x1 � v � v2; x2 � v2;
v � x1 � x2 if x1 � v � v2; x2 � v � v1; x1 + x2 � v:

In the case v1 + v2 > v; the only extreme point of P (v) is (v1; v2) and the core of
v is empty. Then the least increment function is given by

�v(x) =

8>><>>:
0 if x 2 P (v) ;
v1 � x1 if x1 � v1; x2 � v2;
v2 � x2 if x1 � v1; x2 � v2;
v1 + v2 � x1 � x2 if x1 � v1; x2 � v2:

Shapley [8] introduced convex (pro�t) games as follows:

De�nition 3.2. A pro�t game v : 2N ! R is called convex if

v(S [ T ) + v(S \ T ) � v(S) + v(T )

for all S; T � N: A cost game c : 2N ! R is concave if the reverse inequality holds.

De�nition 3.3. The vector rank function of a concave cost game c : 2N ! R is
rc : Rn ! R; given by rc (u) = min fc (S) + u (N n S) : S � Ng :

The function rc is related to P (c) by the min-max equation

rc (u) = max fx (N) : x 2 P (c); x � ug ; (3)

which is an immediate consequence of the following generalization of the intersection
theorem for polymatroids due to Edmonds [1]:

Theorem 3.3. For distributive lattices F1;F2 � 2N , let c1 : F1 ! R; c2 : F2 ! R
be concave cost games. If there exists a set S 2 F1 such that N n S 2 F2; then we
have

min fc1 (S) + c2 (N n S) : S 2 F1; N n S 2 F2g
= max fx (N) : x 2 P (c1) \ P (c2)g :

Moreover, if c1 and c2 are integer valued, then the maximum is attained by an
integral vector.

Proof. See Fujishige [2, Theorem 4.9]. �

We shall next give a su¢ cient condition for the inequality in the preceding propo-
sition to hold with the equal sign.

Theorem 3.4. If v : 2N ! R is a convex pro�t game then �v = �v:
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Proof. The result follows from (3) applied to the concave cost game �v:
�v(x) = min fy(N)� x(N) : y 2 P (v); y � xg

= min fy(N) : y 2 P (v); y � xg � x(N)
= min fy(N) : �y 2 P (�v); y � xg � x(N)
= �max fz(N) : z 2 P (�v); z � �xg � x(N)
= �min f�v(S)� x(N n S) : S � Ng � x (N)
= max fv(S) + x(N n S) : S � Ng � x (N)
= max fv(S)� x(S) : S � Ng
= �v(x):

�

A natural question to ask is whether the convexity assumption can be removed
in the preceding theorem. In other words, do the indirect function and the least
increment function of any pro�t game coincide? If this were the case, according
to (1) the expression min fx (S) + �v(x) : x 2 Rng would coincide with v(S) for
any pro�t game and any coalition S: However, from the next theorem it follows
that the equality v(S) = min fx (S) + �v(x) : x 2 Rng is characteristic of totally
balanced pro�t games. To give the de�nition of this class of games, we �rst need
to recall the notion of x-balanced collection:

De�nition 3.4. For x 2 Rn+; f�T gT�N is an x-balanced collection if �T � 0 for
all T � N and

P
T�N �T 1T = x:

De�nition 3.5. A pro�t game v : 2N ! R is totally balanced if for all S 2 2N and
all 1S-balanced collection f�T gT�N it satis�es

P
T�N �T v(T ) � v(S):

The class of totally balanced pro�t games is closed under pointwise in�mum,
that is, if fvigi2I is an arbitrary nonempty family of totally balanced pro�t games
then the pro�t game v : 2N ! R de�ned by v(S) = infi2I vi(S) for all S 2 2N
is totally balanced, too. Besides, any pro�t game v : 2N ! R admits a totally
balanced majorant, i.e., a totally balanced pro�t game w : 2N ! R satisfying
w(S) � v(S) for all S 2 2N Indeed, one can take, e.g., the (additive) game de�ned
by w(S) = k jSj for all S 2 2N ; with

k � max
�
v(S)

jSj : S 2 2
N n f;g

�
:

In view of these properties, the following concept is well de�ned:

De�nition 3.6. The totally balanced cover of a pro�t game v : 2N ! R is the
pro�t game ev : 2N ! R de�ned byev(S) = inf �w(S) : w : 2N ! R is a totally balanced majorant of v

	
:

From this de�nition the following result immediately follows:

Proposition 3.5. The totally balanced cover ev : 2N ! R of the pro�t game v :
2N ! R is the smallest (in the pointwise sense) totally balanced majorant of v:
Therefore, v is totally balanced if and only if ev = v:
The next proposition is well known [9, formula (4-4)] and easy to prove:
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Proposition 3.6. The totally balanced cover ev : 2N ! R of the pro�t game v :
2N ! R is given by

ev(S) = max
8<:X
T�N

�T v (T ) :
X
T�S

�T1T = 1S ; �T � 0; 8T � N

9=; :
We are now in a position to state the theorem announced above:

Theorem 3.7. For any pro�t game v : 2N ! R, one hasev(S) = min fx (S) + �v(x) : x 2 Rng for all S 2 2N :

Proof. Let x 2 Rn: We recall that

�v(x) = min fh1N ; zi : z � 0; z (T ) � v (T )� x (T ) ; 8T � Ng :

Then, for every coalition S 2 2N ;

min fx (S) + �v(x) : x 2 Rng
= min fh1S ; xi+ h1N ; zi : x; z 2 Rn; z � 0; x (T ) + z (T ) � v (T ) ; 8T � Ng

= max

8<:X
T�N

�T v (T ) :
X
T�N

�T1T = 1S ;
X
T�N

�T1T � 1N ; �T � 0; 8T � N

9=;
= max

8<:X
T�N

�T v (T ) :
X
T�N

�T1T = 1S ; �T � 0; 8T � N

9=;
= max

8<:X
T�N

�T v (T ) :
X
T�S

�T1T = 1S ; �T � 0; 8T � N

9=; = ev(S);
for the latter equality see Proposition 3.6. �

In view of Theorem 3.7, one can say that the least increment function provides
a dual representation of totally balanced pro�t games. Indeed, unlike the indirect
function, the least increment function of an arbitrary pro�t game does not contain
all the information on the game, but only on its totally balanced cover, since one
can prove that pro�t games having the same totally balanced cover have also the
same least increment function.
Based on Theorem 3.7, a plausible conjecture is that, even though indirect func-

tions and least increment functions do not generally coincide, they do in the case
of totally balanced pro�t games. However, the following example of a 4-players
totally balanced (but not convex, of course) pro�t game shows that this conjecture
is wrong.

Example 3.3. Let (N; v) be the game given by N = f1; 2; 3; 4g and

v (;) = 0; v (fig) = �2 for all i 2 N; v (f1; 2g) = v (f2; 3g) = 1;
v (f1; 3g) = v (f1; 4g) = v (f2; 4g) = v (f3; 4g) = �2; v (f1; 2; 3g) = 0;

v (f1; 2; 4g) = �1; v (f1; 3; 4g) = 1; v (f2; 3; 4g) = �1; v (N) = 1:

We prove that this game is totally balanced, i.e., all the subgames (S; vS) are bal-
anced. Notice that v (fi; jg) � v (fig)+v (fjg) for all i 6= j; and hence the subgames
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(S; vS) are convex and balanced for coalitions S such that jSj � 2: Moreover,
if S = f1; 2; 3g then (x1; x2; x3) = (�1; 2;�1) 2 C (vS) ;
if S = f1; 2; 4g then (x1; x2; x4) = (0; 1;�2) 2 C (vS) ;
if S = f1; 3; 4g then (x1; x3; x4) = (1=3; 1=3; 1=3) 2 C (vS) ;
if S = f2; 3; 4g then (x2; x3; x4) = (1; 0;�2) 2 C (vS) ;
if S = N then (x1; x2; x3; x4) = (3=2; 0; 3=2;�2) 2 C (v) :

The indirect function �v (0) = max fv(S) : S � Ng = 1: Proposition 3.1 implies

�v (0) = max

8<:X
S�N

�Sv (S) :
X
S�N

�S1S � 1N ; �S � 0 for all S � N

9=; :
We consider the collection F = ff1; 2g ; f2; 3g ; f1; 3; 4gg and de�ne

�S =

�
1=2 if S 2 F ;
0 if S =2 F :

Since
P

S�N �S1S = (1; 1; 1; 1=2) � 1N ; we obtain

�v (0) �
X
S2F

�Sv (S) =
3

2
:

In order to characterize least increment functions we will need the following
lemma:

Lemma 3.8. Let C � Rn be a convex polyhedron with nonempty interior and let
W � Rn n f0g be such that N (C; x) \W 6= ; for all x 2 bd C: Then there exist
wi 2W and ri 2 R; i = 1; :::; p; such that

C = fx 2 Rn : hx;wii � ri; i = 1; :::; pg :

Proof. Let hx; x�i i � bi; i = 1; :::; p; be a minimal system representing C; that is,

C = fx 2 Rn : hx; x�i i � bi; i = 1; :::; pg
and

C 6= fx 2 Rn : hx; x�i i � bi; i 2 Ig
if I is a proper subset of f1; :::; pg : Let Hi = fx 2 Rn : hx; x�i i � big ; i = 1; :::; p: Let
i 2 f1; :::; pg :We have

\
j 6=i
int Hj * int Hi; since otherwise we would have

\
j 6=i
Hj =

cl int
\
j 6=i
Hj = cl

\
j 6=i
int Hj � cl int Hi = Hi and hence C =

p\
j=1

Hj =
\
j 6=i
Hj ;

which is a contradiction with the minimality of the representation of C: Thus there
exists xi 2 Rn such that



xi; x

�
j

�
< bi for all j 6= i and hxi; x�i i � bi: Since C has

a nonempty interior, without loss of generality we can assume that hxi; x�i i = bi:
Then xi 2 bd C: Let c 2 N (C; xi) n f0g and d 2 Rn be such that hd; x�i i = 0:
For su¢ ciently small � 2 R; �



d; x�j

�
< bi �



xi; x

�
j

�
and hence xi + �d 2 C:

Therefore � hd; ci � 0; which implies that hd; ci = 0: It thus follows that c = �x�i
for some � 2 R n f0g : Given that xi � �x�i 2 C for small enough � > 0; we have
0 � h��x�i ; ci = h��x�i ; �x�i i = ��� kx�i k

2
; so that � > 0: We have thus proved

that N (C; xi) is the cone generated by x�i ; so that 
ix
�
i 2W for some 
i > 0: The

statement follows by setting wi = 
ix
�
i and ri = 
ibi: �
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Theorem 3.9. Let � : Rn ! R: There exists a pro�t game v : 2N ! R such that
� = �v if and only if � satis�es the following properties:
1. @� (x) \ [�1; 0]n 6= ;; for all x 2 Rn:
2. [�1; 0]n �

S
x2��1(0) @� (x) :

3. min f� (x) : x 2 Rng = 0:
4. int ��1 (0) 6= ;:
5. N

�
��1 (0) ; x

�
\ (f�1; 0gn n f0g) 6= ;; for all x 2 bd ��1 (0) :

Among the games v satisfying � = �v there is exactly one that is totally balanced,
namely, the one de�ned by

v (S) = min f� (x) + x (S) : x 2 Rng = min
�
x (S) : x 2 ��1 (0)

	
:

Proof. Let us �rst assume that � = �v for some game v: Let x 2 Rn: Then there
exist nonnegative coe¢ cients f�SgS�N with

P
S�N �S1S 2 [0; 1]

n such that the
maximum in (2) is attained. For every y 2 Rn we have

� (y) �
X
S�N

�S [v (S)� y (S)]

=
X
S�N

�S [v (S)� x (S)] +
X
S�N

�S [x (S)� y (S)]

= � (x) +

*
�
X
S�N

�S1S ; y � x
+
:

Thus �
P

S�N �S1S 2 @� (x) ; and this proves property 1.
To prove property 2, we de�ne ' : [�1; 0]n ! R by

' (x�) = max fhx�; yi : y 2 P (v)g :

For every x 2 Rn we have

'� (x) = max
x�2[�1;0]n

fhx�; xi � ' (x�)g

= max
x�2[�1;0]n

fhx�; xi �max fhx�; yi : y 2 P (v)gg

= max
x�2[�1;0]n

fhx�; xi+min fh�x�; yi : y 2 P (v)gg :

From linear programming duality it follows that

min fh�x�; yi : y 2 P (v)g

= max

8<:X
S�N

�Sv (S) :
X
S�N

�S1S = �x�; �S � 0; 8S � N

9=; :
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Thus, by using Proposition 3.1, we have

'� (x) = max
x�2[�1;0]n

8<:max
8<:X
S�N

�Sv (S) + hx�; xi :
X
S�N

�S1S = �x�; �S 2 R2
N

+

9=;
9=;

= max
x�2[�1;0]n

8<:max
8<:X
S�N

�S [v (S)� x (S)] :
X
S�N

�S1S = �x�; �S 2 R2
N

+

9=;
9=;

= max

8<:X
S�N

�S [v (S)� x (S)] :
X
S�N

�S1S 2 [0; 1]n ; �S 2 R2
N

+

9=;
= � (x) :

Let x� 2 [�1; 0]n : Since ' is convex, proper and lower semicontinuous, we have
�� (x�) = '�� (x�) = ' (x�) = hx�; yi for some y 2 P (v) = ��1 (0) ; and hence

hx�; yi � hx; x�i � � (x) for all x 2 Rn:
This inequality and � (y) = 0 imply

� (x)� � (y) � hx�; x� yi for all x 2 Rn:
Consequently x� 2 @� (y) ; which proves property 2.
Since � is nonnegative and takes the value 0 on the nonempty set P (v) ; we

obtain property 3.
Properties 4 and 5 are immediate consequences of the equality ��1 (0) = P (v) :
To prove the converse, we asssume that � satis�es properties 1�5 and de�ne the

game v : 2N ! R by
v (S) = ��� (�1S) = inf

x2Rn
fx (S) + � (x)g :

For every S � N , we have �1S 2 [�1; 0]n. By property 2 there exists y 2 ��1 (0)
such that �1S 2 @� (y) : Thus

� (x)� � (y) � h�1S ; x� yi for all x 2 Rn;
which is equivalent to

x (S) + � (x) � y (S) for all x 2 Rn:
Therefore, for every S � N; we obtain

v (S) = min
x2Rn

fx (S) + �(x)g = min
�
x (S) : x 2 ��1 (0)

	
: (4)

Since v is the minimum game of a collection of additive games, we deduce that v
is totally balanced. Notice also that for every x� 2 [�1; 0]n ; property 2 implies the
existence of x 2 ��1 (0) such that

� (y) � hx�; y � xi for all y 2 Rn:
This proves that

�� (x�) = sup
y2Rn

fhx�; yi � � (y)g = max
x2��1(0)

hx�; xi ; (5)

for all x� 2 [�1; 0]n :
Let x 2 Rn: We show that

� (x) = max
x�2[�1;0]n

fhx�; xi � �� (x�)g : (6)
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By de�nition �� (x�) � hx�; xi � � (x) for all x� 2 Rn; and hence
� (x) � hx�; xi � �� (x�) for all x� 2 Rn: (7)

It follows from property 1 that there exists x�0 2 [�1; 0]
n such that x�0 2 @� (x) :

Then � (x) � hx�0; x� yi+ � (y) for all y 2 Rn; which implies
� (x) � hx�0; xi � hx�0; yi for all y 2 ��1 (0) ;

and therefore, by (5), � (x) � hx�0; xi � �� (x�0) ; which, in view of (7), proves (6).
We will next prove that ��1 (0) = P (v) : Since � is a convex (by property 1)

and continuous function (as it is a �nite-valued), by property 3 the set ��1 (0)
is closed and convex. Moreover, by (4), ��1 (0) � P (v) : To prove the reverse
inclusion, suppose x =2 ��1 (0) : Consequently, � (x) > 0 and therefore, by properties
4 and 5 and Lemma 3.8, there exists S � N such that h�1S ; yi < h�1S ; xi for
all y 2 ��1 (0) : Since

�� (�1S) = max
y2��1(0)

h�1S ; yi < �x (S) ;

we obtain v (S) = ��� (�1S) > x (S) and hence x =2 P (v) : Thus, ��1 (0) = P (v)
is proved. Combining this equality with linear programming duality, we get

�� (x�) = max
�
hx�; yi : y 2 ��1 (0)

	
= max fhx�; yi : y 2 P (v)g
= max fhx�; yi : �y (S) � �v (S) ; 8S � Ng

= min

8<:� X
S�N

�Sv (S) : �
X
S�N

�S1S = x
�; �S 2 R2

N

+

9=;
for all x� 2 [�1; 0]n : Thus, inserting the above into (3) yields

� (x) = max
x�2[�1;0]n

8<:hx�; xi �min
8<:� X

S�N
�Sv (S) : �

X
S�N

�S1S = x
�; �S 2 R2

N

+

9=;
9=;

= max

8<:hx�; xi+ X
S�N

�Sv (S) : �
X
S�N

�S1S = x
� 2 [�1; 0]n ; �S 2 R2

N

+

9=;
= max

8<:
*
�
X
S�N

�S1S ; x

+
+
X
S�N

�Sv (S) :
X
S�N

�S1S 2 [0; 1]n ; �S 2 R2
N

+

9=;
= max

8<:X
S�N

�S [v (S)� x (S)] :
X
S�N

�S1S 2 [0; 1]n ; �S 2 R2
N

+

9=;
for all x 2 Rn: Therefore, Proposition 3.1 implies that � = �v:
It only remains to prove the uniqueness of a totally balanced game satisfying

� = �v: This follows from the fact that every totally balanced game is the minimum
game of the collection of additive majorants, that is,

v (S) = min fx (S) : x 2 P (v)g = min
�
x (S) : x 2 ��1 (0)

	
for all S � N; as this shows that v is determined by its least increment function
�: �
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We end this section by showing how the core of a pro�t game can be expressed
in terms of its indirect function.

Proposition 3.10. Let v : 2N ! R be a balanced pro�t game. Then
C(v) = fx 2 Rn : f�1N ;0g � @�v(x)g :

Proof. Suppose x 2 C(v): Then x 2 P (v) = ��1v (0) and hence

�v(y)� �v(x) = �v(y) � 0 for all y 2 Rn:
This gives 0 2 @�v(x): Moreover, x (N) � y (N) = v (N) � y (N) � z (N) � y (N)
for all y 2 Rn and z 2 P (v): Since

�v(y) = min fz(N)� y(N) : z 2 P (v); z � yg
for all y 2 Rn; we obtain

x (N)� y (N) � �v(y) for all y 2 Rn:
Thus �v(y)� �v(x) � h�1N ; y � xi for all y 2 Rn and hence �1N 2 @�v(x):
In order to prove the reverse inclusion, suppose 0 2 @�v(x): Then, by Theorem

3.9,
�v(x) = min f�v(y) : y 2 Rng = 0:

Hence x 2 ��1v (0) = P (v): Now, if �1N 2 @�v(x) then, taking y 2 C(v) � P (v) =
��1v (0), we have 0 = �v(y) � x (N) � y (N) � v (N) � y (N) = 0: We thus obtain
x (N) = y (N) = v (N) ; so that x 2 C(v): �
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