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SHORT LOOP DECOMPOSITIONS OF SURFACES AND THE GEOMETRY

OF JACOBIANS

FLORENT BALACHEFF, HUGO PARLIER†, AND STÉPHANE SABOURAU

Abstract. Given a Riemannian surface, we consider a naturally embedded graph which captures
part of the topology and geometry of the surface. By studying this graph, we obtain results in three
different directions.

First, we find bounds on the lengths of homologically independent curves on closed Riemannian
surfaces. As a consequence, we show that for any λ ∈ (0, 1) there exists a constant Cλ such that
every closed Riemannian surface of genus g whose area is normalized at 4π(g − 1) has at least
[λg] homologically independent loops of length at most Cλ log(g). This result extends Gromov’s
asymptotic log(g) bound on the homological systole of genus g surfaces. We construct hyperbolic
surfaces showing that our general result is sharp. We also extend the upper bound obtained by
P. Buser and P. Sarnak on the minimal norm of nonzero period lattice vectors of Riemann surfaces
in their geometric approach of the Schottky problem to almost g homologically independent vectors.

Then, we consider the lengths of pants decompositions on complete Riemannian surfaces in
connexion with Bers’ constant and its generalizations. In particular, we show that a complete
noncompact Riemannian surface of genus g with n ends and area normalized to 4π(g+ n

2
−1) admits

a pants decomposition whose total length (sum of the lengths) does not exceed Cg n log(n+ 1) for
some constant Cg depending only on the genus.

Finally, we obtain a lower bound on the systolic area of finitely presentable nontrivial groups
with no free factor isomorphic to Z in terms of its first Betti number. The asymptotic behavior of
this lower bound is optimal.

1. Introduction

Consider a surface of genus g with n marked points and consider the different complete Rie-
mannian metrics of finite area one can put on it. These include complete hyperbolic metrics of
genus g with n cusps, but also complete Riemannian metrics with n ends which we normalize to
the area of their hyperbolic counterparts. We are interested in describing what surfaces with large
genus and/or large number of ends can look like. More specifically, we are interested in the lengths
of certain curves that help describe the geometry of the surface and its Jacobian.

In the first part of this article, we generalize the following results regarding the shortest length
of a homologically nontrivial loop on a closed Riemannian surface (i.e., the homological systole)
and on the Jacobian of a Riemann surface. The homological systole of a closed Riemannian surface
of genus g with normalized area, that is, with area 4π(g − 1), is at most ∼ log(g). This result,
due to M. Gromov [18, 2.C], is optimal. Indeed, there exist families of hyperbolic surfaces, one
in each genus, whose homological systoles grow like ∼ log(g). The first of these were constructed
by P. Buser and P. Sarnak in their seminal article [13], and there have been other constructions
since by R. Brooks [9] and M. Katz, M. Schaps and U. Vishne [24]. By showing that the shortest
homologically nontrivial loop on a hyperbolic surface lies in a “thick” embedded cylinder, P. Buser
and P. Sarnak also derived new bounds on the minimal norm of nonzero period lattice vectors of
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Riemann surfaces. This result paved the way for a geometric approach of the Schottky problem
which consists in characterizing Jacobians (or period lattices of Riemann surfaces) among abelian
varieties.

Bounds on the lengths of curves in a homology basis have also been studied by P. Buser and
M. Seppälä [15, 16] for closed hyperbolic surfaces. Note however that without a lower bound on
the homological systole, the g + 1 shortest homologically independent loop cannot be bounded by
any function of the genus. Indeed, consider a hyperbolic surface with g very short homologically
independent (and thus disjoint) loops. Every loop homologically independent from these short
curves must cross one of them, and via the collar lemma, can be made arbitrarily large by pinching
our initial g curves.

As a preliminary result, we obtain new bounds on the lengths of short homology basis for closed
Riemannian surfaces with homological systole bounded from below.

Theorem 1.1. Let M be a closed orientable Riemannian surface of genus g with homological systole
at least ℓ and area equal to 4π(g − 1). Then there exist 2g loops α1, . . . , α2g on M which induce a
basis of H1(M ;Z) such that

(1.1) length(αk) ≤ C0
log(2g − k + 2)

2g − k + 1
g,

where C0 =
216

min{1,ℓ} .

On the other hand, without assuming any lower bound on the homological systole, M. Gro-
mov [17, 1.2.D’] proved that on every closed Riemannian surface of genus g with area normalized
to 4π(g−1), the length of the g shortest homologically independent loops is at most ∼ √

g. Further-
more, Buser’s so-called hairy torus example [11, 12] with hair tips pairwise glued together shows
that this bound is optimal, even for hyperbolic surfaces.

A natural question is then to find out for how many homologically independent curves does Gro-
mov’s log(g) bound hold. A first answer to this question goes as follows. Start with a Riemannian
surface M of genus g, cut the surface open along a homologically nontrivial loop of length at most

C log(g+1)√
g

√
area(M) given by Gromov’s systolic inequality [18, 2.C] and attach two hemispheres

along the boundary components of the open surface. As a result, we obtain a closed surface of

genus g − 1 whose area is at most 1 + C2

π
log2(g+1)

g times as large as the area of M (here, C is a

universal constant). We repeat the whole process with the new surface as many times as possible.
The homologically nontrivial loops we obtain through this iteration correspond to homologically
independent loops on the initial surface M . After some computations, we find that for k ≪ g, there
exist k homologically independent loops on M of lengths at most

C ′ log(g + 1)
√
g

exp(C ′′ k

g
log2(g))

√
area(M)

where C ′ and C ′′ are universal positive constants. Therefore, this method only yields a sublinear
number of homologically independent loops – roughly g

log2(g)
– satisfying Gromov’s log(g) bound

(when the surface area is normalized).

In this article, we show that on every closed Riemannian surface of genus g with normalized area
there exist almost g homologically independent loops of lengths at most ∼ log(g). More precisely,
we prove the following.
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Theorem 1.2. Let η : N → N be a function such that

λ := sup
g

η(g)

g
< 1.

Then there exists a constant Cλ such that for every closed Riemannian surface M of genus g there
are at least η(g) homologically independent loops α1, . . . , αη(g) which satisfy

length(αi) ≤ Cλ
log(g + 1)

√
g

√
area(M)

for every i ∈ {1, . . . , η(g)}.

Typically, this result applies to η(g) = [λg] where λ ∈ (0, 1).

Thus, the previous theorem generalizes Gromov’s log(g) bound on the homological systole, cf. [18,
2.C], to the lengths of almost g homologically independent loops. Note that its proof differs from
other systolic inequality proofs. Specifically, it directly yields a log(g) bound on the homological
systole without considering the homotopical systole (that is, the shortest length of a homotopically
nontrivial loop). Initially, M. Gromov obtained his bound from a similar bound on the homotopical
systole using surgery, cf. [18, 2.C]. However the original proof of the log(g) bound on the homotopical
systole, cf. [17, 6.4.D’] and [18], as well as the alternative proofs available, cf. [2, 23], do not directly
apply to the homological systole.

One can ask how far from being optimal our result on the number of short (homologically
independent) loops is. Of course, in light of the Buser-Sarnak examples, one can not hope to do
(roughly) better than a logarithmic bound on their lengths, but the question on the number of
such curves remains. Now, because of Buser’s hairy torus example, we know that the g shortest
homologically independent loops of a hyperbolic surface of genus g can grow like ∼ √

g and that
the result of Theorem 1.2 cannot be extended to η(g) = g. Still, one can ask for g−1 homologically
independent loops of lengths at most ∼ log(g), or for a number of homologically independent loops
of lengths at most ∼ log(g) which grows asymptotically like g. Note that the surface constructed
from Buser’s hairy torus does not provide a counterexample in any of these cases.

Our next theorem shows this is impossible, which proves that the result of Theorem 1.2 on the
number of homologically independent loops whose lengths satisfy a log(g) bound is optimal. Before
stating this theorem, it is convenient to introduce the following definition.

Definition 1.3. Given k ∈ N∗, the k-th homological systole of a closed Riemannian manifold M ,
denoted by sysk(M), is defined as the smallest real L ≥ 0 such that there exist k homologically
independent loops on M of length at most L.

With this definition, under the assumption of Theorem 1.2, every closed Riemannian surface of
genus g with area 4π(g − 1) satisfies

sysη(g)(M) ≤ Cλ log(g + 1)

for some constant Cλ depending only on λ. Furthermore, still under the assumption of Theorem 1.2,
Gromov’s sharp estimate, cf. [17, 1.2.D’], with this notation becomes

sysg(M) ≤ C
√
g

where C is a universal constant.

We can now state our second main result.
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Theorem 1.4. Let η : N → N be a function such that

lim
g→∞

η(g)

g
= 1.

Then there exists a sequence of genus gk hyperbolic surfaces Mgk with gk tending to infinity such
that

lim
k→∞

sysη(gk)(Mgk)

log(gk)
= ∞.

In their geometric approach of the Schottky problem, P. Buser and P. Sarnak [13] also proved that

the homological systole of the Jacobian of a Riemann surface M of genus g is at most ∼
√
log(g)

and this bound is optimal. In other words, there is a nonzero lattice vector in H1(M ;Z) whose

L2-norm satisfies a
√

log(g) upper bound (see Section 3.2 for a precise definition). We extend their
result by showing that there exist almost g linearly independent lattice vectors whose norms satisfy
a similar upper bound. More precisely, we have the following.

Corollary 1.5. Let η : N → N be a function such that

λ := sup
g

η(g)

g
< 1.

Then there exists a constant Cλ such that for every closed Riemann surface M of genus g there are
at least η(g) linearly independent lattice vectors Ω1, . . . ,Ωη(g) ∈ H1(M ;Z) which satisfy

(1.2) |Ωi|2L2 ≤ Cλ log(g + 1)

for every i ∈ {1, . . . , η(g)}.

The only extension of the Buser-Sarnak estimate we are aware of is due to B. Muetzel [25], who
recently proved a similar result with η(g) = 2.

Contrary to Theorem 1.2, we do not know whether the result of Corollary 1.5 is sharp regarding
the number of independent lattice vectors of norm at most ∼

√
log(g).

To prove Theorem 1.1 we consider naturally embedded graphs which capture a part of the topol-
ogy and geometry of the surface, and study these graphs carefully. Then, we derive Theorem 1.2
in the absence of a lower bound on the homological systole. We first prove this result in the hy-
perbolic case (restricting ourselves to hyperbolic metrics in our constructions). In this case, we
further obtain a crucial property for the proof of Corollary 1.5: the loops given by Theorem 1.2
have embedded collars of uniform width. Then we prove Theorem 1.2 in the Riemannian setting
(a more general framework which allows us to make use of more flexible constructions). We derive
Corollary 1.5 from the previous results on hyperbolic surfaces and some capacity estimates on the
collars of geodesic loops. To prove Theorem 1.4, we adapt known constructions of surfaces with
large homological systole to obtain closed hyperbolic surfaces of large genus which asymptotically
approach the limit case.

In the second part of this article, we study an invariant related to pants decompositions of
surfaces. A pants decomposition is a collection of nontrivial disjoint simple loops on a surface
so that the complementary region is a set of three-holed spheres (so-called pants). L. Bers [5, 6]
showed that on a hyperbolic surface one can always find such a collection with all curves of length
bounded by a constant which only depends on the genus and number of cusps. These constants are
generally called Bers’ constants. This result was quantified and generalized to closed Riemannian
surfaces of genus g by P. Buser [11, 12], and P. Buser and M. Sëppala [14] who showed that the
constants behave at least like ∼ √

g and at most like ∼ g. The correct behavior remains unknown,
except in the cases of punctured spheres and hyperelliptic surfaces [3].
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We apply the same graph embedding technique as developed in the first part to obtain results
on the minimal total length of such pants decompositions of surfaces. For a complete Riemannian
surface of genus g with n ends whose area is normalized at 4π(g + n

2 − 1), P. Buser’s bounds
mentioned before imply that one can always find a pants decomposition whose sum of lengths is
bounded from above by ∼ (g + n)2. Our main result is the following.

Theorem 1.6. Let M be a complete noncompact Riemannian surface of genus g with n ends whose
area is equal to 4π(g + n

2 − 1). Then M admits a pants decomposition whose sum of the lengths is
bounded from above by

Cg n log(n+ 1),

where Cg is an explicit genus dependent constant.

This estimate is sharp except possibly for the log(n+ 1) term. Indeed, the sums of the lengths
of the pants decompositions of hyperbolic surfaces of genus g with n cusps and no closed geodesics
of length less than 1

100 are at least C ′
g n for some positive constant C ′

g depending only on the genus.

In the case of a punctured sphere, it suffices to study the embedded graph mentioned above. In
the more general case, this requires a bound on the usual Bers’ constant which relies on F. Balacheff
and S. Sabourau’s bounds on the diastole, cf. [4]. Specifically, in Proposition 6.3 we show that the
diastole is an upper bound on lengths of pants decompositions, and thus, if one is not concerned
with the multiplicative constants, the result of [4] provides an optimal square root upper-bound on
Bers’ constants for puncture growth, and an alternative proof of Buser’s linear bounds for genus
growth.

As a corollary to the above we show that a hyperelliptic surface of genus g admits a pants decom-
position of total length at most ∼ g log g. This is in strong contrast with the general case according
to a result of L. Guth, H. Parlier and R. Young [20]: “random” hyperbolic surfaces have all their

pants decompositions of total length at least ∼ g
7
6
−ε for any ε > 0.

In the last part of this article, we consider the systolic area of finitely presentable groups, cf. Def-
inition 7.1. From [17, 6.7.A], the systolic area of an unfree group is bounded away from zero, see
also [22], [27], [21] and [1] for simpler proofs and extensions. The converse is also true: a finitely
presentable group with positive systolic area is not free, cf. [22]. The systolic finiteness result of [27]
regarding finitely presentable groups and their structure provides a lower bound on the systolic area
of these groups in terms of their first Betti number when the groups have no free factor isomor-
phic to Z. In particular, the systolic area of such a group G goes to infinity with its first Betti
number b1(G). Specifically,

S(G) ≥ C (log(b1(G) + 1))
1
3

where S(G) is the systolic area of G and C is some positive universal constant.

In this article, we improve this lower bound.

Theorem 1.7. Let G be a finitely presentable nontrivial group with no free factor isomorphic to Z.
Then

(1.3) S(G) ≥ C
b1(G) + 1

(log(b1(G) + 2))2

for some positive universal constant C.

In Example 7.4, we show that the order of the bound in inequality (1.3) cannot be improved.
The proof of Theorem 1.7 follows the proof of Theorem 1.1 in this somewhat different context.

Acknowledgement. The authors are grateful to the referee whose valuable comments helped
improve the presentation of this article and led to a simplification in the proof of Theorem 4.1.



6 F. BALACHEFF, H. PARLIER, AND S. SABOURAU

2. Independent loops on surfaces with homological systole bounded from below

Here we show the following theorem which allows us to bound the lengths of an integer homology
basis in terms of the genus and the homological systole of the surface.

Theorem 2.1. Let M be a closed orientable Riemannian surface of genus g with homological systole
at least ℓ and area equal to 4π(g − 1). Then there exist 2g loops α1, . . . , α2g on M which induce a
basis of H1(M ;Z) such that

(2.1) length(αk) ≤ C0
log(2g − k + 2)

2g − k + 1
g,

where C0 =
216

min{1,ℓ} .

In particular:

(1) the lengths of the αi are bounded by C0 g;
(2) the median length of the αi is bounded by C0 log(g + 1).

Remark 2.2. The linear upper bound in the genus of item (1) already appeared in [16] for hy-
perbolic surfaces, where the authors obtained a similar bound for the length of so-called canonical
homology basis. They also constructed a genus g hyperbolic surface all of whose homology bases
have a loop of length at least C g for some positive constant C. This shows that the linear upper
bound in (1) is roughly optimal. However, the general bound (2.1) on the length of the loops of a
short homology basis, and in particular the item (2), cannot be derived from the arguments of [16]
even in the hyperbolic case.

The bound obtained in (2) is also roughly optimal. Indeed, the Buser-Sarnak surfaces [13] have
their homological systole greater or equal to 4

3 log(g) minus a constant.

Remark 2.3. In a different direction, the homological systole of a “typical” hyperbolic surface,
where we take R. Brooks and E. Makover’s definition of a random surface [10], is bounded away
from zero. Therefore, the conclusion of the theorem holds for these typical hyperbolic surfaces with
ℓ constant. However, their diameter is bounded by C log(g) for some constant C. This shows that
there exists a homology basis on these surfaces formed of loops of length at most 2C log(g) (see
Remark 3.5). Thus, the upper bound in (1) is not optimal for these surfaces.

Remark 2.4. A non-orientable version of this theorem also holds. Recall that a closed non-
orientable surface of genus g is a surface homeomorphic to the connected sum of g copies of the
projective plane. Let M be a closed non-orientable Riemannian surface of genus g with homological
systole at least ℓ. Then there exist g loops α1, . . . , αg on M which induce a basis of H1(M ;Z) such
that

length(αk) ≤ C0
log(g − k + 2)

g − k + 1
g,

where C0 =
C

min{1,ℓ} for some positive constant C.

Let us introduce some definitions and results, which will be used several times in this article.

Definition 2.5. Let (γi)i be a collection of loops on a compact Riemannian surface M of genus g
(possibly with boundary components). The loops (γi)i form a minimal homology basis of M if

(1) their homology classes form a basis of H1(M ;Z);
(2) for every k = 1, . . . , 2g and every collection of k homologically independent loops γ′1, . . . , γ

′
k,

there exist k loops γi1 , . . . , γik of length at most

sup
1≤j≤k

length(γ′j).
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In this definition, one could replace the condition (2) with the following condition:

(2’) for every collection of loops (γ′i)i whose homology classes form a basis of H1(M ;Z), we have
2g∑
i=1

length(γi) ≤
2g∑
i=1

length(γ′i).

Lemma 2.6. Let M be a closed orientable Riemannian surface. Let α be a homologically trivial
loop such that the distance between any pair of points of α is equal to the length of the shortest arc
of α between these two points. Then no curve of a minimal homology basis of M crosses α.

Proof. Let γ be a loop of M which crosses α. Then γ must cross α at least twice. Consider an
arc c of γ that leaves from α and then returns. Let d be the shortest arc of α connecting the two
endpoints of c. By assumption, d is no longer than c and γ \ c. Thus, both c∪ d and (γ \ c)∪ d are
homotopic to loops which are shorter than γ. These loops are obtained by smoothing out c∪d and
(γ \ c)∪ d. Since γ is homologuous to the sum of these loops, with proper orientations, the curve γ
does not lie in a minimal homology basis. □

We continue with some more notations and definitions. We denote ℓM (γ) the infimal length of
the loops of M freely homotopic to γ.

Definition 2.7. Consider two metrics on the same surface and denote by M and M ′ the two
metric spaces. The marked length spectrum of M is said to be greater or equal to the marked
length spectrum of M ′ if

(2.2) ℓM (γ) ≥ ℓM ′(γ)

for every loop γ on the surface. Similarly, the two marked length spectra of M and M ′ are equal
if equality holds in (2.2) for every loop γ on the surface.

Definition 2.8. Let M be a compact nonsimply connected Riemannian manifold.
The homotopical systole of M , denoted by sysπ(M), is the length of its shortest noncontractible

loop of M . A homotopical systolic loop of M is a noncontractible loop of M of least length.
Similarly, the homological systole of M , denoted by sysH(M), is the length of its shortest homo-

logically nontrivial loop of M . A homological systolic loop of M is a homologically nontrivial loop
of M of least length.

Note that sysH(M) = sys1(M), cf. Definition 1.3.

In order to prove Theorem 2.1, we will need the following result from [17, 5.6.C”].

Lemma 2.9. Let M0 be a closed Riemannian surface and 0 < R ≤ 1
2 sysπ(M0). Then there exists

a closed Riemannian surface M conformal to M0 such that

(1) M and M0 have the same area;
(2) the marked length spectrum of M is greater or equal to that of M0;
(3) the area of every disk of radius R in M is greater or equal to R2/2.

We can now proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1.

Without loss of generality, we can suppose that ℓ is at most 1.

Step 1. Let us show first that we can assume that the homotopical systole of M , and not merely
the homological systole, is bounded from below by ℓ. Suppose that there exists a homotopical
systolic loop α of M of length less than ℓ which is homologically trivial. Clearly, the distance
between any pair of points of α is equal to the length of the shortest arc of α connecting this pair
of points. (Note that both the homotopical and homological systolic loops have this property for
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closed surfaces.) We split the surface along the simple loop α and attach two round hemispheres
along the boundary components of the connected components of the surface. We obtain two closed

surfaces M ′ and M ′′ of genus less than g. The sum of their areas is equal to area(M) + ℓ2

π .
Collapsing α to a point induces an isomorphismH1(M ;Z) → H1(M

′∨M ′′;Z) ≃ H1(M
′∐M ′′;Z).

From Lemma 2.6, the loops of a minimal homology basis of M do not cross α. Therefore, they also
lie in the disjoint union M ′∐M ′′. Conversely, every loop of M ′∐M ′′ can be deformed without
increasing its length into a loop which does not go through the two round hemispheres (that we
previously attached), and therefore also lies in M . This shows that two minimal homology basis
of M and M ′∐M ′′ have the same lengths.

We repeat the previous surface splitting to the new surfaces on and on as many times as pos-
sible. After at most g steps (i.e., g cuts), this process stops. By construction, we obtain a closed
Riemannian surface N with several connected components such that

(1) the homotopical systole of N is at least ℓ;
(2) H1(N ;Z) is naturally isomorphic to H1(M ;Z);
(3) two minimal homology basis of M and N have the same length.

Furthermore, we have

area(N) ≤ area(M) + g
ℓ2

π

≤ 24(1 + ℓ2) g.

Thus, it is enough to show that the conclusion of Theorem 2.1 holds for every (not necessarily
connected) closed Riemannian surface M of genus g with homotopical systole at least ℓ and area
at most 24(1 + ℓ2) g.

Step 2. Assume now that M is such a surface. Fix r0 < ℓ/8, say r0 = ℓ/16. By Lemma 2.9, we
can suppose that any disk of radius r0 of M has area at least r20/2. Consider a maximal system of
disjoint disks {Di}i∈I of radius r0. Since each disk Di has area at least r20/2, the system admits at
most 2 area(M)/r20 disks. That is,

|I| ≤ 25

r20
(1 + ℓ2) g

≤ 213 (1 +
1

ℓ2
) g.(2.3)

As this system is maximal, the disks 2Di of radius 2r0 with the same centers xi as Di cover M .

Let 2Di + ε be the disks centered at xi with radius 2r0 + ε, where ε > 0 satisfies 4r0 + 2ε < ℓ/2 ≤
sysπ(M)/2. Consider the 1-skeleton Γ of the nerve of the covering of M by the disks 2Di + ε.
In other words, Γ is a graph with vertices {vi}i∈I corresponding to the centers {xi}i∈I where two
vertices vi and vj are connected by an edge if and only if 2Di + ε and 2Dj + ε intersect each other.
Denote by v, e and b its number of vertices, its number of edges and its first Betti number. We
have the relation b ≥ e− v + 1 (with equality if the graph is connected).

Endow the graph Γ with the metric such that each edge has length ℓ/2. Consider the map
φ : Γ → M which takes each edge with endpoints vi and vj to a geodesic segment connecting
xi and xj . This segment is not necessarily unique, but we can choose one. Since the points xi
and xj are distant from at most 4r0 + 2ε < ℓ/2, the map φ is distance nonincreasing.

Lemma 2.10. The map φ induces an epimorphism π1(Γ) → π1(M).
In particular, it induces an epimorphism in integral homology.
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Proof of Lemma 2.10. Let c be a geodesic loop of M . Divide c into segments c1, . . . , cm of length
less than ε. Denote by pk and pk+1 the endpoints of ck with pm+1 = p1. Since the disks 2Di

cover M , every point pk is at distance at most 2r0 from a point qk among the centers xi. Consider
the loop

αk = ck ∪ [pk+1, qk+1] ∪ [qk+1, qk] ∪ [qk, pk],

where [x, y] denotes a segment joining x to y. Then

length(αk) ≤ 2 (4r0 + ε) < sysπ(M).

Thus, the loops αk are contractible. Therefore, the loop c is homotopic to a piecewise geodesic
loop c′ = (q1, . . . , qm).

Since the distance between the centers qk = xik and qk+1 = xik+1
is at most 4r0 + ε, the vertices

vik and vik+1
are connected by an edge in Γ. The union of these edges forms a loop (vi1 , . . . , vim)

in Γ whose image by φ agrees with c′ and is homotopic to the initial loop c. Hence the result. □

Let k be a field. Consider a subgraph Γ1 of Γ with a minimal number of edges such that the
restriction of φ to Γ1 still induces an epimorphism in homology with coefficients in k. The graph Γ1

inherits the simplicial structure of Γ.

Lemma 2.11. The epimorphism φ∗ : H1(Γ1; k) → H1(M ;k) induced by φ is an isomorphism.
In particular, the first Betti number b1 of Γ1 is equal to 2g.

Proof of Lemma 2.11. The graph Γ1 is homotopy equivalent to a union of bouquets of circles
c1, · · · , cm (simply identify a maximal tree in each connected component of Γ1 to a point). The
homology classes [c1], · · · , [cm] of these circles form a basis in homology with coefficients in k. If the
image by φ∗ of one of these homology classes [ci0 ] lies in the vector space spanned by the images
of the others, we remove the edge of Γ1 corresponding to the circle ci0 . The resulting graph Γ′

1 has
fewer edges than Γ1 and the restriction of φ to Γ′

1 still induces an epimorphism in homology with
coefficients in k, which is absurd by definition of Γ1. □

At least b− b1 edges were removed from Γ to obtain Γ1. As the length of every edge of Γ is equal
to ℓ/2, we have

length(Γ1) ≤ length(Γ)− (b− b1)
ℓ

2

≤ (e− b+ 2g)
ℓ

2

≤ (v − 1 + 2g)
ℓ

2
(2.4)

Let us contruct by induction n graphs Γn ⊂ · · · ⊂ Γ1 and n (simple) loops {γk}nk=1 with n ≤ 2g
such that

(1) γk is a systolic loop of Γk;
(2) the loops (γk)

n−1
k=1 induce a basis of a supplementary subspace of H1(Γn;k) in H1(Γ1;k).

For n = 1, the result clearly holds.

Suppose we have constructed n graphs {Γk}nk=1 and n loops {γk}nk=1 satisfying these properties.
Remove an edge of Γn through which γn passes. We obtain a graph Γn+1 ⊂ Γn such that H1(Γn;k)
decomposes into the direct sum of H1(Γn+1; k) and k [γn], where [γn] is the homology class of γn
(recall that γn generates a nontrivial class in homology). That is,

(2.5) H1(Γn;k) = H1(Γn+1;k)⊕ k [γn].

Let γn+1 be a systolic loop of Γn+1. The condition on {γk}nk=1 along with the decomposition (2.5)
shows that the loops (γk)

n
k=1 induce a basis of a supplementary subspace ofH1(Γn+1; k) inH1(Γ1;k).
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This concludes the construction by induction.

The graph Γk has k − 1 fewer edges than Γ1. Hence, from (2.4), we deduce that

length(Γk) ≤ length(Γ1)− (k − 1)
ℓ

2

≤ (v + 2g − k)
ℓ

2
.(2.6)

By construction, the first Betti number bk of Γk is equal to b1−k+1 = 2g−k+1. Thus, Bollobás-
Szemerédi-Thomason’s systolic inequality on graphs [8, 7] along with the bounds (2.6) and (2.3)
implies that

length(γk) = sys(Γk) ≤ 4
log(1 + bk)

bk
length(Γk)

≤ 215
(
ℓ+

1

ℓ

)
log(2g − k + 2)

2g − k + 1
g.

Hence,

length(γk) ≤ C0
log(2g − k + 2)

2g − k + 1
g,

where C0 =
216

min{1, ℓ}
(recall we can assume that ℓ ≤ 1).

Since the map φ is distance nonincreasing and induces an isomorphism in homology, the images
of the loops γk by φ yield the desired curves αk on M .

Now, recall that

length(γ1) ≤ · · · ≤ length(γ2g).

We deduce that the curves αk are of length at most

length(γ2g) ≤ C0 g

and that the median length is bounded from above by

length(γg+1) ≤ C0 log(g + 1).

This concludes the proof of Theorem 2.1. □

3. Short loops and the Jacobian of hyperbolic surfaces

This section is dedicated to generalizing the results of P. Buser and P. Sarnak [13] in the following
way. We begin by extending the log(g) upper bound on the length of the shortest homological non-
trivial loop to almost g loops, and then use these bounds and the methods developed in [13] to
obtain information on the geometry of Jacobians.

3.1. Short homologically independent loops on hyperbolic surfaces. We begin by showing
that one can extend the usual log(g) bound on the homological systole of a hyperbolic surface to
a set of almost g homologically independent loops. We also obtain a uniform lower bound on the
widths of their collars. In the case where the homological systole is bounded below by a constant,
the log(g) bound is a consequence of Theorem 2.1, so here we show how to deal with surfaces with
small curves. More precisely, our result is the following:

Theorem 3.1. Let η : N → N be a function such that

λ := sup
g

η(g)

g
< 1.
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Then there exists a constant Cλ = 217

1−λ such that for every closed hyperbolic orientable surface M

of genus g there are at least η(g) homologically independent loops α1, . . . , αη(g) which satisfy

(3.1) length(αi) ≤ Cλ log(g + 1)

for every i ∈ {1, . . . , η(g)} and admit a collar of width at least

w0 =
1

2
arcsinh(1)

around each of them.

The previous theorem applies with η(g) = [λg], where λ ∈ (0, 1).

Remark 3.2. The non-orientable version of this theorem is the following: if η : N → N is a function
such that

λ := sup
g

η(g)

g
<

1

2
,

then there exists a constant c′ such that for every closed hyperbolic non-orientable surface M of
genus g (homeomorphic to the sum of g copies of the projective plane) there are at least η(g)
homologically independent loops α1, . . . , αη(g) which satisfy

length(αi) ≤
C

1− 2λ
log(g + 1)

for every i ∈ {1, . . . , η(g)}.

The following lemma about minimal homology bases, cf. Definition 2.5, is proved in [17, Sec-
tion 5], see also [19, Lemma 2.2]. Note it applies to Riemannian surfaces, not only hyperbolic
ones.

Lemma 3.3. Let M be a compact Riemannian surface with geodesic boundary components. Then
every minimal homology basis (γi)i of M is formed of simple closed geodesics such that for every i,
the distance between every pair of points of γi is equal to the length of the shortest arc of γi between
these two points. Furthermore, two different loops of (γi)i intersect each other at most once.

Remark 3.4. The homotopical systolic loops of M also satisfy the conclusion of Lemma 3.3.

Remark 3.5. In particular, Lemma 3.3 tells us that one can always find a homology basis of
length at most twice the diameter of the surface. In [20], this is shown to be false for lengths of
pants decompositions. Indeed, a pants decomposition of a “random” pants decomposition (where
for instance random is taken in the sense of R. Brooks and E. Makover) there is a curve of length

at least g
1
6
−ε and the diameter behaves roughly like ∼ log(g).

In the next lemma, we construct particular one-holed hyperbolic tori, which we call fat tori for
future reference.

Lemma 3.6. Let ε ∈ (0, 2 arcsinh(1)]. There exists a hyperbolic one-holed torus T such that

(1) the length of its boundary ∂T is equal to ε;
(2) the length of every homotopically nontrivial loop of T is at least ε;
(3) every arc with endpoints in ∂T representing a nontrivial class in π1(T, ∂T ) is longer than ∂T .

Proof. We construct T as follows. We begin by constructing, for any ε ∈ (0, 2 arcsinh(1)], the
unique right-angled pentagon P with one side of length ε

4 , and the two sides not adjacent to this
side of equal length, say a. By the pentagon formula [12, p. 454],

a = arcsinh

√
cosh

ε

4
.

A simple calculation shows that 2a > ε for ε ≤ 2 arcsinh(1).
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For future reference, denote by h the length of the two edges of P adjacent to the side of length ε
4 .

Now, we glue four copies of P , along the edges of length h to obtain a square with a hole, cf. Figure 1.

a

a

h

h

ε
4

Figure 1. The construction of a fat torus

We glue the opposite sides of this square to obtain a one-holed torus T with boundary length ε.
Note that the sides of the square project onto two simple closed geodesics γ1 and γ2 of length 2a.
The distance between the two connected boundary components of T \{γi} different from ∂T is equal
to 2a. Therefore, as every noncontractible simple loop of T not homotopic to the boundary ∂T has
a nonzero intersection number with γ1 or γ2, its length is at least 2a > ε. We immediately deduce
the point (2). This also shows that γ1 and γ2 form a minimal homology basis of T . In particular,
the homological systole of T is equal to 2a.

Now, in the one-holed square, the distance between the boundary circle of length ε and each of
the sides of the square is clearly equal to h. Thus, the arcs of T with endpoints in ∂T homotopically
nontrivial in the free homotopy class of arcs with endpoints lying on ∂T are of length at least 2h.
By the pentagon formula [12, p. 454],

sinhh sinh
ε

2
= cosh a.

As ε ≤ 2 arcsinh(1), we conclude that 2h > 2a and so 2h > ε. This proves the lemma. □

We can now proceed to the main proof of the section.

Proof of Theorem 3.1.

Step 1. Consider α1, . . . , αn the set of homologically independent closed geodesics of M of length
less than 2 arcsinh(1). Note that by the collar lemma, these curves are simple and disjoint, and
there is a collar of width 1 > w0 around each of them.

If n ≥ η(g) then the theorem is correct with Cλ = 2arcsinh(1)/ log(2) so let us suppose that
n < η(g). Let us consider N = M \{α1, . . . , αn}, a surface of signature (g−n, 2n). The homological
systole of N is at least 2 arcsinh(1). Using [26], we can now deform N into a new hyperbolic
surface N ′ which satisfies the following properties:

(1) the boundary components of N ′ are geodesic of length exactly 2 arcsinh(1) in N ′;
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(2) for any simple loop γ, we have

ℓN ′(γ) ≥ ℓN (γ).

In particular,

sysH(N ′) ≥ sysH(N) ≥ 2 arcsinh(1).

Recall that ℓN (γ) is the length of the shortest loop of N homotopic to γ.

We define a new surface S by gluing 2n hyperbolic fat tori T1, . . . , T2n (from Lemma 3.6 with
ε = 2arcsinh(1)) to the boundary geodesics of N ′. This new surface is of genus g + n and its
homological systole is at least 2 arcsinh(1). As such, Theorem 2.1 implies that the first η(g) + 3n
homologically independent curves γ1, . . . , γη(g)+3n of a minimal homology basis of S satisfy

ℓS(γk) ≤ C0
log(2g + 2)

2g − η(g)− n
(g + n)

≤ C0
g

g − η(g)
log(2g + 2)

≤ Cλ log(g + 1)(3.2)

for Cλ = 2C0
1−λ > 2 arcsinh(1)/ log(2), from the assumption on η and since n < η(g).

Although the surfaces M and S are possibly non homeomorphic, it should be clear what homotopy
class we mean by αk on S. By construction of S, the curves α1, . . . , αn are homologically trivial
(separating) homotopical systolic loops of S. Furtermore, the loops γk lie in a minimal homology
basis of S. Thus, from Lemma 2.6 and Remark 3.4, the curves γk are disjoint from the curves
α1, . . . , αn. In particular, γk lies either in N ′ or in a fat torus Ti.

Among the γ1, . . . , γη(g)+3n, some of them can lie in the fat tori Tk. There are 2n fat tori and
at most two homologically independent loops lie inside each torus. Therefore, there are at least
η(g)−n curves among the γk which lie in N ′. Renumbering the indices if necessary, we can assume
that the loops γ1, . . . , γη(g)−n lie in N ′. These η(g) − n loops γi induce η(g) − n loops in M , still
denoted by γi, through the inclusion of N ′ into M . Combined with the curves α1, . . . , αn of M , we
obtain η(g) loops α1. . . . , αn, γ1, . . . , γη(g)−n in M .

Let us show that these loops are homologically independent in M . Consider an integral cycle

(3.3)

n∑
i=1

ai αi +

η(g)−n∑
j=1

bj γj

homologuous to zero in M . Since the curves αi lie in the boundary ∂N of N , the second sum of
this cycle represents a trivial homology class in H1(N, ∂N ;Z), and so in H1(S;Z). Now, since the
γj are homologically independent in S, this implies that all the bj equal zero. Thus, the first sum
in (3.3) is homologically trivial in M . As the αi are homologically independent in M , we conclude
that all the ai equal zero too.

The curves αk have their lengths bounded from above by 2 arcsinh(1) and clearly satisfy the esti-
mate (3.1). Now, since the simple curves γk do not cross any of the αi, we have

ℓM (γk) = ℓN (γk) ≤ ℓN ′(γk) = ℓS(γk).

Therefore, the lengths of the η(g) homologically independent geodesic loops α1. . . . , αn, γ1, . . . , γη(g)−n

of M are bounded from above by Cλ log(g), with Cλ = 217

1−λ .
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Step 2. To complete the proof of the theorem, we need a lower bound on the width of the collars
of these η(g) closed geodesics in M . We already know that the curves α1, . . . , αn admit a collar
of width w0 around each of them. Without loss of generality, we can assume that the geodesics
γ1, . . . , γη(g)−n, which lie in N , are part of a minimal basis of N .

Let γ be one of these simple closed geodesics. Recall that γ is disjoint from the αi. Suppose that
the width w of its maximal collar is less than w0. Then there exists a non-selfintersecting geodesic
arc c of length 2w intersecting γ only at its endpoints. Let d1 be the shortest arc of γ connecting
the endpoints of c and d2 the longest one. From Lemma 3.3 applied to N , the arc d1 is no longer
than c. Therefore,

length(c ∪ d1) ≤ 4w < 2 arcsinh(1).

By definition of the αi, the simple closed geodesic δ1 homotopic to the loop c∪d1, of length less than
2 arcsinh(1), is homologuous to an integral combination of the αi. Thus, the intersection number
of γ and δ1 is zero. As these two curves intersect at most once, they must be disjoint. Denoting
by δ2 the simple closed geodesic homotopic to the loop c∪ d2, we deduce that γ, δ1 and δ2 bound a
pair of pants. The curve c along with the three minimizing arcs joining γ to δ1, γ to δ2 and δ1 to δ2
decompose this pair of pants into four right-angled pentagons. From the pentagon formula [12,
p. 454],

cosh

(
1

2
length(δi)

)
= sinh(w) sinh

(
1

2
length(di)

)
Since w ≤ arcsinh(1), we deduce that δi is shorter than di. Hence,

length(δ1) + length(δ2) ≤ length(γ).

This yields another contradiction. □

3.2. Jacobians of Riemann surfaces. In this section, we present an application of the results
of the previous section to the geometry of Jacobians of Riemann surfaces, extending the work [13]
of P. Buser and P. Sarnak.

Consider a closed Riemann surface M of genus g. We define the L2-norm |.|L2 , simply noted |.|,
on H1(M ;R) ≃ R2g by setting

(3.4) |Ω|2 = inf
ω∈Ω

∫
M

ω ∧ ∗ω

where ∗ is the Hodge star operator and the infimum is taken over all the closed one-forms ω on M
representing the cohomology class Ω. The infimum in (3.4) is attained by the unique closed harmonic
one-form in the cohomology class Ω. The spaceH1(M ;Z) of the closed one-forms onM with integral
periods (that is, whose integrals over the cycles of M are integers) is a lattice of H1(M ;R). The
Jacobian J of M is a principally polarized abelian variety isometric to the flat torus

T2g ≃ H1(M ;R)/H1(M ;Z)

endowed with the metric induced by |.|.

In their seminal article [13], P. Buser and P. Sarnak show that the homological systole of the

Jacobian of M is bounded from above by
√

log(g) up to a multiplicative constant. In other words,

there is a nonzero lattice vector in H1(M ;Z) whose L2-norm satisfies a
√

log(g) upper bound. We
extend their result by showing that there exist almost g linearly independent lattice vectors whose
norms satisfy a similar upper bound. More precisely, we have the following.
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Theorem 3.7. Let η : N → N be a function such that

λ := sup
g

η(g)

g
< 1.

Then there exists a constant Cλ = 217

1−λ such that for every closed Riemann surface M of genus g

there are at least η(g) linearly independent lattice vectors Ω1, . . . ,Ωη(g) ∈ H1(M ;Z) which satisfy

(3.5) |Ωi|2 ≤ Cλ log(g + 1)

for every i ∈ {1, . . . , η(g)}.

Proof. Let α1, . . . , αη(g) be the homologically independent loops of M given by Theorem 3.1. Fol-

lowing [13], for every i, we consider a collar Ui of width w0 = 1
2 arcsinh(1) around αi. Let Fi be

a smooth function defined on Ui which takes the value 0 on one connected component of ∂Ui and
the value 1 on the other. We define a one-form ωi on M with integral periods by setting ωi = dFi

on Ui and ωi = 0 ouside Ui. Let Ωi be the cohomology class of ωi, that is, Ωi = [ωi]. Clearly, we
have

|Ωi|2 ≤ inf
Fi

∫
Ui

dFi ∧ ∗dFi

where the infimum is taken over all the functions Fi as above. This infimum agrees with the capacity
of the collar Ui. Now, by [13, (3.4)], we have

|Ωi|2 ≤
length(αi)

π − 2θ0

where θ0 = arcsin(1/ cosh(w0)).
Since the homology class of αi is the Poincaré dual of the cohomology class Ωi of ωi, the coho-

mology classes Ωi are linearly independent. The result follows from Theorem 3.1. □

4. Short homologically independent loops on Riemannian surfaces

This section is devoted to the proof of the Riemannian version of the first part of Theorem 3.1.
We emphasize that the second part of Theorem 3.1, that is, the uniform lower bound on the width
of the collars, a crucial point to extend the Buser-Sarnak estimate on the Jacobians of Riemann
surfaces (see Theorem 3.7), do not hold in the Riemannian case.

Specifically, we show the following.

Theorem 4.1. Let η : N → N be a function such that

λ := sup
g

η(g)

g
< 1.

Then there exists a constant Cλ = 215

(1−λ)
3
2

such that for every closed orientable Riemannian sur-

face M of genus g there are at least η(g) homologically independent loops α1, . . . , αη(g) which satisfy

(4.1) length(αi) ≤ Cλ
log(g + 1)

√
g

√
area(M)

for every i ∈ {1, . . . , η(g)}.

Remark 4.2. A non-orientable version of this statement also holds, cf. Remark 3.2.

Proof of Theorem 4.1. Multiplying the metric by a constant if necessary, we can assume that the
area of M is equal to g.

Consider a maximal collection of simple closed geodesics α1, . . . , αn of length at most 1 which
are pairwise disjoint and homologically independent in M . We have n ≤ g. Let us cut the surface
open along the loops αi. We obtain a compact surface N of signature (g − n, 2n). Each loop αi
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gives rise to two boundary components α+
i and α−

i . We attach a cap (i.e., a hemisphere) along
each boundary component of N . This yields a closed surface S of genus g − n and area at most
g + n

π . By construction, the simple closed geodesics of N of length at most 1 are separating. In
particular, the homological systole of S is at least 1.

From Theorem 2.1, there exist η(g) − n homologically independent loops γ1, · · · , γη(g)−n on S
such that

length(γk) ≤ C0
log(2g − η(g)− n+ 2)

2g − η(g)− n+ 1
g

√
g + n

π

4π(g − n+ 1)
.

Since n ≤ η(g) ≤ λg, we deduce from this inequality that the length of γk is bounded from above by

Cλ log(g+1), where Cλ = 215

(1−λ)
3
2
. Sliding these curves through a length-nonincreasing deformation

if necessary, we can assume that they do not cross the caps of S and so lie in M .
Arguing as in the proof of Theorem 3.1, cf. (3.3), we can show that the η(g) loops formed of

α1, . . . , αn and γ1, . . . , γη(g)−n are homologically independent in M . The result follows since the
lengths of all these curves are bounded by Cλ log(g + 1). □

Remark 4.3. Using different surgery arguments (in the spirit of the proof of Theorem 3.1), we

could replace the expression of Cλ with 218

1−λ , providing a better bound for values of λ close to 1
similar to the one obtained in the hyperbolic case. However, as pointed out by the referee, using
caps instead of fat tori simplifies the construction.

Theorem 4.1 also leads to the following upper bound on the sum of the lengths of the g shortest
homologically independent loops of a genus g Riemannian surface.

Corollary 4.4. There exists a universal constant C such that for every closed Riemannian sur-
face M of genus g, the sum of the lengths of the g shortest homologically independent loops is
bounded from above by

C g3/4
√

log(g)
√
area(M).

Proof. Let λ ∈ (0, 1). From Theorem 4.1, the lengths of the first [λg] homologically independent

loops are bounded by
C ′

1− λ

log(g + 1)
√
g

√
area(M), while from [17, 1.2.D’], the lengths of the next

g − [λg] others are bounded by C ′′√area(M), for some universal constants C ′ and C ′′. Thus, the
sum of the g shortest homologically independent loops is bounded from above by

C ′ [λg]

1− λ

log(g + 1)
√
g

√
area(M) + C ′′ (g − [λg])

√
area(M).

The result follows from a suitable choice of λ. □

5. Asymptotically optimal hyperbolic surfaces

In this section, we show that the bound obtained in Theorem 4.1 on the number of homologically
independent loops of length at most ∼ log(g) on a genus g hyperbolic surface is optimal. Namely,
we construct hyperbolic surfaces whose number of homologically independent loops of length at
most ∼ log(g) does not grow asymptotically like g. Specifically, we prove the following (we refer to
Definition 1.3 for the definition of the k-th homological systole).

Theorem 5.1. Let η : N → N be a function such that lim
g→∞

η(g)

g
= 1. Then there exists a sequence

of genus gk hyperbolic surfaces Mgk with gk tending to infinity such that

lim
k→∞

sysη(gk)(Mgk)

log(gk)
= ∞.
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Before proceeding to the proof of this theorem, we will need the following constructions.

All hyperbolic polygons will be geodesics and convex. We will say that a hyperbolic polygon is
symmetric if it admits an axial symmetry.

Fix ℓ > 0 such that cosh(ℓ) > 7 and let L,L′ > 0 be large enough (to be determined later).

Construction of a symmetric hexagon. With our choice of ℓ, there is no hyperbolic triangle with a
basis of length ℓ making an angle greater or equal to π/6 with the other two sides. Therefore, there
exists a symmetric hyperbolic hexagon Hπ/6,L (resp. Hπ/3,L) with a basis of length ℓ forming an
angle of π/6 (resp. π/3) with its adjacent sides such that all its other angles are right and the side
opposite to the basis is of length L, cf. Figure 2. Note that the length of the two sides adjacent to
the side of length L goes to zero when L tends to infinity.

L

ℓ

Figure 2. The schematics for Hπ/6,L and Hπ/3,L

Construction of a 3-holed triangle. Consider the hyperbolic right-angled hexagon HL with three
non-adjacent sides of length L. Note that the lengths of the other three sides go to zero when L
tends to infinity. By gluing three copies of Hπ/6,L to HL along the sides of length L, we obtain a
three-holed triangle X3 with angles measuring π/3 and sides of length ℓ, where the three geodesic
boundary components can be made arbitrarily short by taking L large enough, cf. Figure 3. We
will assume that the geodesic boundary components of X3 are short enough to ensure that the
widths of theirs collars are greater than eg, with g to be determined later.

Construction of a 7-holed heptagon. There exists a symmetric hyperbolic pentagon PL′ with all its
angles right except for one measuring 2π/7 such that the length of the side opposite to the non-right
angle is equal to L′. As previously, the length of the two sides adjacent to the side of length L′ goes
to zero when L′ tends to infinity. By gluing seven copies of PL′ around their vertex with a non-right
angle, we obtain a hyperbolic right-angled 14-gon, cf. Figure 4. Now, we paste along the sides of
length L′ seven copies of Hπ/3,L′ . We obtain a 7-holed heptagon X7 with angles measuring 2π/3
and sides of length ℓ, where the seven geodesic boundary components can be made arbitrarily short
by taking L′ large enough, cf. Figure 4. We will assume that the geodesic boundary components
of X7 are as short as the geodesic boundary components of X3, which guarantees that the widths
of theirs collars are also greater than eg, with g to be determined later.
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L L

L

ℓ

ℓ

ℓ

Figure 3

ℓ

L′

PL′

Figure 4. The 7-holed heptagon

Hurwitz surfaces with large systole. Generalizing the work of Buser-Sarnak [13], Katz-Schaps-
Vishne [24] constructed a family of hyperbolic surfaces N defined as a principal congruence tower
of Hurwitz surfaces with growing genus h and with homological systole at least 4

3 log(h). Since
Hurwitz surfaces are (2, 3, 7)-triangle surfaces, they admit a triangulation T made of copies of the
hyperbolic equilateral triangle with angles 2π/7. The area of this triangle equals 2π/7. Therefore,
the triangulation T of N is formed of 14(h − 1) triangles and has 6(h − 1) vertices. Remark that
not every integer h can be attained as the genus of a Hurwitz surface with homological systole at
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least 4
3 log(h). Still, this is true for infinitely many h’s.

Adding handles. In order to describe our construction, it is more convenient to replace the previous
hyperbolic equilateral triangles of T with Euclidean equilateral triangles of unit side length, which
gives rise to a piecewise flat surface N0 ≃ N . For every of these Euclidean triangles ∆, consider a
subdivision of each of its sides into m segments of equal length. The lines of ∆ parallel to the sides
of the triangle and passing through the points of the subdivision decompose ∆ into m2 Euclidean
equilateral triangles of size 1

m . These small triangles define a new (finer) triangulation T ′ of N
with exactly seven triangles around each vertex of the original triangulation T and exactly six
triangles around the new vertices. Note that the new triangulation T ′ is formed of 14(h − 1)m2

triangles. Now, replace each heptagon (with a conical singularity in its center) formed of the seven
small triangles of T ′ around the vertices of the original triangulation T by a copy of the hyperbolic
7-holed heptagon X7 (of side length ℓ). Replace also the other small triangles of T ′ by a copy
of the hyperbolic three-holed triangle X3 (of side length ℓ). The conditions on the angles of X3

and X7 imply that the resulting surface M ′ is a compact hyperbolic surface with geodesic boundary
components, of signature (h, 42(h− 1)(m2 − 2)). Note that the lengths of the nonboundary closed
geodesics of M ′ are bounded away from zero by a positive constant κ = κ(ℓ) depending only on ℓ.
By gluing the geodesic boundary components pairwise, which all have the same length, we obtain
a closed hyperbolic surface M of genus g = h+ 21(h− 1)(m2 − 2).

Remark 5.2. It is not possible to use single-punctured hyperbolic polygons in our construction
and still have the required conditions on their angles and the lengths of their sides to obtain a
smooth closed hyperbolic surface at the end. Note also that the combinatorial structure of Hurwitz
surfaces, and more generally triangle surfaces, makes the description of our surfaces simple.

The following lemma features the main property of our surfaces.

Lemma 5.3. Let k = 21(h− 1)(m2 − 2). The (k + 1)-th homological systole of M is large. More
precisely, there exists a universal constant K ∈ (0, 1) such that

sysk+1(M) ≥ 4

3
Km log(h).

Proof. Let us start with some distance estimates. No matter how small the geodesic boundary com-
ponents of X3 are, the distance between two points of its non-geodesic boundary component ∂0X3 is
greater or equal to K times the distance between the corresponding two points in the boundary ∂∆
of a Euclidean triangle of unit side length. That is,

dist∂0X3×∂0X3 ≥ K dist∂∆×∂∆,

where K is a universal constant. If, instead of a Euclidean triangle of unit side length, we consider a
small Euclidean triangle of size 1

m , we have to change K into Km in the previous bound. The same
inequality holds, albeit with a different value of K, if one switches X3 for X7. Here, of course, we
should replace the small Euclidean triangle with the singular Euclidean heptagon that X7 replaces
in the construction of M .

Now, let us estimate the (k + 1)-th homological systole of N . By construction, there are k
short disjoint closed geodesics α1, . . . , αk of the same length which admit a collar in M of width at
least eg. Furthermore, the loops αi are homologically independent in M .

Let γ be a geodesic loop in M homologically independent from the αi. We can suppose that γ
does not intersect the loops αi, otherwise its length would be at least eg and we would be done.
Thus, if the trajectory of γ enters into a copy of X3 or X7 (through a side of length ℓ), it will leave
it through a side of length ℓ. Therefore, using the previous distance estimates, the curve γ induces
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a homotopically nontrivial loop in N0 ≃ N of length at most

1

Km
length(γ).

Since N and N0 are bilipschitz equivalent, it does not matter with respect to which metric we
measure the lengths; the only effect might be on the constant K. Now, by construction the
homological systole of N is at least 4

3 log(h), we conclude that

length(γ) ≥ 4

3
Km log(h).

□

With this contruction, we can prove Theorem 5.1.

Proof of Theorem 5.1. Given η as in the theorem, let us show that for every C > 1, there exist
infinitely many hyperbolic surfaces Mg with pairwise distinct genus g such that

(5.1)
sysη(g)(Mg)

log(g)
≥ C.

The surfaces Mg have already been constructed in the discussion following Theorem 5.1. We will
simply set the parameters h and m on which they depend so that the inequality (5.1) holds.

Let ε > 0 such that ε ≤ 1
100( 3C

2K
+1)2

and m = E( 1
10

√
ε
). Note that ε ≤ 1

100 , m ≥ 3C
2K and

εm2 ≤ 1
100 . By assumption on η, there exists an integer g0 ≥ 100 such that for every g ≥ g0, we

have η(g) ≥ (1 − ε)g. Now, we can set h ≥ max{21(m2 − 2), g0} for which there exists a genus h
Hurwitz surface N with homological systole at least 4

3 log(h). Remark that there are infinitely
many choices for h.

From the construction following Theorem 5.1, we obtain infinitely many hyperbolic surfaces Mg

with pairwise distinct genus g = h + 21(h − 1)(m2 − 2). Now, from our choice of parameters, we
have

η(g) ≥ (1− ε)g ≥ 21(h− 1)(m2 − 2) + 1.

Combined with Lemma 5.3, this implies that

sysη(g)(Mg) ≥
4

3
Km log(h).

From the expression of g and our choice of parameters, we derive

log(g) ≤ log(h) + log(21(m2 − 2)) ≤ 2 log(h) ≤ 4

3

Km

C
log(h).

Therefore,

sysη(g)(Mg) ≥ C log(g).

Hence the theorem. □

Remark 5.4. Note that the surfaces constructed in the previous theorem are hyperbolic, not merely
Riemannian. The construction of nonhyperbolic Riemannian surfaces satisfying the conclusion of
Theorem 5.1 is easier to carry out as there is no constraint imposed by the hyperbolic structure
anymore. We can start with a Buser-Sarnak sequence of surfaces and attach long thin handles to
these surfaces. Then we can argue as in the proof of the theorem.
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6. Pants decompositions

In this section, we establish bounds on the length of short pants decompositions of genus g
Riemannian surfaces with n marked points. Specifically, we establish bounds using two different
measures of length. Classically, one measures the length of a pants decomposition by considering
the length of the longest curve in the pants decomposition. This is the point of view taken by
P. Buser in his quantification of Bers’ constants for instance. One can also measure the total length
of a pants decomposition. We establish news bounds for both measures but our primary goal is to
establish bounds on sums of lengths of pants decompositions for surfaces with marked points and
hyperelliptic surfaces.

6.1. Some preliminary bounds. Recall that the Bers constant of a Riemannian surface M ,
denoted by B(M), is the length of a shortest pants decomposition of M , where the length of a
pants decomposition P of M is defined as

(6.1) length(P) = max
γ∈P

length(γ).

In Section 6.2, we will also consider the sum of the lengths of a pants decomposition P (or total
length of P) defined as

(6.2)
∑
γ∈P

length(γ).

We begin by observing that the two subjects of finding homologically non-trivial short curves,
and finding short pants decompositions, are related.

Lemma 6.1. Every pants decomposition of a genus g surface contains g homologically independent
disjoint loops.

Proof. Consider a pants decomposition. Clearly it contains a curve such that once removed, the
genus is g − 1. The remaining curves form a pants decomposition of the surface with the curve
removed, so they contain a curve such that once removed the genus is g − 2, and so forth until the
remaining genus is 0. The g curves are clearly homologically distinct. □

One could try to find a short pants decomposition by considering disjoint homologically non-
trivial loops, and then completing them into a pants decomposition. And indeed, in the case where
there are g homologically independent disjoint loops of length at most C log(g), we can derive a
near-optimal bound on the Bers constant of the surface.

Proposition 6.2. Let M be a closed orientable hyperbolic surface of genus g which admits g
homologically nontrivial disjoint loops of length at most C log(g). Then

B(M) ≤ C ′√g log(g)

for C ′ = 46C. In particular such surfaces satisfy

B(M) ≤ C ′ g
1
2
+ε

for any positive ε and large enough genus.

Recall that there exist examples of closed hyperbolic surfaces of genus g with Bers’ constant at
least

√
6g − 2, and that it is conjectured that it cannot be substantially improved (see [12]).

Proof. Cut M open along the g homologically nontrivial disjoint loops of length at most C log(g).
The resulting surface M ′ is a sphere of area 4π(g − 1) with 2g boundary components of length at
most C log(g). By [3, Theorem 5], there exists a pants decomposition of M ′ of length bounded by

46
√
2π(2g − 2)

√(
C log(g)

2π

)2

+ 1 ≤ 46C
√
g log(g).
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The same result can also be derived from [4], albeit with a worse multiplicative constant. □

Unfortunately, in light of the examples of families of surfaces with Cheeger constant uniformly
away from zero, cf. [9], one cannot hope for log(g) bounds on the length of too many disjoint loops
in general. So this strategy would need to be adapted to say anything new about the lengths of
pants decompositions in general.

We now derive some results which we will need in the next section to estimate the sum of the
lengths of short pants decompositions, cf. Theorem 6.10. Our first estimate relies on the diastolic
inequality for surfaces, cf. [4].

Proposition 6.3. Let M be a closed Riemannian surface of genus g with n marked points. Then
M admits a pants decomposition with respect to the marked points of length at most

C
√
g
√

area(M)

for an explicit universal constant C.

Proof. Let f : M → R be a topological Morse function. We suppose that there is only one critical
point on each critical level set and that the marked points of M are regular points lying on different
level sets. Such an assumption is generically satisfied.

The function f factors through the Reeb space of f defined as the quotient

G = Reeb(f) = M/ ∼,

where the equivalence x ∼ y holds if and only if f(x) = f(y) and x and y lie in the same connected
component of the level set f−1(f(x)). More precisely, we have

f = j ◦ f

where f : M → G and j : G → R are the natural factor maps induced by f and the equivalence
relation ∼. Since f is a topological Morse function, its Reeb space is a finite graph and the factor
map f : M → G is a trivial S1-bundle over the interior of each edge of G.

Now, we subdivide G so that f takes the marked points of M to vertices of G. From Morse theory,
the disjoint simple loops formed by the preimages of the midpoints of the edges of G decompose M
into pants, disks and cylinders. Therefore, there exists a pants decomposition of M with respect
to the marked points of length at most

sup
t∈G

length f
−1

(t)

and, in particular, of length at most

(6.3) sup
t∈R

length f−1(t).

On the other hand, from [4], there exists a function f : M → R as above with

(6.4) sup
t∈R

length f−1(t) ≤ C
√
g
√
area(M)

for an explicit universal constant C. Strictly speaking, the main result of [4] is stated differently
(using the notion of diastole), however the proof leads to the above estimate.

Combining the estimates (6.3) and (6.4), we derive the desired bound. □
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6.2. Sums of lengths of pants decompositions. One of our motivations is the study of hy-
perbolic surfaces with cusps, or possibly cone points. Our techniques allow us to treat the more
general case of Riemannian surfaces where the appropriate replacement for cusps are marked points
(see the proof of Corollary 6.11 to relate the two notions). We thus require the following extension
of the notion of systole.

Definition 6.4. Let M be a compact Riemannian surface with (possibly empty) boundary and
n marked points x1, . . . , xn. A loop of M is admissible if it lies in M ′ = M \ {x1, . . . , xn} and is
not homotopic to a point in M ′, a connected component of ∂M or a multiple of some small circle
around some marked point xi. The marked homotopical systole of M is the infimal length of the
admissible loop of M .

We will implicitly assume that the topology of M is such that admissible loops exist, otherwise
there is nothing to prove. Let us first establish the following result similar to Lemma 2.9.

Lemma 6.5. Let M0 be a closed Riemannian surface with n marked points and marked homotopical
systole greater or equal to ℓ. Fix 0 < R ≤ ℓ

4 . Then there exists a closed Riemannian surface M
conformal to M0 such that

(1) the area of M is less or equal to the area of M0;
(2) M \ {x1, . . . , xn} and M0 \ {x1, . . . , xn} have the same marked length spectrum;
(3) the area of every disk of radius R in M is greater or equal to R2/2.

The proof of this lemma closely follows the arguments of [17, 5.5.C’] based on the height function.
In our case, we will need a modified version of it.

Definition 6.6. The tension of an admissible loop γ of M , denoted by tens(γ), is defined as

tens(γ) = length(γ)− ℓM ′(γ).

Recall that ℓM ′(γ) is the infimal length of the loops of M ′ freely homotopic to γ. The modified
height function of M is defined for every x ∈ M ′ as the infimal tension of the admissible loops of M
based at x. It is denoted by h′(x).

The following estimate is a slight extension of [17, 5.1.B].

Lemma 6.7. Let M be a closed Riemannian surface with n marked points and marked homotopical
systole greater or equal to ℓ. Then

areaD(x,R) ≥
(
R− h′(x)

2

)2

for every x ∈ M and every R such that 1
2h

′(x) ≤ R ≤ ℓ
4 .

Proof. We argue as in [17, 5.1.B]. Note first that the assumption clearly implies that the marked
points are at distance at least ℓ/2 from each other. If R < ℓ/4, the disk D = D(x,R) is contractible
in M and contains at most one marked point of M . Thus, every admissible loop γ based at x
contains an arc α passing through x with endpoints in ∂D. This arc α can be deformed into an
arc α′ of ∂D in M ′ while keeping its endpoints fixed (indeed, D contains at most one marked point).
The tension of γ satisfies

tens(γ) ≥ length(α)− length(α′)

≥ 2R− length(∂D).

Hence, length(∂D) ≥ 2R− h′(x). By the coarea formula, we derive the desired lower bound on the
area of D by integrating the previous inequality from 1

2h
′(x) to R. □

Our first preliminary result, namely Lemma 6.5, can be derived from this estimate.
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Proof of Lemma 6.5. The proof of [17, 5.5.C”] (see [27, Lemma 4.2] for further details) applies with
the modified height function and shows that there exists a closed Riemannian surface M conformal
to M0 with a conformal factor less or equal to 1 which satisfies (2) and has its modified height
function arbitrarily small. The result follows from Lemma 6.7. □

Now, we can state the following estimate.

Proposition 6.8. Let S be a Riemannian sphere with n marked points x1, . . . , xn. Suppose that
the marked homotopical systole of S is greater or equal to ℓ. Then the sphere S admits a pants
decomposition with respect to its marked points whose sum of the lengths is bounded from above by

C log(n)
areaS

ℓ
,

where C = 210.

Proof. We can suppose that n ≥ 4, otherwise there is nothing to prove. As noticed before, the
assumption implies that the marked points x1, . . . , xn are at distance at least ℓ/2 from each other.
By Lemma 6.5, we can further assume that the area of every r0-disk on S is greater or equal to r20/2,
with r0 = ℓ/4

Lemma 6.9. There exists a nonselfintersecting path Γ on S connecting all the marked points xi
with

(6.5) lengthΓ ≤ C ′ areaS

ℓ

where C ′ = 27.

Proof of Lemma 6.9. We consider the family of disjoint r0-disks D1, . . . , Dn centered at the marked
points x1, . . . , xn of S with r0 = ℓ/4. We complete this family into a maximal family of disjoint
r0-disks {Di}i∈I . Since the area of these disks is greater or equal to r20/2, we have

(6.6) |I| ≤ 2
areaS

r20
.

We decompose the sphere S into Voronoi cells Vi = {p ∈ S | d(p, xi) ≤ d(p, xj) for all j ̸= i} around
the points xi, with i ∈ I. Each Voronoi cell is a polygon centered at some point xi. Remark that
a pair of adjacent Voronoi cells (i.e., meeting along an edge) corresponds to a pair of centers of
distance at most 4r0. To see this, consider a point p on the boundary of both of two adjacent cells.
It is at an equal distance δ to both cell centers and it is closer to their centers than to any others.
Now δ ≤ 2r0, otherwise there would exist a disk of radius r0 around p in S disjoint from all other
disks {Di}i∈I and the system of disks would not be maximal.

We connect the center of every Voronoi cell Vi to the midpoints of its edges through length-
minimizing arcs of Vi. (The length-minimizing arc connecting a pair of points is not necessarily
unique, but we choose one.) As a result, we obtain a connected embedded graph G in S with
vertices {xi}i∈I . We already noticed that the lengths of the edges of G are at most 4r0.

The graph ∪i∂Vi of S given by the Voronoi cell decomposition has the same number of edges e
as G. Since the number of vertices in the Voronoi cell decomposition is less or equal to 2e

3 , the
Euler characteristic formula shows that the number of edges in the Voronoi cell decomposition and
in G is at most 3|I| − 6. Thus,

(6.7) lengthG ≤ 12 (|I| − 2) r0.
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By considering the boundary ∂U of a small enough ρ-tubular neighborhood U of the minimal
spanning tree T of G, we obtain a loop surrounding T of length less than

(6.8) 2 lengthT + ε

for any given ε > 0. We then construct a nonselfintersecting path Γ connecting all the marked
points x1, . . . , xn with

lengthΓ ≤ 2 lengthT + ε+ 2nρ.

It suffices to take Γ lying in ∂U and modify it in the neighborhood of each point xi by connecting Γ
to xi through two rays arising from xi.

The result follows from (6.7) and (6.6) by taking ε and ρ small enough. □

Let us resume the proof of Proposition 6.8. Let Γ ⊂ S be as in the previous lemma. Without
loss of generality, we can suppose that Γ is a piecewise geodesic path connecting the marked points
x1, . . . , xn in this order.

We split the piecewise geodesic path Γ = (x1, . . . , xn) into two paths Γ1 = (x1, . . . , xm) and Γ2 =
(xm+1, . . . , xn) with m = n/2 if n is even, and m = (n+1)/2 otherwise. Now, we consider a loop γ
surrounding Γ in S, that is, the boundary of a small tubular neighborhood U of Γ in S. We also
consider two loops γ1 and γ2 surrounding Γ1 and Γ2 in U . Then we repeat this process with Γ1

and Γ2, and so forth, cf. Figure 5. (When a path is reduced to a single marked point, we cannot
split it any further. So we take the same loop surrounding this marked point for γ, γ1 and γ2.) We
stop the process at the step

κ = [log2 n] + 1

because after this step all the new loops surround a single marked point.

�
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Figure 5

It is clear that from our construction some subfamily of the set of loops that arise gives a (non-
geodesic) pants decomposition of the sphere S with respect to its marked points.

Since each segment of Γ is surrounded by at most κ loops, the sum of the lengths of the pants
decomposition loops is bounded from above by

(6.9) 2κ lengthΓ + ε,

where ε depends on the width of U and goes to zero with it. The desired upper bound follows
from (6.5) by letting ε go to zero. □

We now state our main theorem in this direction which states that for any fixed genus g, one
can control the growth rate of sums of lengths of pants decompositions of a surface of area ∼ g+n
by a factor which grows like n log(n), where n is the number of marked points.

Theorem 6.10. Let M be a closed Riemannian surface of genus g with n ≥ 1 marked points whose
area is equal to 4π(g + n

2 − 1). Then M admits a pants decomposition with respect to the marked
points whose sum of the lengths is bounded from above by

Cg n log(n+ 1),

where Cg is an explicit genus dependent constant.
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Before proving the theorem, we note the following corollary.

Corollary 6.11. Let M be a noncompact hyperbolic surface of genus g with n cusps. Then M
admits a pants decomposition with the sum of its lengths bounded above by

Cg n log(n+ 1),

where Cg is an explicit genus dependent constant.

Proof of Corollary 6.11. Let us cut off the cusps of the hyperbolic surface M and replace the tips
with small round hemispheres to obtain a closed Riemannian surface N with n marked points
corresponding to the summits of the hemispheres. The area of N can be made arbitrarily close to
the original area by choosing the cut off tips of area arbitrarily small. The hemispheres will then be
of arbitrarily small area as well. To avoid burdening the argument by epsilontics, we will assume
that M and N have the same area.

We remark that short simple closed geodesics (on either surface) do not approach the tips.
Indeed, every simple loop passing through a small enough tip can be deformed into a shorter loop.
Therefore, the geodesic behavior that we are concerned with is identical on both surfaces.

We conclude by applying Theorem 6.10 to N , which yields the desired pants decomposition
on M . □

Remark 6.12. The proof of Corollary 6.11 applies to noncompact complete Riemannian surfaces
of genus g with n ends whose area is normalized at 4π(g + n

2 − 1).

Now, we can proceed to the proof of Theorem 6.10, which relies on Propositions 6.3 and 6.8.

Proof of Theorem 6.10. We will prove a more general result. Namely, Theorem 6.10 holds true
for compact Riemannian surfaces M of signature (g; p, q) (i.e., of genus g with p marked points
x1, . . . , xp and q boundary components) with boundary components of length at most ℓ, where
ℓ := 1. In this case, n = p+ q represents the total number of marked points and boundary compo-
nents of M .

It is enough to show this result when the marked homotopical systole of M is greater or equal to ℓ,
cf. Definition 6.4, otherwise we split the surface along a simple loop of M \ {x1, . . . , xp} of length
less than ℓ nonhomotopic to a point, a boundary component or a small circle around a marked
point. Then we deal with the resulting surfaces. Indeed, by splitting the surface M of signature
(g; p, q), we obtain one of the following:

(1) a surface of signature (g − 1; p, q + 2);
(2) two surfaces of signature (gi; pi, qi) with 0 < gi < g and pi + qi ≤ p+ q + 2 for i = 1, 2;
(3) two surfaces of signature (gi; pi, qi) with g1 = 0, p1+q1 ≤ p+q+1, g2 = g and p2+q2 < p+q;
(4) or, in case g = 0, two surfaces of signature (0; pi, qi) with pi + qi < p+ q for i = 1, 2.

In all cases, we can conclude by induction on both g and n = p+ q.

First, we attach a cap (i.e., a round hemisphere) along each boundary component c1, . . . , cq of M
to obtain a closed Riemannian surface N with n = p + q marked points corresponding to the p
marked points of M and the q summits of the caps of N . As with M , the marked homotopical
systole of N is greater or equal to ℓ. By construction, we have

areaN ≤ areaM +

q∑
i=1

1

2π
length(ci)

2

≤ 4π
(
g +

n

2
− 1
)
+

q

2π
ℓ2

where n = p+ q.
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Now, we consider g homologically independent disjoint loops γ1, . . . , γg in a pants decomposition
of N where the marked points are ignored with

length γk ≤ Ag

√
n,

for every k = 1, . . . , g, where Ag is some constant depending only on g, cf. Proposition 6.3 and
Lemma 6.1. Sliding these curves through a length-nonincreasing deformation if necessary, we can
assume that they do not cross the caps of N . We can also assume that they do not pass through
the marked points of N by slightly perturbing them and changing the value of Ag.

We cut N along γ1, . . . , γg and attach caps along the 2g boundary components thus obtained. As
a result, we obtain a Riemannian sphere S with 2g + n marked points corresponding to the n
marked points of N and the 2g summits of the caps we glued on N . By construction, the marked
homotopical systole of S is greater or equal to ℓ and

areaS ≤ areaN + 2g
A2

g n

2π
≤ Bg n

for some constant Bg.

By applying Proposition 6.8 to S, we obtain a pants decomposition PS of S with respect to its
marked points whose total length does not exceed

C

ℓ
Bg n log(2g + n).

As previously, we can push a curve away from the caps of S without increasing its length. Therefore,
we can assume that the pants decomposition loops of PS stay away from the caps. This shows that
the loops of PS also lie in M , and form with γ1, . . . , γg and the connected components of ∂M a
pants decomposition of M . By construction, the total length of this pants decomposition of M is
bounded from above by

C

ℓ
Bg n log(2g + n) + g Ag

√
n+ q ℓ ≤ Cg n log(n+ 1)

for some constant Cg. □

We conclude this section with a corollary of the above result for hyperelliptic Riemannian sur-
faces, i.e., surfaces with an orientation-preserving isometric involution where the quotient surface
is a sphere.

Theorem 6.13. Every closed hyperelliptic Riemannian surface of genus g and area 4π(g − 1)
admits a pants decomposition whose sum of the lengths is bounded above by

C g log(g)

for a universal constant C.

Proof. We begin by taking the quotient of the hyperelliptic surface M by its hyperelliptic involu-
tion σ to obtain a sphere S with 2g+2 cone points of angle π. We denote these points x1, . . . , x2g+2.

Using Theorem 6.10, there exists a pants decomposition of S with marked points x1, . . . , x2g+2

of total length which does not exceed C0(2g + 2) log(2g + 2) for some universal constant C0. We
proceed to lift this pants decomposition via σ to the surface M , and we obtain a multicurve µ ⊂ M
of total length which does not exceed 2C0(2g + 2) log(2g + 2). This multicurve is not a pants
decomposition, but it is not too difficult to see that by cutting along it, one obtains a collection of
cylinders, pairs of pants or four-holed spheres. This is explicitly shown in [3, Lemma 6].
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To complete the multicurve into a full pants decomposition, we must add curves which lie in the
four-holed spheres. Consider the set of four-holed spheres {Fk}n0

k=1 which arise as connected com-
ponents of M \ µ. Note that there are at most g − 1 of them. For each four-holed sphere Fk, we
consider an interior curve γk that cuts it into two pairs of pants. We claim that these curves can be
chosen such that the sum of their lengths is bounded above by C2 g log(g) for a universal constant C2.

To show this, consider for each k, the lengths {ℓk,i}4i=1 of the four boundary curves of Fk. To
each Fk, we glue four round hemispheres of boundary lengths {ℓk,i}4i=1 and we mark the four

summits of the hemispheres to obtain a marked sphere F̃k. By Proposition 6.3, the four-holed
sphere F̃k admits a pants decomposition (which here is reduced to a single curve) γk of length at

most C1

√
area(F̃k). Sliding these curves away from the marked points of the hemispheres without

increasing their lengths, we can assume that each curve γk lies in Fk.
If we denote Ak = area(Fk), we have that

n0∑
k=1

length(γk) ≤ C1

n0∑
k=1

√
area(F̃k)

≤ C1

n0∑
k=1

√√√√Ak +

4∑
i=1

ℓ2k,i
2π

≤ C1

n0∑
k=1

√Ak +

√√√√ 4∑
i=1

ℓ2k,i
2π


Now, unless a radicand is of value less than 1, it bounds its square root. Hence

√
Ak ≤ 1 + Ak.

Denoting Lk = maxi ℓk,i, we obtain

n0∑
k=1

length(γk) ≤ C1

(
n0 +

n0∑
k=1

(
Ak +

√
2

π
L2
k

))

≤ C1 n0 + C1

n0∑
k=1

Ak + C1

n0∑
k=1

√
2

π
Lk.

Note that
∑n0

k=1 Lk ≤ 4
∑

k,i ℓk,i ≤ 16C0 (2g+2) log(2g+2) because each curve of µ can be a bound-

ary of at most two four-holed spheres. Now, since
∑n0

k=1Ak ≤ area(M) = 4π(g−1) and n0 ≤ g−1,
we conclude that the sum of the lengths of the γk is bounded above by C2 g log(g). Hence the claim.

In conclusion, the multicurve µ ∪ {γk}n0
k=1 contains a pants decomposition of total length not

exceeding

2C0 (2g + 2) log(2g + 2) + C2 g log(g) < C g log(g)

for some universal constant C. □

7. Systolic area and first Betti number of groups

In this section, we use the approach developed in Section 2 to evaluate the systolic area of a
finitely presentable group G in terms of its first Betti number.

Definition 7.1. The systolic area of G is defined as

S(G) = inf
X

area(X)

sysπ(X)2
,
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where the infimum is taken over all piecewise flat 2-complexesX with fundamental group isomorphic
to G and sysπ denotes the homotopical systole, cf. Definition 2.8. One can also take the infimum
over piecewise Riemannian 2-complexes since Riemannian metrics can be approximated as close as
wanted by piecewise flat metrics.

Recall also that the first Betti number of G is defined as the dimension of its first real homology
group

H1(G,R) := H1(K(G, 1),R),
where K(G, 1) denotes the Eilenberg-MacLane space associated to G.

Theorem 7.2. Let G be a finitely presentable nontrivial group with no free factor isomorphic to Z.
Then

S(G) ≥ C
b1(G) + 1

(log(b1(G) + 2))2

for some positive universal constant C.

Remark 7.3. Consider the free product Gn = Fn ∗G, where Fn is the free group with n generators
and G is a finitely presentable nontrivial group. The first Betti number of Gn goes to infinity
with n, while its systolic area remains bounded by the systolic area of G. This example shows that
a restriction on the free factors is needed in the previous theorem.

Proof. LetX be a piecewise flat 2-complex with π1(X) = G. We can apply the metric regularization
process of [27, Lemma 4.2] to X and change the metric of X for a piecewise flat metric with a better
systolic area. Thus, we can now assume from [27, Theorem 3.5] that the area of every disk D of
radius 1

8sysπ(X) in X satisfies

area(D) ≥ 1

128
sysπ(X)2.

We can also normalize the area of X to be equal to b1(G).
If the homotopical systole of X is bounded by 1, there is nothing to prove. Thus, we can assume

that it is greater than ℓ := 1. Now, set r0 =
1
8sysπ(X).

1) Since each disk of radius r0 has area at least r20/2, the maximal system of disjoint r0-disks

{Di}i∈I admits at most 2 b1(G)
r20

disks, that is,

|I| ≤ 2 b1(G)

r20
.

2) As in the proof of Theorem 2.1 (Step 2), consider the 1-skeleton Γ of the nerve of the cov-
ering of M by the disks 2Di + ε with ε positive small enough. The graph Γ is endowed with the
metric for which each edge has length ℓ/2. The map φ : Γ → X, which takes each edge with end-
points vi and vj to a segment connecting xi and xj , induces an epimorphism π1(Γ) → π1(X) ≃ G,
cf. Lemma 2.10 (whose proof works with complexes too).

3) Consider a connected subgraph Γ1 of Γ with a minimal number of edges such that the restric-
tion of φ to Γ1 still induces an epimorphism in real homology. By Lemma 2.11 (whose proof works
with complexes too), the homomorphism induced in real homology by the restriction of φ to Γ1 is
an isomorphim (observe that H1(G,R) := H1(K(G, 1),R) ≃ H1(X,R)). Arguing as in the proof of
Theorem 2.1, we can show that the length of Γ1 is at most C ′ b1(G) and that

sysπ(Γ1) ≤ C ′′ log(b1(G) + 1),

where C ′ = C ′(ℓ) and C ′′ = C ′′(ℓ) are universal constants (recall that ℓ is fixed equal to 1). Note
that a homotopical systolic loop of Γ1 induces a nontrivial class in real homology. Since φ is distance
nonincreasing and its restriction to Γ1 induces an isomorphism in real homology, the same upper
bound holds for sysπ(X). Hence the result. □
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The order of the bound in the previous theorem is asymptotically optimal, as shown by the
following family of examples.

Example 7.4. Even case. Let g ≥ 2 be an integer and G2g be the fundamental group of a closed
orientable surface of genus g. It is a finitely presentable group with no free factor isomorphic to Z
and with first Betti number 2g. The Buser-Sarnak hyperbolic surfaces [13] show that

S(Gb) ≤ c0
b

log(b)2
,

where b = 2g, for some positive universal constant c0.

Odd case. Now let G2g+1 be the fundamental group of the connected sum of a closed orientable
surface of genus g and a Klein bottle. It is a finitely presentable group with no free factor isomorphic
to Z and with first Betti number 2g + 1.

Consider on the one hand a Buser-Sarnak hyperbolic surface M of genus g with homotopical
systole greater than c log(g) for some positive constant c. Consider on the other hand a flat
rectangle [0, L2 ]× [0, L] with L = c

2 log(g), and glue the opposite sides of length L of this rectangle
to obtain a flat Moebius band M with boundary length L.

We can find two disjoint minimizing arcs onM of length L
2 = c

4 log(g). Now, we cut the surfaceM
open along these arcs and attach two Moebius bands M along the boundary components of the
surface. We obtain a closed nonorientable surface M2g+1 with fundamental group isomorphic
to G2g+1. By construction,

area(M2g+1) = 4π(g − 1) +
c2

4
log(g)2

and

sysπ(M2g+1) =
L

2
=

c

4
log(g).

Thus,

S(Gb) ≤ c0
b

log(b)2
,

where b = 2g + 1, for some positive universal constant c0.
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Rabelais Tours, Fédération Denis Poisson – CNRS, Parc de Grandmont, 37200 Tours, France

Email address: sabourau@lmpt.univ-tours.fr


