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PERIODIC ORBITS NEAR EQUILIBRIA VIA AVERAGING
THEORY OF SECOND ORDER

LUIS BARREIRA, JAUME LLIBRE, AND CLAUDIA VALLS

ABSTRACT. Lyapunov, Weinstein and Moser obtained remarkable the-
orems giving sufficient conditions for the existence of periodic orbits
emanating from an equilibrium point of a differential system with a first
integral. Using averaging theory of first order we established in [1] a
similar result for a differential system without assuming the existence of
a first integral. Now, using averaging theory of second order, we extend
our result to the case when the first order average is identically zero.
Our result can be interpreted as a kind of special Hopf bifurcation.

1. INTRODUCTION

Consider a system of ordinary differential equations

.%':f(l'), .’L':(l'l,,.%'m> (1)
near an equilibrium point which we assume to be the origin x = 0. The
variables xj, for k = 1,...,m, are real, and the dot refers to differentiation

with respect to the independent variable t. A special role in the theory is
played by the Hamiltonian systems

Tp = Hy, s Tpyk = —Hgy, k=1,...,n, (2)

where H,, denotes the partial derivative of the Hamiltonian H(z1,...,z2,)
with respect to the variable z;.

For the equilibrium point x = 0, we consider the linear variational equa-
tion

i = Az, A:fm(o)a (3)

where f;(0) denotes the Jacobian matrix of the function f evaluated at
x = 0. Clearly, every pair of conjugated purely imaginary eigenvalues of A
gives rise to periodic solutions of (3). We consider the classical problem of
finding periodic solutions near x = 0 for the nonlinear system (1). As it is
well known, for this purpose the presence of purely imaginary eigenvalues
is necessary but not sufficient. In 1907 Lyapunov [3] established the exis-
tence of a one-parameter family of periodic solutions under two assumptions.
Namely, he assumed the existence of a first integral and a nonresonance con-
dition on the purely imaginary eigenvalues of A (see Theorem 9.2.1 of [5]).
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Theorem 1 (Lyapunov’s Theorem). Assume that the function f is of class
C' and that a first integral H of system (1) is of class C?> near x = 0,
with H;(0) = 0 (where H, denotes the gradient of H) and positive definite
Hessian H,,(0), such that the equilibrium at the origin has eigenvalues +wi,
A3y .oy Am, where wi # 0 is purely imaginary. If \x/w is not an integer for
k = 3,...,m, then there exists a one-parameter family of periodic orbits
emanating from the equilibrium point.

In 1973 Weinstein [9, 10] showed that the additional nonresonance condi-
tion is not necessary for Hamiltonian systems. His result can be stated as
follows:

Theorem 2 (Weinstein’s Theorem). If the Hamiltonian H is of class C?
near x = 0, H;(0) = 0, and the Hessian Hy.(0) is positive definite, then
for any sufficiently small € the energy surface H(x) = H(0)+¢e? contains at
least n periodic solutions of system (2) whose periods are close to those of
the linear system (3).

In 1976 Moser [6] established a similar result for system (1) assuming
the existence of a first integral H(x) with H,(0) = 0 and positive definite
Hessian H,,(0) without requiring the system to be Hamiltonian.

Theorem 3 (Moser’s Theorem). If the function f is of class C' and a
first integral H of system (1) is of class C*> near x = 0, with H,(0) = 0
and positive definite Hessian H,,;(0), then for any sufficiently small ¢ the
energy surface H(x) = H(0) + €2 contains at least one periodic solution of
system (1) whose period is close to one of the linear system (3).

Our goal is to obtain similar results to those obtained by Lyapunov, We-
instein and Moser for system (1) but now without assuming the existence of
a first integral. We consider vector fields f = f. depending on a real param-
eter € such that when e = 0 the origin is an equilibrium point of system (1)
with eigenvalues +wi # 0 and 0 with multiplicity m—2. For such systems we
provide sufficient conditions so that periodic orbits bifurcate from the origin
when € # 0 is sufficiently small. In [1] we used averaging theory of first order
to establish a similar result for a differential system without assuming the
existence of a first integral. In the present paper, using averaging theory of
second order, we extend the results in [1] to the case when the first order
average is identically zero. We note that our results can be interpreted as a
kind of special Hopf bifurcation.

Our results are stated in Section 3, and are proved in the following sec-
tions. The proofs use averaging theory of second order. We refer to Section 2
for a summary of this theory.

2. AVERAGING THEORY OF SECOND ORDER

The next theorem provides a second order approximation for the limit
cycles of a periodic system when its average vanishes at first order. For a
statement see [4], and for a proof see Theorem 3.5.1 of Sanders and Ver-
hulst [7], or [2].
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Consider functions f, g: [0,00) xQ — R™ and R: [0,00) x Q% (0,&0] — R,
where €2 is an open subset of R", such that f,g and R are T-periodic in the
first variable. We set

fl(t7x) = gf

x

(t,x)y'(t,z), where yl(t,x):/of(s,x)ds, (4)

and we consider the averages of f, f! and g, defined respectively by

1 T 1 T
@)= 7 /0 faydt, ) = o /0 £t ) dt,

1 (T
@) =7 [ o
We also consider the two initial value problems
i =cf(t,x) +g(t,x) + ER(t,x,¢), (0) = o, (5)
and
g=efy) +* ([0 + "W). (0) = . (6)

Theorem 4. Assume that: (i) f° = 0; (i) 0f/0x, g and R are Lipschitz
in x, and all these functions are continuous on their domain of definition;
(i1i) R(t,x,e) is bounded by a constant uniformly on [0, L/c) x Q x (0,&0];
and (iv) the solution y(t) belongs to § in the interval of time [0,1/¢]. Then
the following statements hold.

(a) At time scale 1/ we have
z(t) = y(t) + ey’ (t,y(t)) + O(e?).
(b) If p is an equilibrium point of the averaged system (6) with
det (£,° + g9)(p) #0, (7)

then there exists a limit cycle ¢(t,e) of period T for system (5) that
is close to p, such that $(0,2) — p ase — 0.

(¢) The stability or instability of the limit cycle ¢(t,e) is given respec-
tively by the stability or instability of the equilibrium point p of sys-
tem (6).

3. STATEMENT OF THE RESULTS
We formulate in this section our results for equation (1).

3.1. Standing assumptions. We assume throughout the paper that the
function f is of class C3 near x = 0, with

f(O) = (07 07 52)\3 + 53,“’37 cee 752)\m + 53:um)a

and
0 —w 0 0
w 0 0 - 0
0 0
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and that the second and third derivatives f,(0) and f,,,(0) are independent
of &, where w, A3, i3, ..., Am, tbm are real constants such that w # 0 and
p3 + -+ p2, # 0. Under these standing assumptions, and introducing the
notation

fli = Fow,(0) and  fly = fl, . (0) forl=1,2,...,m,

we can rewrite system (1) in the form

m m m
= —wxy + Z Z 5Z]flszx] + Z Z Z (5Z]kf”kxlx]xk
k=j

=1 j=1 =1 j=i
+ O4(x1,. .., Tm,€),

m m m m m
. 2 2
To = wWx1 + Z E 5ijfij37i$j + E E Z ijfijkwixjxk
i=1 j=i i=1 j=i k=j (8)
+O4($1,... $m,5),

m m m
=€ /\k + e Mi + szz]fzszx] + Z Z Z 61]kf1]kxzx]$k
k=j

=1 j=1 =1 j=i
—|—O4(x1,...,xm,5),

for k = 3,...,m, where 5@']’ =1 for ¢ 7& j, (SM = 1/2, 5“2 = 1/6, 5ijk = 1/2
fori=j <kori<j==k, and d;5 = 1 for i < j < k. Moreover, each

O4(x1,...,2Tm,c) denotes a term of order 4 in z1,...,z,, and €.
Now we introduce coordinates (p,0,ys,...,yn) in R™ satisfying z; =
epcosl, o = epsinf, and xp = ey for k = 3,...,m. Our main aim is

to apply the averaging theory of second order when the averaged system
vanishes at first order (see Section 2). In this case one is not able to apply
the averaging theory of first order to the system, or more precisely to the
reduced system in R™~! using the coordinates p,ys,...,¥n in the region
f # 0, taking the variable 6 as the new time. It is shown in [1] that the
averaged system vanishes at first order if and only if the following conditions
hold:

(H1) \j=0for j=3,...,m;

(H2) fllj - 22]' for j=3,....m;

(H3) fflz_fécQ fOI‘j:3,...,m;

(H4) fjkl—()for]—S omandl=j, ..., m.

Thus, these will be standing assumptions in the paper.

3.2. Main results. The following result gives explicitly the averaged sys-
tem of second order for an arbitrary dimension m.
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Theorem 5. In coordinates (p,ys, ..., Ym) and in the region 0 # 0, the
averaged system of second order of the differential system (8) is given by

dp
@ _ e [16 s (Fhoho+ hoth— s - Pt + Tt - il
- Zféjfgg =N i+ 2Zf§jf{2)
= = =
p m m
t 5.2 Z Z% Fiiflo + Fi 13 — [ 1 — 15 1T) viys
3 j=i
p m m m ) .
EZZZ(SU f{l —féfgl)yz‘yz
]: i=5 =3
16w( T+ flag + flia + f222) ©)
IO m m
% Z Z 51ijf11ij + 52ijf221‘j)?/iyj] )
=3 j=i
dyk L, 1 m m m 5
a0 =& EZZZ ij fz]fll f1]f2l)y1y]yl
=3 j=1 [=3

f— Z P30+ £ = 283,11

fnf f22f1j +f22f23+f22f23)yj

% Z f11g + f22] Y + Zzzézjlf”lylyjyl}
=3

1=3 j=1 l=j

fork=3,...,m

Theorem 5 is proved in Section 4.

By Theorem 4, looking for the equilibrium points of system (9) satisfying
condition (7) we obtain periodic orbits of system (8). Taking into account
that the radial polar coordinate p is only well defined when p > 0, we are
only interested in the equilibrium points (p,ys, ..., ym) of system (9) with
p > 0. Therefore, using Bézout’s Theorem (see for instance [8]) we obtain
the following corollary of Theorem 5.

Corollary 6. Assume that the differential system (9) satisfying (H1)-(H4)
has finitely many equilibrium points. Then for any sufficiently small € # 0
there are at most 3™~ ! periodic orbits bifurcating from the origin of sys-
tem (8).
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3.3. The case m = 3. In dimension 3 we can be more precise. Set

1
= 5 [Fufla+ b = Ffh — Fa Sl + Phth — fhih

— fasfr — fiafas + 2f3fi +w(f1111 + floo + fhio + f2222)}

Ay = ﬁ(fs}?)fllz + f33f50 — fosfih — f323f122> + %(f:‘?sf?:a — f33/33)
+ 16w (fiz3 + f333)

Az = &(fz%f% + fi3fon — 2f35 1 — fL1fis — foafis + forfss + f212f§33)
+ %ffls,

Ay = —Q%)Q(f??:affg — f33/53) + %f???,s-

Then we have the following statement.

Ay

Theorem 7. Under the assumptions of Subsection 3.1, if us # 0,
A1Ay <0, and AsA3— A7y 75 0,

then for any sufficiently small e # 0 system (8) has a periodic solution which
s close to the circle of radius

wis| /3 /| As]

€.
|A13/2|AgAg — Ay Ayl

Theorem 7 is proved in Section 5.
3.4. An example with m = 4. The following system in R* satisfies the
standing assumptions of Subsection 3.1, and has three periodic orbits.

Example 1. The system

. 9 1 9 1 4 4
T = —wrg + X122 + Ty + —X123 + —T1X3%4 — I,
w w 3w

T = w1,

T3 = 63M3 + ux%ug — 2u3x%x3 — 2u3x4:):%,

. 1

By = s + 20wy — 2artry — 2uarart + — (=1 + paw)wans,
has three limit cycles bifurcating from the origin for € # 0 sufficiently small.

The details of the example are given in Section 6.

4. PROOF OF THEOREM 5

Equivalent form of system (8). Under the standing assumptions in Sec-
tion 3.1 we can write system (1) as in (8). Furthermore, using the conditions
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(H1)—(H4) we can rewrite system (8) in the form

. 1 -
1= (1) wrz g + §f{1$% + flomiza + (1 —2) Z [
=3

+({-1) meﬂflxj + f22952 + Zf2g$2% + Zzémfzg%%

7=3 1=3 j=1

! ! I2
+ 6f11137:1)’ + §f112$%1’2 + 5 Z Jreie;
=3

1 m m m
+ if{mxlx% + Z flojmimem; + Z Z 81k jpm1j2k

=3 =3 k=j

1 1 m m m
+ 5 Foti 5 ) faony + ) D Sajufograman
=3 3

=3 k=j

m m m
—l-zzz&jkffjkximjxk+O4(a:1,...,mm,s),

i=3 j=3 k=j

.

for [ =1,2, and

. 1 <
i = — 5 fop(of — 23) + flymams + ) flimia

Jj=3
- 1 1
k k 3 ko2
+ Zfij%Uj + 6f111$1 + §f112$1l’2
=3
L1 S -
2 Z 11g551951 + f122331$2 + Z f12]331$2$j
7j=3 j=3
m m
+ D) Suykfiprize + f222932 +35 Z s
J=3 k=j ] 3

m m m

m m
F YO baefopmamime + Y Y > Sirfimiaiy

j=3 k=j 1=3 j=3 k=j
+ O4(21,. .., T, €),

fork=3,...,m.

Introduction of new variables. Since we want to apply averaging theory, we
introduce the change of coordinates

x1=1rcosl, xzo=rsind, zp=xp, k=3,...,m,
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after which we can rewrite system (8) in the form
F=T11(0,r,x3,...,2m)+ T12(0, 7,23, ..., Tm)
+ Hi(0,7,23,...,2m) + O4(r,x3,...,2m),
0=w+To0,r,23,....,0m)+ Ha(0,7,23,...,2m)/T, (11)
ip = + Th1 (0,7, 23, ..., &) + Tho (0,7, 23, . .., Tn)
+ Hp(0,r,23,...,2m) + O4(r, 23, ..., T)

for k=3,...,m, where
1 1
Ty = 7r? [§f111 cos® 0 + (f112 + §f121) cos® 0sin 6
1 1
+ <§f212 + f122) cos fsin’ § + §f222 sin® 9}

Y [f3(sin?0 — cos” 0) + (f; + 1) cosOsingla; (1)
j=3

+ Z Zézj (lej cosf + fZ-Qj sin H)xixj,

=3 j—i
1 1 . 1 .
Typ =13 [6f1111 cos’ 0 + §(f1122 + fi12) cos® Osin® 0 + 6f2222 sin* 9]

m m
+r Z Z(fllij cos® 0 + fy;; sin® O)wizj,

i=3 j=i
and
1 1
15 = T[§f121 cos® 0 + (f122 - 5]"111) cos® O sin 0
1 1
+ (§f222 - f112) cos @sin® f — §f212 sin’ 9}
m
+ Z (f12] cos?f — lej sin? 0 + 2f22j cos f sin H)xj
j=3
1 m m
+ - Z Z 0ij (ffj cos 0 — 11] sin 6) z;z;,
i=3 j=i
and where for £k = 3,...,m,
1
Tia =1° [ - §f§2(c052 0 —sin? ) + f7, cos Osin 9}
S (13)
+ T’Z (flkj cosf + ffj sin&)xj,
7=3
and

9 m m m m

Tio = % D (flijeos® 0+ froysin® O)ay + > >N S flywizm.

j=3 i=3 j=i I=j
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Moreover, H; = Hy(0,7,z3,...,2mn) and Hy = Hg(0,r,x3,...,xy) for k =
3,...,m are sums of terms of order 3 in r, x3, ..., Ty, multiplied by a func-
tion of # among the ones in

cosf, sinf, cosfsinf, cos®f, sin®0,

14

cos? 0sinf, cosfsin?6, cos®Osinb, cosfsin 6. (14)

This readily implies that
2 2
Hi(0,r,23,...,0m)d0 = Hy(0,r,x3,...,2m9)d0 =0
0 0

for k =3,...,m. Finally, Hy = Hs(0,7,23,...,2,) is a function at least of
order 3 in the variables 7, x3, ..., Tn,.

Reduction of the system to form (5). In the region 6 # 0 system (11) yields
the equations

@ o Tll +T12 +H1 +O4(r707$37~‘-7xm)
o w+To+ Ho/r ’
doer &3k + Tia + Tho + Hi + Oa(r,0, 23, ..., Tm)

% w+T2+H2/T

for £ = 3,...,m, where for simplicity we have omitted the dependence on
the variables 0, r, xs, ..., x,. Here, each O4(r,0,x3,...,z,) denotes a term
of order 4 in r,x3,...,%,. We note that this system is 2w-periodic in the
independent variable 6. Moreover, performing the rescaling (r, 3, ..., Tnm) =
e(p,ys, ..., Ym), system (15) has the appropriate form to apply averaging
theory. Namely, setting

(15)

- 1
Tk1(97pa Yss .-y ym) = ?Tkl(ea’rv Z3, ... axm)a
- 1
TkQ(G,Pa Yz, .-, ym) - ?TkQ(G,T, T3y .y ‘/E’m)a

~ 1
TQ(G)pu Ys, .- 7ym) = ETZ(Q)T7‘/L‘37 s 7$m)7

in the variables p,ys, ..., yn the system has the form
% =ef11(0,0, Y3, Ym) + €2 f12(0, p, Y35 -, Ym)
+2°91(0,0,93, -+ Yms ), (16)
% = cfi1(0:, Y3, Ym) + €2 fr2(0, 0, Y3, -, Ym)
+e°91(0, 0,43, Yms €,
for some functions g1, g3, ..., gm, where

_ T11(9707y3> <. 7ym)

f11(07p7y37"'>ym)_ )
w

Tl? 07 y Y39y +I~_I 97 sy Y3y
f12(9>P73l3a-~-73/m) = ( Py ym)w 1( ek ym)

B TQ(Q,,O, Y3, .-y ym)fll(eapy Y3, ... J/m)
) )
w
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and

Tk 970;937---ay
fk1(97p>y37"'>ym): 1( m)a

w
k+Tk 0, S Y3y e et +ﬁk 0,p,y3,...,
_ T2<97:0a Y3, - - 'aym)T]ﬂ(e,,O, Y3, .. .,ym)
2 )
w

for k = 3,...,m. Moreover, each Hj, = I:Ik(ﬁ,p,yg,...,ym) is a sum of

terms of order 3 in p,ys, ..., Ym, multiplied by a function of § among the
ones in (14). We note that
s 2m

fjl(evpvy?n---’ym)de: 0 ﬁ](eapay?naym)de:o?

for j = 1,3,4,...,m (the first integral vanishes in view of the conditions
(H1)-(H4)). Thus, system (16) can be written as system (5) taking = =
(pay37"'ayk)7 tzea T: 27T7

f:(f117f317”'7fm1)7 g:(f127f327'”7fm2)7

and

R= (gl’g?n s agm)
It is easy to verify that system (16) satisfies the assumptions of the averaging
theory of second order described in Theorem 4, taking 2 = UN(RT x R™~2)
for some open disc U centered at the origin in R™~!, and taking o > 0
sufficiently small.

Functions in Theorem 4. To apply Theorem 4 (see (7)) we need to compute
the functions g and f! (see (4)), which we write in the form

f12(p7y37--'aym) Fl(pay?n"'aym)
f32(pay37--'7ym) 1 F3(p7y37"'7ym)
g= . and [ = . )

me(pay?)’"'aym) Fm(p7y37"'7ym)

for some functions Fi, F3, ..., F,,. We also let

1 27
G’L(pJ Y3, .. Jym) = 27_‘_/ [fi2(9,f77 Y3, .. Jym) + F’L(evp) Yz, ... 7?/m)] do.
0

(17)
Now we start computing the functions (G;, which are the components of the
sum g% + f10 (see (6)). We first observe that

2
% 0 f12(65p7y3a"°7ym)d6
1 2m
- % 0 T12(07p7y37"‘7ym) de (]‘8)
1 2m 5
—2m2/0 T11(0, 0,93, - - -, ym)T2(0, p, Y3, - - - s Ym) dO,
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and
1 21
— 0 do
o 0 ka( y Py Y3, 7ym)
1 2m
:/'Lk+2/ Tk2(97p7y37"'7ym)d9
™w Jo
1 2m _
— Ty1(0 ... T5(6 ... do
27Tw2/0 kl( y P Y3, 7ym) 2( y P Y3, 7ym>
for k = 3,...,m. Furthermore, following (4) we let

0
YJZYJ(97P,3/37)?/m):/ z}l(¢7p7y3aaym)dw (19)
0
for j =1,3,...,m. Then the function y' in (4) is given by
1 1
y =—(Y1,Ys, ..., Y.
w

Moreover,

Fi(g’pay?n"'aym) = (81?21}/14>z:6fZl > (20)

Computation of the functions G;. Now we proceed with the explicit compu-
tation of the integrals giving the functions G;. We first observe that

1 2

— | Tia(6 do
2w 0 12( y Py Y3, 7y’m)

1
= 16w [PS (f1111 + floo + flia + f2222) (21)

m m
+80) > (Ouijfliy + 625f35) viys |-

i=3 j=i

Moreover, with the help of an algebraic manipulator such as Mathematica
we obtain
1 2w
2w

o 1 1 1
= 8( flifls + f12f22 f111f121 - §f121f122 + §f212f222 - 2f122f222>

T11(9> P5Y3,--- 7ym)T2(97 P93 -+, ym) d

p 1 1
+t3 Z Z%‘ (filjf112 - §fi1jf121 + §fi1jf222
i=3 j=i
f11 + f22 '2jf122>yiyj
(22)
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Adding (21) and (22) we obtain the first component of g°. Now we consider
the remaining components. For k = 3,...,m we have

1 2m

— Tio(0 do
2w 0 k2< s Py Y3, 7ym)

p2 m m m m
— [4 Z Fhg + foa5)vs + Z Z Z 5ijlfikjlyiyjyl] ;
7j=3

1=3 j=1 l=j

and again using Mathematica we obtain

1 2m _
- / Tk1(97p7y37"'7ym)T2(07p7y37“'7ym)d0

2nw? J,
1 e
= ~5 ZZZ(SM( ,2]f1kl - legfécl)ylyjyl
i=3 j=i 1=3
P
t 8.2 Z (f2yf22 + i = 2P e+ flaf

3 1 1 3
§f121f{€j - §f222f{€j + §f§2f§j + §f212f§j - f122f§j>-
These formulas conclude the computation of the integral in (18).

Now we compute the integrals fo (00,93, ..., Ym) dO. Setting j =1
n (19) we obtain

0
Yl = Yl(eapay?n s 7ym) = / Tll(wapay?n s 7ym) dwa
0

and it follows from (12) that

vi=5l-
12
+ 3(;f11 + }lez + f122> sin 6 + (%flll - %lez - f122> sin(39)}

fgj + flj y; cos(20) + 2f2]y] s1n(29)]
=3

1 3 1 1
<f112 + §f121 + §f222> cos 0 — <f112 + §f121 - §f222> cos(30)

»Jk\b

J

25” f” sin @ — fzj COSH)yZy]

J=t

Ms

_|_

w

1=

(23)

Moreover, for j = 3,...,m it follows from (19) and (13) that
P2 k k - k k
Y; = - [f12 cos(20) + foo sin(20)] — pz (fzj cosf — flj sin G)yj. (24)
=3
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Now we observe that by (12) and (13),

0T 1 1 :
o = 2p[§f111 cos® 0 + <f112 + §f121) cos” 0 sin 0
1 : 1 .
+ (§f212 + f122> cos fsin” 6 + §f222 sin® «9}
+ Z [fgj(sin2 0 — cos? 0) + (f21j + ffj) cos fsin f]y;,
j=3
8T11 _ 2 (20 2 1 2 :
9y, p[f5;(sin® @ — cos® 0) + (fa; + fi;) cos Osin 6]
j
+2 Z 5ji(fj1i cos 0 + ]22 sin6)y;,
i=j
and
8;;;;1 = Qp[ - %fé%(cosQ 6 — sin? ) + fF, cosfsin
+ Z (ffj cos 6 + fé“j sinﬂ)yj,
j=3
0T} .
ay; = p(ffj cosf + ffj sin6).

Using Mathematica it follows from (23) and (24) that

1 2”8T11 P m 1,1 1 L .o 3 Lo
27””2/0 TPYNM:W 3§5ij(”f12+2fijf11+2ijf22

3 1
- ifzgjflll - §f¢2jf212 - ffzfzzj)yiyj’

and

L~ [T PN Lo Lo 2 4j
QWwQZ Oy, dee:8?2(_§f2jf22_§f1jf22+f2jf12)
j=3"70 J =3
p m m m ) )
T w2 ZZZ%( ?jf{l - filjf§1)yz‘yz-

j=3 i=j 1=3

13
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Summarizing, by (20) we conclude that

w2 2w

27 Fl(pay?n"'vym)de
s

P3 1. L. 1. 1o 40 L. 0

3 §f11f12 + §f12f22 - §f11f11 - §f11f12 + §f22f22

1o Ixm,0 0 IS0 L N= 42 g

§f12f22 - §Zf2jf22 - §Zf1jf22 + Zfiju
=3 =3 =8

0 m
+ 3 ZZ%‘ (filijIQ + fz’ljf222 - finflll - fz‘2jf122)yiyj

i=3 j=i

+ PZZZ% (fz‘ijfl - fz-ljfgl)yiyz
7j=31 =3

i=j l=

+ 16 {Pg(ffn + floo + fhia + f30) + 8/’2 Z (51ijf11ij + 52ijf22ij)yz‘yj :

=3 j=i
Moreover, for k = 3,..., m we have
1 [T,
_ My df =0,
2rw? Jy Oy,
and
1 [ 0T,
5 / "y, do
2nw? Jy  Op
1 m m m
= 3.2 SN (At — Bt viviw
i=3 j=i 1=3
P 1
+ X (Bith + Fith = 205 s — flatty = S0 AY
7j=3
32 ok Sk ok Lotk g2 ok
§f22f1j =+ §f22f2j + §f22f2j =+ f12f2j>yj
Therefore, for j = 3,...,k we have
w2 21
% Ej(p7y377ym)d6
m m m
= =2 > > S (fFAf — i) viviv
i=3 j=i 1=3
o m
+Z (f2]f22+f13f22 2f22jf{€2
7j=3

- 11f1; f22f1]+f22f23 +f22f2;)yj

[ Z (ffi; + Fans)ui + Z Z Z 5@szmyzygyz]

1=3 j=1i l=j
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This concludes the computation of the functions G;, and the proof of The-
orem 5 is complete.
5. PROOF OF THEOREM 7

When m = 3 the averaged system (9) becomes

dp 3 2
— =A A

20 10° + Azpys,
dys 2 3
= =A Ay,
a0 307 Ys + A4ys

We can easily verify that it has as a single equilibrium point with p > 0,
given by

b= ( |2WN3’1/3\/ | A (2wpzAg)'/3 >

|A1 V6] AgAg — A1 A4Y37 (AgAg — Ay Ay)Y/3

A simple computation shows that the Jacobian matrix at the point p has
determinant 12|wps|\/|A1A2| # 0, and thus we can apply Theorem 4.

6. DETAILS OF EXAMPLE 1

The purpose of this section is to provide the details of Example 1, showing
that the averaging theory of second order can be applied to system (10).

In coordinates r, 0, x3, x4 system (10) becomes

rzz(zq + x3) cos? 473 cost 0 9

cos? fsin b,
3w

= 27 cos 6 + +7r

x3sing  4r?cos®Osin 6
- -

0 = — rcosfsin® 6

r 3w

w? cos? § — z314 cos Osin § — 22 cos O sin O + w? sin’ 0

9

w
T3 = (53 + $4$§)M3 - 27“2(564 + z3) 13 cos? 0,
2 3 2
— €
T4 = T3 + EWHy + T4TIWHY 2T2(x4 +s) g cos? + —
w

Performing the rescaling p = re, ys = x3¢ and y4 = x4¢, in the region 9 #0
we obtain the reduced system
dp  ecosf(yi + p® cosfsinb)
a9 w
g2 cosd

302 ( — 3p%y3y4 cos® O — 3p2y3 cos® O + 4p* cos® O
pw

— 3y§ sinf — 6p2yi cos 0 sin? 6 — 3p2ysy4 cos O sin? 6

— 3,02y§ cos @ sin? 0 + 4p* cos® 0 sin? 0 — 3p* cos? 0 sin® 9) )
dys  €2us(1 + y3ya — 2pya cos® § — 2p*ys cos® )
g w '
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d € sinf &2
dys _ epyssinb

9w w?
— 2p2yswpng cost O — 2pyswpny cost 0 + y3y3 sin® 6 — y4y3 sin” 6

< — yay3 cos? 0 + wiy cos? O + yayswiig cos> 0

+ wptg sin? 0 + yayiwpg sin® 0 — 2p®yawpny cos® sin’ 6
- 2p2y3w,u4 cos? 0sin? 0 + p2y3 cos 6 sin® «9) .

We can write this system in the form (16) with

cos O(y? + p? cos@sin b sin 6
fllz (y4 P )7 f31207 f41:py377
w w
and
0
fio = — ;08 5 ( — 3p%y3ya cos® 0 — 3p?y3 cos® 0 + 4p* cos®
pw

— 3y2 sin @ — 6p%y? cos O sin” 6 — 3p>y4ys cos O sin® 4

- 3/723/32, cosOsin® 6 + 4p4 cos® Osin® 6 — 3p4 cos? 0 sin® 9) ,

fr = 13(1 + yay3 — 2p*ys cos® § — 2p*ys cos® 0)
w

Y

fao = é( — Y413 cos® 0 + wyiy cos® O + yayswiiy cos® 0
— 2p2yswpng cost O — 2pyswpny cost 0 + yiyg sin? 0 — y4y32) sin? ¢
+ wpg sin? 0 + yyyiwpg sin® @ — 2p®yawpny cos® O sin’ 6
— 2p2yswiy cos? B sin? § 4+ p?ys cos O sin’ 9) .

Note that
27 27

f11(0, p,y3,ya) df = fa1(0,p,y3,y4) dO = 0.
0 0

Now we study the averages of second order. Setting

6
Y1(9707y37y4) = / fll(d}’pa y37y4) d@, Y3 - 07
0
and

0
§/4(67p5 93,y4) :/0 f41(1/}7p7y37y4) d97

with the notation of (17) we obtain

1 2

N 2] do
Gq o o f12(0, p, Y3, y4)

i 2m afll(evp, 93794)
2 0 8/)

1 [P 0f11(0,p, Y3, a)

27 Jy OYa
__P
- 2w?

Yl(eu P, Y3, y4) o

Y4(07 P, Y3, y4) o

(—p* +yi — ysys + 43),
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1 27
G = — f32(0, p,y3,y4) dO
™ Jo

U3
=—(+ yay; — p*(ys + ya)),

1 2w

G4 = 27 f42(03p7y3ay4) do
T Jo

1/27r Afn1(0,p,y3,ya)
2 0 8p

1/27r Afu1(0,p,y3,ya)
2 0 3y4

1
=3

Y1(0, p,y3,ya) df

Yi(0, p,y3,ya) df

[ya(ya — y3)ys + (1 + yay3 — p*(ys + ya))wpia] .

Computing the zeros of (G1,Gs, Gy) yields

P11 = (17 170)7 b2 = (1707 1)7 b3 = (17 17 1)a

in coordinates p,ys,ys4. For the function (G1,G3,Gy), the Jacobians at the
points p; and ps have determinant —3us3/w® # 0, and the Jacobian at the
point p3 has determinant 3u3/w® # 0. Thus, we can apply Theorem 4. This
concludes the details of the example.
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