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PERIODIC ORBITS NEAR EQUILIBRIA VIA AVERAGING

THEORY OF SECOND ORDER

LUIS BARREIRA, JAUME LLIBRE, AND CLAUDIA VALLS

Abstract. Lyapunov, Weinstein and Moser obtained remarkable the-
orems giving sufficient conditions for the existence of periodic orbits
emanating from an equilibrium point of a differential system with a first
integral. Using averaging theory of first order we established in [1] a
similar result for a differential system without assuming the existence of
a first integral. Now, using averaging theory of second order, we extend
our result to the case when the first order average is identically zero.
Our result can be interpreted as a kind of special Hopf bifurcation.

1. Introduction

Consider a system of ordinary differential equations

ẋ = f(x), x = (x1, . . . , xm) (1)

near an equilibrium point which we assume to be the origin x = 0. The
variables xk, for k = 1, . . . ,m, are real, and the dot refers to differentiation
with respect to the independent variable t. A special role in the theory is
played by the Hamiltonian systems

ẋk = Hxn+k
, ẋn+k = −Hxk , k = 1, . . . , n, (2)

where Hxl denotes the partial derivative of the Hamiltonian H(x1, . . . , x2n)
with respect to the variable xl.

For the equilibrium point x = 0, we consider the linear variational equa-
tion

ẋ = Ax, A = fx(0), (3)

where fx(0) denotes the Jacobian matrix of the function f evaluated at
x = 0. Clearly, every pair of conjugated purely imaginary eigenvalues of A
gives rise to periodic solutions of (3). We consider the classical problem of
finding periodic solutions near x = 0 for the nonlinear system (1). As it is
well known, for this purpose the presence of purely imaginary eigenvalues
is necessary but not sufficient. In 1907 Lyapunov [3] established the exis-
tence of a one-parameter family of periodic solutions under two assumptions.
Namely, he assumed the existence of a first integral and a nonresonance con-
dition on the purely imaginary eigenvalues of A (see Theorem 9.2.1 of [5]).

2000 Mathematics Subject Classification. 37G15.
Key words and phrases. periodic orbit, averaging theory of second order, Hopf

bifurcation.

1

This is a preprint of: “Periodic orbits near equilibria via averaging theory of second order”, Luis
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Theorem 1 (Lyapunov’s Theorem). Assume that the function f is of class
C1 and that a first integral H of system (1) is of class C2 near x = 0,
with Hx(0) = 0 (where Hx denotes the gradient of H) and positive definite
Hessian Hxx(0), such that the equilibrium at the origin has eigenvalues ±ωi,
λ3, . . . , λm, where ωi 6= 0 is purely imaginary. If λk/ω is not an integer for
k = 3, . . . ,m, then there exists a one-parameter family of periodic orbits
emanating from the equilibrium point.

In 1973 Weinstein [9, 10] showed that the additional nonresonance condi-
tion is not necessary for Hamiltonian systems. His result can be stated as
follows:

Theorem 2 (Weinstein’s Theorem). If the Hamiltonian H is of class C2
near x = 0, Hx(0) = 0, and the Hessian Hxx(0) is positive definite, then
for any sufficiently small ε the energy surface H(x) = H(0) + ε2 contains at
least n periodic solutions of system (2) whose periods are close to those of
the linear system (3).

In 1976 Moser [6] established a similar result for system (1) assuming
the existence of a first integral H(x) with Hx(0) = 0 and positive definite
Hessian Hxx(0) without requiring the system to be Hamiltonian.

Theorem 3 (Moser’s Theorem). If the function f is of class C1 and a
first integral H of system (1) is of class C2 near x = 0, with Hx(0) = 0
and positive definite Hessian Hxx(0), then for any sufficiently small ε the
energy surface H(x) = H(0) + ε2 contains at least one periodic solution of
system (1) whose period is close to one of the linear system (3).

Our goal is to obtain similar results to those obtained by Lyapunov, We-
instein and Moser for system (1) but now without assuming the existence of
a first integral. We consider vector fields f = fε depending on a real param-
eter ε such that when ε = 0 the origin is an equilibrium point of system (1)
with eigenvalues ±ωi 6= 0 and 0 with multiplicity m−2. For such systems we
provide sufficient conditions so that periodic orbits bifurcate from the origin
when ε 6= 0 is sufficiently small. In [1] we used averaging theory of first order
to establish a similar result for a differential system without assuming the
existence of a first integral. In the present paper, using averaging theory of
second order, we extend the results in [1] to the case when the first order
average is identically zero. We note that our results can be interpreted as a
kind of special Hopf bifurcation.

Our results are stated in Section 3, and are proved in the following sec-
tions. The proofs use averaging theory of second order. We refer to Section 2
for a summary of this theory.

2. Averaging theory of second order

The next theorem provides a second order approximation for the limit
cycles of a periodic system when its average vanishes at first order. For a
statement see [4], and for a proof see Theorem 3.5.1 of Sanders and Ver-
hulst [7], or [2].



PERIODIC ORBITS NEAR EQUILIBRIA VIA AVERAGING THEORY 3

Consider functions f, g : [0,∞)×Ω→ Rn and R : [0,∞)×Ω×(0, ε0]→ Rn,
where Ω is an open subset of Rn, such that f, g and R are T -periodic in the
first variable. We set

f1(t, x) =
∂f

∂x
(t, x)y1(t, x), where y1(t, x) =

∫ t

0
f(s, x) ds, (4)

and we consider the averages of f , f1 and g, defined respectively by

f0(x) =
1

T

∫ T

0
f(t, x) dt, f10(x) =

1

T

∫ T

0
f1(t, x) dt,

g0(x) =
1

T

∫ T

0
g1(t, x) dt.

We also consider the two initial value problems

ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε), x(0) = x0, (5)

and

ẏ = εf0(y) + ε2
(
f10(y) + g0(y)

)
, y(0) = x0. (6)

Theorem 4. Assume that: (i) f0 = 0; (ii) ∂f/∂x, g and R are Lipschitz
in x, and all these functions are continuous on their domain of definition;
(iii) R(t, x, ε) is bounded by a constant uniformly on [0, L/ε) × Ω × (0, ε0];
and (iv) the solution y(t) belongs to Ω in the interval of time [0, 1/ε]. Then
the following statements hold.

(a) At time scale 1/ε we have

x(t) = y(t) + εy1(t, y(t)) +O(ε2).

(b) If p is an equilibrium point of the averaged system (6) with

det
(
f10y + g0y

)
(p) 6= 0, (7)

then there exists a limit cycle φ(t, ε) of period T for system (5) that
is close to p, such that φ(0, ε)→ p as ε→ 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given respec-
tively by the stability or instability of the equilibrium point p of sys-
tem (6).

3. Statement of the results

We formulate in this section our results for equation (1).

3.1. Standing assumptions. We assume throughout the paper that the
function f is of class C3 near x = 0, with

f(0) = (0, 0, ε2λ3 + ε3µ3, . . . , ε
2λm + ε3µm),

and

fx(0) =




0 −ω 0 · · · 0
ω 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



,
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and that the second and third derivatives fxx(0) and fxxx(0) are independent
of ε, where ω, λ3, µ3, . . . , λm, µm are real constants such that ω 6= 0 and
µ23 + · · ·+ µ2m 6= 0. Under these standing assumptions, and introducing the
notation

f lij = f lxixj (0) and f lijk = f lxixjxk(0) for l = 1, 2, . . . ,m,

we can rewrite system (1) in the form

ẋ1 = −ωx2 +
m∑

i=1

m∑

j=i

δijf
1
ijxixj +

m∑

i=1

m∑

j=i

m∑

k=j

δijkf
1
ijkxixjxk

+O4(x1, . . . , xm, ε),

ẋ2 = ωx1 +
m∑

i=1

m∑

j=i

δijf
2
ijxixj +

m∑

i=1

m∑

j=i

m∑

k=j

δijkf
2
ijkxixjxk

+O4(x1, . . . , xm, ε),

ẋk = ε2λk + ε3µk +
m∑

i=1

m∑

j=i

δijf
k
ijxixj +

m∑

i=1

m∑

j=i

m∑

k=j

δijkf
k
ijkxixjxk

+O4(x1, . . . , xm, ε),

(8)

for k = 3, . . . ,m, where δij = 1 for i 6= j, δii = 1/2, δiii = 1/6, δijk = 1/2
for i = j < k or i < j = k, and δijk = 1 for i < j < k. Moreover, each
O4(x1, . . . , xm, ε) denotes a term of order 4 in x1, . . . , xm and ε.

Now we introduce coordinates (ρ, θ, y3, . . . , ym) in Rm satisfying x1 =
ερ cos θ, x2 = ερ sin θ, and xk = εyk for k = 3, . . . ,m. Our main aim is
to apply the averaging theory of second order when the averaged system
vanishes at first order (see Section 2). In this case one is not able to apply
the averaging theory of first order to the system, or more precisely to the
reduced system in Rm−1 using the coordinates ρ, y3, . . . , ym in the region
θ̇ 6= 0, taking the variable θ as the new time. It is shown in [1] that the
averaged system vanishes at first order if and only if the following conditions
hold:

(H1) λj = 0 for j = 3, . . . ,m;
(H2) f11j = −f22j for j = 3, . . . ,m;

(H3) fk11 = −fk22 for j = 3, . . . ,m;
(H4) fkjl = 0 for j = 3, . . . ,m and l = j, . . . ,m.

Thus, these will be standing assumptions in the paper.

3.2. Main results. The following result gives explicitly the averaged sys-
tem of second order for an arbitrary dimension m.
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Theorem 5. In coordinates (ρ, y3, . . . , ym) and in the region θ̇ 6= 0, the
averaged system of second order of the differential system (8) is given by

dρ

dθ
= ε2

[
ρ3

16ω2

(
f111f

1
12 + f112f

1
22 − f111f211 − f211f212 + f122f

2
22 − f212f222

−
m∑

j=3

f12jf
j
22 −

m∑

j=3

f21jf
j
22 + 2

m∑

j=3

f22jf
j
12

)

+
ρ

2ω2

m∑

i=3

m∑

j=i

δij
(
f1ijf

1
12 + f1ijf

2
22 − f2ijf111 − f2ijf212

)
yiyj

+
ρ

ω2

m∑

j=3

m∑

i=j

m∑

l=3

δij
(
f2ijf

j
1l − f1ijf

j
2l

)
yiyl

+
ρ3

16ω

(
f1111 + f1122 + f2112 + f2222

)

+
ρ

2ω

m∑

i=3

m∑

j=i

(
δ1ijf

1
1ij + δ2ijf

2
2ij

)
yiyj

]
,

dyk
dθ

= ε2
[
µk −

1

ω2

m∑

i=3

m∑

j=i

m∑

l=3

δij
(
f2ijf

k
1l − f1ijfk2l

)
yiyjyl

+
ρ2

4ω2

m∑

j=3

(
f12jf

k
22 + f21jf

k
22 − 2f22jf

k
12

− f211fk1j − f222fk1j + fk22f
k
2j + f122f

k
2j

)
yj

+
ρ2

4ω

m∑

j=3

(
fk11j + fk22j

)
yj +

1

ω

m∑

i=3

m∑

j=i

m∑

l=j

δijlf
k
ijlyiyjyl

]
,

(9)

for k = 3, . . . ,m.

Theorem 5 is proved in Section 4.

By Theorem 4, looking for the equilibrium points of system (9) satisfying
condition (7) we obtain periodic orbits of system (8). Taking into account
that the radial polar coordinate ρ is only well defined when ρ > 0, we are
only interested in the equilibrium points (ρ, y3, . . . , ym) of system (9) with
ρ > 0. Therefore, using Bézout’s Theorem (see for instance [8]) we obtain
the following corollary of Theorem 5.

Corollary 6. Assume that the differential system (9) satisfying (H1)–(H4)
has finitely many equilibrium points. Then for any sufficiently small ε 6= 0
there are at most 3m−1 periodic orbits bifurcating from the origin of sys-
tem (8).
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3.3. The case m = 3. In dimension 3 we can be more precise. Set

∆1 =
1

16ω2

[
f111f

1
12 + f112f

1
22 − f111f211 − f211f212 + f122f

2
22 − f212f222

− f123f322 − f213f322 + 2f223f
3
12 + ω

(
f1111 + f1122 + f2112 + f2222

)]
,

∆2 =
ρ

4ω2

(
f133f

1
12 + f133f

2
22 − f233f111 − f233f212

)
+

1

2

(
f233f

3
13 − f133f323)

+ 16ω
(
f1133 + f2233

)
,

∆3 =
1

4ω2

(
f123f

3
22 + f213f

3
22 − 2f223f

3
12 − f211f313 − f222f313 + f322f

3
23 + f122f

3
23

)

+
4

ω
f3113,

∆4 = − 1

2ω2

(
f233f

3
13 − f133f323

)
+

1

6ω
f3333.

Then we have the following statement.

Theorem 7. Under the assumptions of Subsection 3.1, if µ3 6= 0,

∆1∆2 < 0, and ∆2∆3 −∆1∆4 6= 0,

then for any sufficiently small ε 6= 0 system (8) has a periodic solution which
is close to the circle of radius

|ωµ3|1/3
√
|∆2|

|∆1|3/2|∆2∆3 −∆1∆4|
ε.

Theorem 7 is proved in Section 5.

3.4. An example with m = 4. The following system in R4 satisfies the
standing assumptions of Subsection 3.1, and has three periodic orbits.

Example 1. The system

ẋ1 = −ωx2 + x1x2 + x24 +
1

ω
x1x

2
3 +

1

ω
x1x3x4 −

4

3ω
x31,

ẋ2 = ωx1,

ẋ3 = ε3µ3 + x4x
2
3µ3 − 2µ3x

2
1x3 − 2µ3x4x

2
1,

ẋ4 = ε3µ4 + x2x3 − 2µ4x
2
1x3 − 2µ4x4x

2
1 +

1

ω
(−1 + µ4ω)x4x

2
3,

(10)

has three limit cycles bifurcating from the origin for ε 6= 0 sufficiently small.

The details of the example are given in Section 6.

4. Proof of Theorem 5

Equivalent form of system (8). Under the standing assumptions in Sec-
tion 3.1 we can write system (1) as in (8). Furthermore, using the conditions
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(H1)–(H4) we can rewrite system (8) in the form

ẋl = (−1)lωx3−l +
1

2
f l11x

2
1 + f l12x1x2 + (l − 2)

m∑

j=3

f22jx1xj

+ (l − 1)
m∑

j=3

f21jx1xj +
1

2
f l22x

2
2 +

m∑

j=3

f l2jx2xj +
m∑

i=3

m∑

j=i

δijf
l
ijxixj

+
1

6
f l111x

3
1 +

1

2
f l112x

2
1x2 +

1

2

m∑

j=3

f l11jx
2
1xj

+
1

2
f l122x1x

2
2 +

m∑

j=3

f l12jx1x2xj +

m∑

j=3

m∑

k=j

δ1jkf
l
1jkx1xjxk

+
1

6
f l222x

3
2 +

1

2

m∑

j=3

f l22jx
2
2xj +

m∑

j=3

m∑

k=j

δ2jkf
l
2jkx2xjxk

+
m∑

i=3

m∑

j=3

m∑

k=j

δijkf
l
ijkxixjxk +O4(x1, . . . , xm, ε),

for l = 1, 2, and

ẋk = ε3µk −
1

2
fk22(x

2
1 − x22) + fk12x1x2 +

m∑

j=3

fk1jx1xj

+
m∑

j=3

fk2jx2xj +
1

6
fk111x

3
1 +

1

2
fk112x

2
1x2

+
1

2

m∑

j=3

fk11jx
2
1xj +

1

2
fk122x1x

2
2 +

m∑

j=3

fk12jx1x2xj

+
m∑

j=3

m∑

k=j

δ1jkf
k
1jkx1xjxk +

1

6
fk222x

3
2 +

1

2

m∑

j=3

fk22jx
2
2xj

+

m∑

j=3

m∑

k=j

δ2jkf
k
2jkx2xjxk +

m∑

i=3

m∑

j=3

m∑

k=j

δijkf
k
ijkxixjxk

+O4(x1, . . . , xm, ε),

for k = 3, . . . ,m.

Introduction of new variables. Since we want to apply averaging theory, we
introduce the change of coordinates

x1 = r cos θ, x2 = r sin θ, xk = xk, k = 3, . . . ,m,
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after which we can rewrite system (8) in the form

ṙ = T11(θ, r, x3, . . . , xm) + T12(θ, r, x3, . . . , xm)

+H1(θ, r, x3, . . . , xm) +O4(r, x3, . . . , xm),

θ̇ = ω + T2(θ, r, x3, . . . , xm) +H2(θ, r, x3, . . . , xm)/r,

ẋk = ε3µk + Tk1(θ, r, x3, . . . , xm) + Tk2(θ, r, x3, . . . , xm)

+Hk(θ, r, x3, . . . , xm) +O4(r, x3, . . . , xm)

(11)

for k = 3, . . . ,m, where

T11 = r2
[1

2
f111 cos3 θ +

(
f112 +

1

2
f211

)
cos2 θ sin θ

+
(1

2
f122 + f212

)
cos θ sin2 θ +

1

2
f222 sin3 θ

]

+ r
m∑

j=3

[
f22j(sin

2 θ − cos2 θ) +
(
f12j + f21j

)
cos θ sin θ

]
xj

+
m∑

i=3

m∑

j=i

δij
(
f1ij cos θ + f2ij sin θ

)
xixj ,

(12)

T12 = r3
[1

6
f1111 cos4 θ +

1

2
(f1122 + f2112) cos2 θ sin2 θ +

1

6
f2222 sin4 θ

]

+ r
m∑

i=3

m∑

j=i

(f11ij cos2 θ + f12ij sin2 θ)xixj ,

and

T2 = r
[1

2
f211 cos3 θ +

(
f212 −

1

2
f111

)
cos2 θ sin θ

+
(1

2
f222 − f112

)
cos θ sin2 θ − 1

2
f122 sin3 θ

]

+
m∑

j=3

(
f21j cos2 θ − f12j sin2 θ + 2f22j cos θ sin θ

)
xj

+
1

r

m∑

i=3

m∑

j=i

δij
(
f2ij cos θ − f1ij sin θ

)
xixj ,

and where for k = 3, . . . ,m,

Tk1 = r2
[
− 1

2
fk22(cos2 θ − sin2 θ) + fk12 cos θ sin θ

]

+ r
m∑

j=3

(
fk1j cos θ + fk2j sin θ

)
xj ,

(13)

and

Tk2 =
r2

2

m∑

j=3

(
fk11j cos2 θ + fk22j sin2 θ

)
xj +

m∑

i=3

m∑

j=i

m∑

l=j

δijlf
k
ijlxixjxl.
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Moreover, H1 = H1(θ, r, x3, . . . , xm) and Hk = Hk(θ, r, x3, . . . , xm) for k =
3, . . . ,m are sums of terms of order 3 in r, x3, . . . , xm, multiplied by a func-
tion of θ among the ones in

cos θ, sin θ, cos θ sin θ, cos3 θ, sin3 θ,

cos2 θ sin θ, cos θ sin2 θ, cos3 θ sin θ, cos θ sin3 θ.
(14)

This readily implies that
∫ 2π

0
H1(θ, r, x3, . . . , xm) dθ =

∫ 2π

0
Hk(θ, r, x3, . . . , xm) dθ = 0

for k = 3, . . . ,m. Finally, H2 = H2(θ, r, x3, . . . , xm) is a function at least of
order 3 in the variables r, x3, . . . , xm.

Reduction of the system to form (5). In the region θ̇ 6= 0 system (11) yields
the equations

dr

dθ
=
T11 + T12 +H1 +O4(r, θ, x3, . . . , xm)

ω + T2 +H2/r
,

dxk
dθ

=
ε3µk + Tk1 + Tk2 +Hk +O4(r, θ, x3, . . . , xm)

ω + T2 +H2/r

(15)

for k = 3, . . . ,m, where for simplicity we have omitted the dependence on
the variables θ, r, x3, . . . , xm. Here, each O4(r, θ, x3, . . . , xm) denotes a term
of order 4 in r, x3, . . . , xm. We note that this system is 2π-periodic in the
independent variable θ. Moreover, performing the rescaling (r, x3, . . . , xm) =
ε(ρ, y3, . . . , ym), system (15) has the appropriate form to apply averaging
theory. Namely, setting

T̃k1(θ, ρ, y3, . . . , ym) =
1

ε2
Tk1(θ, r, x3, . . . , xm),

T̃k2(θ, ρ, y3, . . . , ym) =
1

ε3
Tk2(θ, r, x3, . . . , xm),

T̃2(θ, ρ, y3, . . . , ym) =
1

ε
T2(θ, r, x3, . . . , xm),

in the variables ρ, y3, . . . , ym the system has the form

dρ

dθ
= εf11(θ, ρ, y3, . . . , ym) + ε2f12(θ, ρ, y3, . . . , ym)

+ ε3g1(θ, ρ, y3, . . . , ym, ε),

dyk
dθ

= εfk1(θ, ρ, y3, . . . , ym) + ε2fk2(θ, ρ, y3, . . . , ym)

+ ε3gk(θ, ρ, y3, . . . , ym, ε),

(16)

for some functions g1, g3, . . . , gm, where

f11(θ, ρ, y3, . . . , ym) =
T̃11(θ, ρ, y3, . . . , ym)

ω
,

f12(θ, ρ, y3, . . . , ym) =
T̃12(θ, ρ, y3, . . . , ym) + H̃1(θ, ρ, y3, . . . , ym)

ω

− T̃2(θ, ρ, y3, . . . , ym)T̃11(θ, ρ, y3, . . . , ym)

ω2
,
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and

fk1(θ, ρ, y3, . . . , ym) =
T̃k1(θ, ρ, y3, . . . , ym)

ω
,

fk2(θ, ρ, y3, . . . , ym) =
µk + T̃k2(θ, ρ, y3, . . . , ym) + H̃k(θ, ρ, y3, . . . , ym)

ω

− T̃2(θ, ρ, y3, . . . , ym)T̃k1(θ, ρ, y3, . . . , ym)

ω2
,

for k = 3, . . . ,m. Moreover, each H̃k = H̃k(θ, ρ, y3, . . . , ym) is a sum of
terms of order 3 in ρ, y3, . . . , ym, multiplied by a function of θ among the
ones in (14). We note that

∫ 2π

0
fj1(θ, ρ, y3, . . . , ym) dθ =

∫ 2π

0
H̃j(θ, ρ, y3, . . . , ym) dθ = 0,

for j = 1, 3, 4, . . . ,m (the first integral vanishes in view of the conditions
(H1)–(H4)). Thus, system (16) can be written as system (5) taking x =
(ρ, y3, . . . , yk), t = θ, T = 2π,

f = (f11, f31, . . . , fm1), g = (f12, f32, . . . , fm2),

and

R = (g1, g3, . . . , gm).

It is easy to verify that system (16) satisfies the assumptions of the averaging
theory of second order described in Theorem 4, taking Ω = U ∩(R+×Rm−2)
for some open disc U centered at the origin in Rm−1, and taking ε0 > 0
sufficiently small.

Functions in Theorem 4. To apply Theorem 4 (see (7)) we need to compute
the functions g and f1 (see (4)), which we write in the form

g =




f12(ρ, y3, . . . , ym)
f32(ρ, y3, . . . , ym)

...
fm2(ρ, y3, . . . , ym)


 and f1 =




F1(ρ, y3, . . . , ym)
F3(ρ, y3, . . . , ym)

...
Fm(ρ, y3, . . . , ym)


 ,

for some functions F1, F3, . . . , Fm. We also let

Gi(ρ, y3, . . . , ym) =
1

2π

∫ 2π

0

[
fi2(θ, ρ, y3, . . . , ym) + Fi(θ, ρ, y3, . . . , ym)

]
dθ.

(17)
Now we start computing the functions Gi, which are the components of the
sum g0 + f10 (see (6)). We first observe that

1

2π

∫ 2π

0
f12(θ, ρ, y3, . . . , ym) dθ

=
1

2πω

∫ 2π

0
T̃12(θ, ρ, y3, . . . , ym) dθ

− 1

2πω2

∫ 2π

0
T̃11(θ, ρ, y3, . . . , ym)T̃2(θ, ρ, y3, . . . , ym) dθ,

(18)
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and

1

2π

∫ 2π

0
fk2(θ, ρ, y3, . . . , ym) dθ

= µk +
1

2πω

∫ 2π

0
T̃k2(θ, ρ, y3, . . . , ym) dθ

− 1

2πω2

∫ 2π

0
T̃k1(θ, ρ, y3, . . . , ym)T̃2(θ, ρ, y3, . . . , ym) dθ

for k = 3, . . . ,m. Furthermore, following (4) we let

Yj = Yj(θ, ρ, y3, . . . , ym) =

∫ θ

0
T̃j1(ψ, ρ, y3, . . . , ym) dψ (19)

for j = 1, 3, . . . ,m. Then the function y1 in (4) is given by

y1 =
1

ω
(Y1, Y3, . . . , Ym).

Moreover,

Fi(θ, ρ, y3, . . . , ym) =
1

ω

(
∂fi1
∂ρ

Y1 +
m∑

j=3

∂fi1
∂yj

Yj

)
. (20)

Computation of the functions Gi. Now we proceed with the explicit compu-
tation of the integrals giving the functions Gi. We first observe that

1

2πω

∫ 2π

0
T̃12(θ, ρ, y3, . . . , ym) dθ

=
1

16ω

[
ρ3
(
f1111 + f1122 + f2112 + f2222

)

+ 8ρ
m∑

i=3

m∑

j=i

(
δ1ijf

1
1ij + δ2ijf

2
2ij

)
yiyj

]
.

(21)

Moreover, with the help of an algebraic manipulator such as Mathematica
we obtain

− 1

2πω2

∫ 2π

0
T̃11(θ, ρ, y3, . . . , ym)T̃2(θ, ρ, y3, . . . , ym) dθ

=
ρ3

8

(
1

2
f111f

1
12 +

1

2
f112f

1
22 −

1

2
f111f

2
11 −

1

2
f211f

2
12 +

1

2
f122f

2
22 −

1

2
f212f

2
22

)

+
ρ

4

m∑

i=3

m∑

j=i

δij

(
f1ijf

1
12 −

1

2
f1ijf

2
11 +

1

2
f1ijf

2
22

− 1

2
f2ijf

1
11 +

1

2
f2ijf

1
22 − f2ijf212

)
yiyj

(22)
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Adding (21) and (22) we obtain the first component of g0. Now we consider
the remaining components. For k = 3, . . . ,m we have

1

2πω

∫ 2π

0
T̃k2(θ, ρ, y3, . . . , ym) dθ

=
1

ω

[
ρ2

4

m∑

j=3

(
fk11j + fk22j

)
yj +

m∑

i=3

m∑

j=i

m∑

l=j

δijlf
k
ijlyiyjyl

]
,

and again using Mathematica we obtain

− 1

2πω2

∫ 2π

0
T̃k1(θ, ρ, y3, . . . , ym)T̃2(θ, ρ, y3, . . . , ym) dθ

= − 1

2ω2

m∑

i=3

m∑

j=i

m∑

l=3

δi,j
(
f2ijf

k
1l − f1ijfk2l

)
yiyjyl

+
ρ2

8ω2

m∑

j=3

(
f12jf

k
22 + f21jf

k
22 − 2f22jf

k
12 + f112f

k
1j

− 3

2
f211f

k
1j −

1

2
f222f

k
1j +

1

2
fk22f

k
2j +

3

2
f122f

k
2j − f212fk2j

)
.

These formulas conclude the computation of the integral in (18).

Now we compute the integrals
∫ 2π
0 Fi(θ, ρ, y3, . . . , ym) dθ. Setting j = 1

in (19) we obtain

Y1 = Y1(θ, ρ, y3, . . . , ym) =

∫ θ

0
T̃11(ψ, ρ, y3, . . . , ym) dψ,

and it follows from (12) that

Y1 =
ρ2

12

[
− 3
(
f112 +

1

2
f211 +

3

2
f222

)
cos θ −

(
f112 +

1

2
f211 −

1

2
f222

)
cos(3θ)

+ 3
(3

2
f111 +

1

2
f122 + f212

)
sin θ +

(1

2
f111 −

1

2
f122 − f212

)
sin(3θ)

]

− ρ

4

m∑

j=3

[
(f12j + f21j)yj cos(2θ) + 2f22jyj sin(2θ)

]

+
m∑

i=3

m∑

j=i

δij
(
f1ij sin θ − f2ij cos θ

)
yiyj .

(23)

Moreover, for j = 3, . . . ,m it follows from (19) and (13) that

Yj = −ρ
2

4

[
fk12 cos(2θ) + fk22 sin(2θ)

]
− ρ

m∑

j=3

(
fk2j cos θ − fk1j sin θ

)
yj . (24)
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Now we observe that by (12) and (13),

∂T̃11
∂ρ

= 2ρ
[1

2
f111 cos3 θ +

(
f112 +

1

2
f211

)
cos2 θ sin θ

+
(1

2
f122 + f212

)
cos θ sin2 θ +

1

2
f222 sin3 θ

]

+
m∑

j=3

[
f22j(sin

2 θ − cos2 θ) +
(
f12j + f21j

)
cos θ sin θ

]
yj ,

∂T̃11
∂yj

= ρ
[
f22j(sin

2 θ − cos2 θ) +
(
f12j + f21j

)
cos θ sin θ

]

+ 2
m∑

i=j

δji
(
f1ji cos θ + f2ji sin θ

)
yi,

and

∂T̃k1
∂ρ

= 2ρ
[
− 1

2
fk22(cos2 θ − sin2 θ) + fk12 cos θ sin θ

]

+
m∑

j=3

(
fk1j cos θ + fk2j sin θ

)
yj ,

∂T̃k1
∂yj

= ρ
(
fk1j cos θ + fk2j sin θ

)
.

Using Mathematica it follows from (23) and (24) that

1

2πω2

∫ 2π

0

∂T̃11
∂ρ

Y1 dθ =
ρ

4ω2

∑

i=3

m∑

j=i

δij

(
f1ijf

1
12 +

1

2
f1ijf

2
11 +

3

2
f1ijf

2
22

− 3

2
f2ijf

1
11 −

1

2
f2ijf

1
22 − f212f2ij

)
yiyj ,

and

1

2πω2

m∑

j=3

∫ 2π

0

∂T̃11
∂yj

Yj dθ =
ρ3

8ω2

m∑

j=3

(
− 1

2
f12jf

j
22 −

1

2
f21jf

j
22 + f22jf

j
12

)

+
ρ

ω2

m∑

j=3

m∑

i=j

m∑

l=3

δij
(
f2ijf

j
1l − f1ijf

j
21

)
yiyl.
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Summarizing, by (20) we conclude that

ω2

2π

∫ 2π

0
F1(ρ, y3, . . . , ym) dθ

=
ρ3

8

(
1

2
f111f

1
12 +

1

2
f112f

1
22 −

1

2
f111f

2
11 −

1

2
f211f

2
12 +

1

2
f122f

2
22

− 1

2
f212f

2
22 −

1

2

m∑

j=3

f12jf
j
22 −

1

2

m∑

j=3

f21jf
j
22 +

m∑

j=3

f22jf
j
12

)

+
ρ

2

∑

i=3

m∑

j=i

δij
(
f1ijf

1
12 + f1ijf

2
22 − f2ijf111 − f2ijf212

)
yiyj

+ ρ
m∑

j=3

m∑

i=j

m∑

l=3

δij
(
f2ijf

j
1l − f1ijf

j
2l

)
yiyl

+
ω

16

[
ρ3
(
f1111 + f1122 + f2112 + f2222

)
+ 8ρ

m∑

i=3

m∑

j=i

(
δ1ijf

1
1ij + δ2ijf

2
2ij

)
yiyj

]
.

Moreover, for k = 3, . . . ,m we have

1

2πω2

∫ 2π

0

∂T̃k1
∂yj

Yj dθ = 0,

and

1

2πω2

∫ 2π

0

∂T̃k1
∂ρ

Y1 dθ

= − 1

2ω2

m∑

i=3

m∑

j=i

m∑

l=3

δij
(
f2ijf

k
1l − f1ijfk2l

)
yiyjyl

+
ρ2

8ω2

m∑

j=3

(
f12jf

k
22 + f21jf

k
22 − 2f22jf

k
12 − f112fk1j −

1

2
f211f

k
1j

− 3

2
f222f

k
1j +

3

2
fk22f

k
2j +

1

2
f122f

k
2j + f212f

k
2j

)
yj

Therefore, for j = 3, . . . , k we have

ω2

2π

∫ 2π

0
Fj(ρ, y3, . . . , ym) dθ

= −
m∑

i=3

m∑

j=i

m∑

l=3

δij
(
f2ijf

k
1l − f1ijfk2l

)
yiyjyl

+
ρ2

4

m∑

j=3

(
f12jf

k
22 + f21jf

k
22 − 2f22jf

k
12

− f211fk1j − f222fk1j + fk22f
k
2j + f122f

k
2j

)
yj

+ ω

[
ρ2

4

m∑

j=3

(
fk11j + fk22j

)
yj +

m∑

i=3

m∑

j=i

m∑

l=j

δijlf
k
ijlyiyjyl

]
.
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This concludes the computation of the functions Gi, and the proof of The-
orem 5 is complete.

5. Proof of Theorem 7

When m = 3 the averaged system (9) becomes

dρ

dθ
= ∆1ρ

3 + ∆2ρy
2
3,

dy3
dθ

= ∆3ρ
2y3 + ∆4y

3
3.

We can easily verify that it has as a single equilibrium point with ρ > 0,
given by

p =

( |2ωµ3|1/3
√
|∆2|

|∆1|1/6|∆3∆2 −∆1∆4|1/3
,

(2ωµ3∆1)
1/3

(∆3∆2 −∆1∆4)1/3
.

)
.

A simple computation shows that the Jacobian matrix at the point p has
determinant 12|ωµ3|

√
|∆1∆2| 6= 0, and thus we can apply Theorem 4.

6. Details of Example 1

The purpose of this section is to provide the details of Example 1, showing
that the averaging theory of second order can be applied to system (10).

In coordinates r, θ, x3, x4 system (10) becomes

ṙ = x24 cos θ +
rx3(x4 + x3) cos2 θ

ω
− 4r3 cos4 θ

3ω
+ r2 cos2 θ sin θ,

θ̇ = −x
2
4 sin θ

r
+

4r2 cos3 θ sin θ

3ω
− r cos θ sin2 θ

+
ω2 cos2 θ − x3x4 cos θ sin θ − x23 cos θ sin θ + ω2 sin2 θ

ω
,

ẋ3 = (ε3 + x4x
2
3)µ3 − 2r2(x4 + x3)µ3 cos2 θ,

ẋ4 =
−x4x23 + ε3ωµ4 + x4x

2
3ωµ4

ω
− 2r2(x4 + x3)µ4 cos2 θ + rx3 sin θ.

Performing the rescaling ρ = rε, y3 = x3ε and y4 = x4ε, in the region θ̇ 6= 0
we obtain the reduced system

dρ

dθ
=
ε cos θ(y24 + ρ2 cos θ sin θ)

ω

− ε2 cos θ

3ρω2

(
− 3ρ2y3y4 cos3 θ − 3ρ2y23 cos3 θ + 4ρ4 cos5 θ

− 3y44 sin θ − 6ρ2y24 cos θ sin2 θ − 3ρ2y3y4 cos θ sin2 θ

− 3ρ2y23 cos θ sin2 θ + 4ρ4 cos3 θ sin2 θ − 3ρ4 cos2 θ sin3 θ
)
,

dy3
dθ

=
ε2µ3(1 + y23y4 − 2ρ2y4 cos2 θ − 2ρ2y3 cos2 θ)

ω
,



16 LUIS BARREIRA, JAUME LLIBRE, AND CLAUDIA VALLS

dy4
dθ

=
ερy3 sin θ

ω
+
ε2

ω2

(
− y4y23 cos2 θ + ωµ4 cos2 θ + y4y

2
3ωµ4 cos2 θ

− 2ρ2y4ωµ4 cos4 θ − 2ρ2y3ωµ4 cos4 θ + y24y3 sin2 θ − y4y23 sin2 θ

+ ωµ4 sin2 θ + y4y
2
3ωµ4 sin2 θ − 2ρ2y4ωµ4 cos2 θ sin2 θ

− 2ρ2y3ωµ4 cos2 θ sin2 θ + ρ2y3 cos θ sin3 θ
)
.

We can write this system in the form (16) with

f11 =
cos θ(y24 + ρ2 cos θ sin θ)

ω
, f31 = 0, f41 =

ρy3 sin θ

ω
,

and

f12 = − cos θ

3ρω2

(
− 3ρ2y3y4 cos3 θ − 3ρ2y23 cos3 θ + 4ρ4 cos5 θ

− 3y44 sin θ − 6ρ2y24 cos θ sin2 θ − 3ρ2y4y3 cos θ sin2 θ

− 3ρ2y23 cos θ sin2 θ + 4ρ4 cos3 θ sin2 θ − 3ρ4 cos2 θ sin3 θ
)
,

f32 =
µ3(1 + y4y

2
3 − 2ρ2y4 cos2 θ − 2ρ2y3 cos2 θ)

ω
,

f42 =
1

ω2

(
− y4y23 cos2 θ + ωµ4 cos2 θ + y4y

2
3ωµ4 cos2 θ

− 2ρ2y4ωµ4 cos4 θ − 2ρ2y3ωµ4 cos4 θ + y24y3 sin2 θ − y4y23 sin2 θ

+ ωµ4 sin2 θ + y4y
2
3ωµ4 sin2 θ − 2ρ2y4ωµ4 cos2 θ sin2 θ

− 2ρ2y3ωµ4 cos2 θ sin2 θ + ρ2y3 cos θ sin3 θ
)
.

Note that
∫ 2π

0
f11(θ, ρ, y3, y4) dθ =

∫ 2π

0
f41(θ, ρ, y3, y4) dθ = 0.

Now we study the averages of second order. Setting

Y1(θ, ρ, y3, y4) =

∫ θ

0
f11(ψ, ρ, y3, y4) dθ, Y3 = 0,

and

Y4(θ, ρ, y3, y4) =

∫ θ

0
f41(ψ, ρ, y3, y4) dθ,

with the notation of (17) we obtain

G1 =
1

2π

∫ 2π

0
f12(θ, ρ, y3, y4) dθ

+
1

2π

∫ 2π

0

∂f11(θ, ρ, y3, y4)

∂ρ
Y1(θ, ρ, y3, y4) dθ

+
1

2π

∫ 2π

0

∂f11(θ, ρ, y3, y4)

∂y4
Y4(θ, ρ, y3, y4) dθ

=
ρ

2ω2
(−ρ2 + y24 − y3y4 + y23),
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G3 =
1

2π

∫ 2π

0
f32(θ, ρ, y3, y4) dθ

=
µ3
ω

(1 + y4y
2
3 − ρ2(y3 + y4)),

G4 =
1

2π

∫ 2π

0
f42(θ, ρ, y3, y4) dθ

+
1

2π

∫ 2π

0

∂f41(θ, ρ, y3, y4)

∂ρ
Y1(θ, ρ, y3, y4) dθ

+
1

2π

∫ 2π

0

∂f41(θ, ρ, y3, y4)

∂y4
Y4(θ, ρ, y3, y4) dθ

=
1

ω2

[
y4(y4 − y3)y3 + (1 + y4y

2
3 − ρ2(y3 + y4))ωµ4

]
.

Computing the zeros of (G1, G3, G4) yields

p1 = (1, 1, 0), p2 = (1, 0, 1), p3 = (1, 1, 1),

in coordinates ρ, y3, y4. For the function (G1, G3, G4), the Jacobians at the
points p1 and p2 have determinant −3µ3/ω

5 6= 0, and the Jacobian at the
point p3 has determinant 3µ3/ω

5 6= 0. Thus, we can apply Theorem 4. This
concludes the details of the example.
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