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A NOTE ON THE FIRST INTEGRALS
OF THE ABC SYSTEM

JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. Without loss of generality the ABC systems reduce to
two cases: either A=0and B,C >0,or A=1and0< B,C <1.
In the first case it is known that the ABC system is completely
integrable, here we provide its explicit first integrals. In the second
case Ziglin in [14] proved that the ABC system with 0 < B < 1 and
C > 0 sufficiently small has no real meromorphic first integrals. We
improve Ziglin’s result showing that there are no C! first integrals
under convenient assumptions.

1. INTRODUCTION

The ABC system was introduced by Arnold for studying the steady
state solutions of Euler’s hydrodynamic partial differential equations.
Here we study the existence and non—existence of first integrals for
this differential system defined in the 3—-dimensional torus. As fas as
we know we provide by first time sufficient conditions in order that the
ABC system has no C* first integrals.

The nonlinear ordinary differential equations appear in a natural way
in many branches of applied mathematics, physics, chemist, economy;,
ete. In particular the ABC system was introduced by Arnold in [1] and
studied in [5, 6] with regard to the hydrodynamic instability criterion
of Friedlander and Vishik [4], putting in particular special interest in
the existence of a single hyperbolic periodic solution of an ABC sys-
tem which implies that the associated steady state solution of Euler’s
equation is hydrodynamically unstable, see also [3].

Here we are interested in the integrability of the ABC system. More
precisely, the goal of this paper is to study the existence of first integrals
of the ABC systems

&t = Asinz+ Ccosy,
(1) y = Bsinz + Acosz,
2 = C(Csiny+ Bcosu,
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in T2 with the coordinates z, 3, z (mod. 27) and the parameters A, B, C' €
R. As usual the dot denotes derivative with respect to time t¢.

In all the paper we assume that A > 0, B > 0 and C' > 0 because
doing the change of variables z — z 4+ 7 we can consider A > 0, and
similarly with the parameters B and C.

If ABC' = 0, then doing cyclic permutations of x,y, z and of the
parameters A, B, C, if necessary, we can consider A = 0.

When ABC' # 0 doing a rescaling of time ds = Mdt where M =
max{ A, B,C} and taking cyclic permutations with respect to the vari-

ables x, y, z and the parameters A, B, C, if necessary, we can take A = 1
and 0 < C<B<lor0O<B<(C<I1.

Here a first integral is a C'* non—constant function H: U — R whose
domain of definition is an open subset U of T? such that T® \ U has
zero Lebesgue measure and H is constant on the solutions of system (1)
contained in U, i.e. for any solution (x(t), y(t), z(¢)) of (1) we have that

dH oH oH oH

ox oy 0z
for (x(t),y(t), 2(t)) € U.
The gradient of H is defined as
OH OH 0OH )

VH(%% 2) = (%7%75

We say that two first integrals Hy: U — R and Hy: U — R are
linearly independent if their gradients are independent in all the points
of U except into a set of Lebesgue measure zero. Note that our first
integrals are independent of the time.

The differential system (1) is completely integrable in the open subset
U of T? if there are two linearly independent first integrals H; and H,
defined on U.

Proposition 1. The ABC systems (1) either has no C* first integrals,
or it 1s completely integrable.

The proof of Proposition 1 is given in section 2

It is known that the ABC systems are completely integrable if A = 0,
see for instance [17], but since we do not find in the literature the
explicit expressions of the first integrals in this case we provide them
in the next result.

Theorem 2. The ABC systems (1) with A =0 are always completely
integrable.
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(a) If B=C =0, then Hl = x, Hy = y and Hy = z are first
integrals.

(b) If B=0 and C # 0, then Hy =y and Hy = xsiny — zcosy are
first integrals.

(b) If C =0 and B # 0, then Hy = x and Hy = zsinx — ycosx
are first integrals.

(d) If BC # 0, then Hy = C'siny+ Bcosx and Hy given in (3) are
first integrals.

The proof of Theorem 2 is given in Section 3.

Ziglin in [14, 15] and Maciejewski and Przybylska in [10] proved the
following result.

Theorem 3. System (1) with either A =1, 0 < B <1 and C =
e > 0 sufficiently small, or A = B has no real meromorphic first
integrals such that in a neighborhood U of a convenient solution -y the

fundamental group of v (at some point) can be represented by loops
in U.

In the next theorem we improve Theorem 3 by proving the absence
of C! first integrals instead of real meromorphic first integrals under
convenient assumptions.

Theorem 4. System (1) with A =1,0< B <1andC =¢ >0
sufficiently small has no a C' first integral H(z,y,z) if in a neigh-
borhood of a convenient periodic orbit . the vectors VH(z,y,z) and
(sin z4+C' cosy, Bsinz+cos z, C'siny+ B cos x) are linearly independent
at the points (x,y,z) € v.. Of course if such a local C' first integrals
do not exist, then it cannot C' first integrals.

The proof of Theorem 4 is given in Section 4. For this prove we use
in an essential way a non-trivial result of Chicone [3] on the periodic
orbits of the ABC system.

These last years the Ziglin’s and the Morales-Ramis’ theories study
the real non-meromorphic integrability of autonomous real differen-
tial systems using the monodromy group of the complex variational
equations associated to an explicit non-equilibrium orbit of the sys-
tem, see for details [11]. Both theories are in some sense inspired in
Kovalevskaya’s ideas used in the study of the first integrals of the rigid
body with one fixed point (see Arnold [2]). But Kovalevskaya’s ideas
go back to Poincaré (see [12]), who used the eigenvalues of the mon-
odromy matrix associated to a periodic orbit for studying the C'* non-
integrability of the differential system, see for more details section 4. It
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seems that this result of Poincaré was forgot by the mathematical com-
munity until that modern Russian mathematicians (especially Kozlov)
have recently publish on it, see [2, 8].

When A=1land B=C<1,or A= B =1 and C < 1 except for
at most a countable values of C, it was proved in [16] the absence of
real meromorphic first integrals for system (1). In [17] it was proved

also the absence of real meromorphic first integrals for system (1) when
A=B=C=1.

2. PrROOF OF PROPOSITION 1

To prove Proposition 1 we will use some definitions and results.
Let x = (z,y,2) and J = J(x) be a non-negative C'! function non-
identically zero on any open subset of R?, then J is a Jacobi multiplier
of the differential system (1) if

) RS /0> PR

where  is any open subset of R?® and ¢, is the flow defined by the
differential system (1). The following result is due to Jacobi, for a
proof in the general case of dimension n see [7, Theorem 2.7].

Theorem 5. Consider the differential system (1) in R3, and assume
that it admits a Jacobi multiplier J = J(x) and one first integral. Then
the system admits an additional first integral functionally independent
with the previous one, and consequently the differential system (1) is
completely integrable.

In general given a function J is not easy to verify (2) for knowing
if it is a Jacobi multiplier. However we have the following result of
Whittaker (see [13] for the general case of dimension n), which plays a
main role for detecting Jacobi multipliers.

Proposition 6. Let J = J(x) be a non-negative C function non-
identically zero on any open subset of R3. Then J is a Jacobi multi-
plier of the differential system (1) if and only if the divergence of the
differential system

&= J(x)(Asinz + Ccosy),
y=J(x)(Bsinz + Acosz),
2= J(x)(C'siny + Bcosw),

18 zero.
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Proof of Proposition 1. Since the divergence of system (1) is zero it fol-
lows from Proposition 6 that J = 1 is a Jacobi multiplier of system (1).
Therefore Theorem 5 implies that either system (1) has no C? first in-
tegrals, or if it has one C! first integral then it is completely integrable.
This completes the proof. 0

3. PROOF OF THEOREM 2

To prove Theorem 2 we need to study systems (1) with A = 0.
Case (a): B =C = 0. Then system (1) becomes © =0,y =0, 2 =0,
so statement (a) holds.

Case (b): B =10, C # 0. Now system (1) becomes & = C cosy, y = 0,
z = C'siny and statement (b) follows easily.

Case (¢): B # 0, C = 0. This case is equivalent to (b) doing the
change of variables (z,y,2) — (2,z,y) and (A, B,C) — (C, A, B).
Case (d): BC # 0. In this case system (1) becomes

z=Ccosy, y=Bsinxr, Z=Csiny+ Bcosz.

It is easy to check that this system has the analytic first integral H; =
C'siny + Bcosz. It is not difficult to check that another first integral
is

w Fulv) + 2w,

(3) Hy

Wa

where F' is the elliptic integral of first kind, and

. (\/Bcosx+B+C’+Csiny x)
u = i sinh tan — | ,

Bcosx — B+ C+ Csiny 2
(Becosx + B —C + Csiny)(Bcosz — B+ C + Csiny)
(Bcosx — B—C + Csiny)(Bcosz + B+ C + Csiny)’
2iv/2(B cosz + C'siny) cosy
V/(=Bcosz + B+ C — Csiny)(Bcosz — B+ C + Csiny)’

B B+ C+ Csi
Wy = cos(2y)+1\/ cosvh B+ &+ sy

v =

w1 =

Bcosx — B+ C+ Csiny

Note that Hs is an analytic first integral defined in a convenient open
subset U of T® such that T3\ U has zero Lebesgue measure.
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4. PROOF OF THEOREM 4

Now we will use the multipliers of a periodic orbit for studying the
C! non-integrability of the ABC system. To state the results we shall
introduce some notation.

We consider the autonomous differential system

(4) x = f(x),

where f: U — R3? is C?, U is an open subset of R?. We write its
general solution as ¢(t,xo) with ¢(0,xq) = xo € U and ¢ belonging to
its maximal interval of definition.

We say that the solution ¢(t,xg) is T-periodic with T' > 0 if and only
if o(T,x0) = %o and ¢(t,xq) # x¢ for t € (0,7). The periodic orbit
associated to the periodic solution ¢(t,x¢) is v = {é(t, %), t € [0,T]}.
The wvariational equation associated to the T-periodic solution ¢(t,xg)

1S
)
x=¢(t,X0)

' 0f(x)

5) it = (42

where M is a 3 x 3 matrix. Of course 0f(x)/0x denotes the Jacobian
matrix of f with respect to x. The monodromy matriz associated to
the T-periodic solution ¢(t,xg) is the solution M (T, xg) of (5) satisfy-
ing that M (0, %) is the identity matrix. The eigenvalues of the mon-
odromy matrix associated to the periodic solution ¢(t,xo) are called
the multipliers of the periodic orbit.

In [9] the authors proved the following result which goes back to
Poincaré (see [12]).

Theorem 7. Consider the C? differential system (4). If there is a
periodic orbit vy having only one multiplier equal to 1, then system (4)
has no C* first integrals H(x) defined in a neighborhood of v if the
vectors VH(x) and f(x) are linearly independent at the points x € ~.

Proof of Theorem /. It was proved in [3] (see Theorems 5.1 and 5.2)
that under the assumptions of Theorem 4 system (1) has a periodic
orbit 7. such that the Poincaré map at this periodic orbit has the
following two eigenvalues

)\172 =1+ \/8(27TN]?<C(]0, Zo) sec? Z) + O<€)7

where O(g) denotes the terms of order e, N > 1 is an integer num-
ber and p(zg,29) # 0 for some chosen values of (zg,z2p). Therefore
for ¢ sufficiently small we have that A\; # 1 and A2 # 1. Hence
using Theorem 7 system (1) has no C! first integrals H(z,y,z) de-
fined in a neighborhood of ~. if the vectors VH(z,y, z) and (sinz +
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Ccosy, Bsinz + cosz,C'siny + Bcosx) are linearly independent on
the points (z,y, z) € .. The proof of the theorem is completed. 0
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