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MARÍA JESÚS ÁLVAREZ1 AND ANTONI FERRAGUT2

AF wants to dedicate this paper to the memory of his father

Abstract. We present an algorithm to study the local behavior of singular points of
planar analytic vector fields having a first integral which is a quotient of analytic functions.
The algorithm is based on the blow up method. It emphasizes the curves passing through
the singular points and avoids the computation of the desingularized systems. Vector
fields having a rational first integral are a particular case.

1. Introduction

A real planar analytic vector field is a vector fields defined on R2 of the form

X(x, y) = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, (1)

where P and Q are coprime analytic functions. We refer to the vector field (1) or equiva-
lently to its associated planar analytic differential system

ẋ = P (x, y), ẏ = Q(x, y). (2)

Let m = min{mP ,mQ} be the multiplicity of the vector field (1) at the origin, where mP

and mQ are the multiplicities of P and Q at the origin, respectively.

The study of the topological behavior of the solutions of a planar differential system in
a neighborhood of a singular point is one of the main unsolved problems in the qualitative
theory of differential systems. Concerning the singular points having at least one eigenvalue
different from zero, the problem is solved except for the center-focus case. Regarding the
degenerate singular points, with both eigenvalues of the jacobian matrix at the point equal
to zero, the situation is more complicated. The topology around a non-monodromic singular
point can be much richer. The Andreev Theorem (see [3]) classifies the nilpotent singular
points (degenerate singular points whose associated jacobian matrix is not identically zero)
except the center-focus case. If the jacobian matrix is identically null the problem is open.
In this case, the only possibility is studying each degenerate point case by case. The main
technique which is used to perform the study of this kind of points is the blow up technique,
which is explained in subsection 2.2. Roughly speaking the idea behind this method is to
explode, through a change of variables that is not a diffeomorphism, the singularity to a
line or to a circle. Then the study of the original singular point can be reduced to the study
of the new singular points that appear on this line or circle and that will be, probably,
simpler. If these new singular points are again degenerate the process is repeated.

A vector field X satisfies a  Lojasiewicz inequality if there exist some k, c, δ > 0 such that
‖X(x, y)‖ ≥ c‖(x, y)‖k , for ‖(x, y)‖ < δ. Dumortier showed in [8] that, for a given singular
point of a C∞ vector field satisfying a  Lojasiewicz inequality (which includes the analytic
case), this chain of changes of variables is finite. However, the process of desingularizing a
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singular point is very long and it involves a big number of computations. There are several
generalizations of this technique that consist in doing several blow ups at the same time,
see for instance [9, 1, 2]. But although they shorten the blow up process, a previous study
of the system has to be done to apply these generalizations and consequently the study of
the point is still very tedious and long.

In this work we study the relationship between some integrability objects and the topo-
logical behavior of the singular points. Concretely we develop a simple algorithm which
allows to completely characterize the topological behavior of the orbits of an analytic system
in a neighborhood of a degenerate singular point at the origin, no matter its degeneracy,
under the assumption that a generalized rational first integral is defined. This characteri-
zation is given in terms of the curves passing through the origin and of their multiplicity.
As far as we know, this is the first work in which the first integral is applied to characterize
the local behavior of degenerate critical points. In some sense, we blow up the first integral.
As a particular case we apply the method when the system is polynomial and has a rational
first integral.

The paper is structured as follows. In section 2 we give the main definitions on analytic
functions and integrability, and we explain how the blow up technique works. In section 3
we provide some preliminary results that will be necessary for stating the algorithm, which
is presented in section 4. Finally, in section 5 we show some examples of application. One of
them considers the inverse problem of constructing differential system having a first integral
and having a given set of curves as separatrices and a given distribution of canonical regions
in a previously determined way. A natural question is afterwards raised.

2. Basic definitions and results

2.1. Analytic functions and Integrability. We first briefly introduce the notions of
formal power series and analytic functions. For more information we refer the reader to the
work of Seidenberg (see [14]), see also [15, 6]. Let

C[[x, y]] =
{
ϕ(x, y) =

∑

i,j

ϕi,jx
iyj : ϕi,j ∈ C

}

be the ring of formal power series in two variables with coefficients in C. With the usual
operations of addition and multiplication, this ring is factorial. The elements of the subring
C{x, y} of convergent power series are said to be analytic functions.

Let ϕ(x, y) ∈ C[[x, y]]\{0} be an irreducible non-unit element, i.e. ϕ(0, 0) = 0. An analytic
branch centered at (0, 0) is the equivalence class of ϕ under the equivalence relation ϕ ∼ ψ
if ϕ = νψ, where ν is a unit element, i.e. ν(0, 0) 6= 0.

A solution of a formal differential equation ẋ = P (x, y), ẏ = Q(x, y) is an analytic
branch ϕ(x, y) centered at the origin such that there exists k(x, y) ∈ C{x, y} satisfying
Pϕx +Qϕy = kϕ. k is the cofactor of ϕ.

In the following we introduce some notions of integrability. If U ⊆ R2 is an open set,
a non-constant C1 function H : U → R, eventually multi-valued, which is constant on
all the solutions of X contained in U is a first integral of X on U . Moreover we have
XH = 0 on U . The importance of the first integral is on its level sets: the existence of
such a function H determines the phase portrait of the system on U , because the level sets
H = h ∈ H(U) provide the expression of the curves laying on U . Consequently, given a
differential system (2), it is important to know whether it has a first integral.

Two analytic functions f(x, y) and g(x, y) defined on a subset U ⊂ R2 are said to be
coprime if the set of points {(x, y) ∈ U : f(x, y) = g(x, y) = 0} is isolated. We call the ratio
of two coprime analytic functions a generalized rational function. A generalized rational
function H = f/g defined on U is a first integral of system (2) if Σ = {(x, y) ∈ U : g(x, y) =
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0} is a set of integral curves of system (2) and H is a first integral on U \ Σ. Obviously,
H = f/g is a first integral of system (2) if and only if (Xf)g − (Xg)f = 0 on U .

The following theorem (see [12]) is an extension of the Poincaré Theorem (see [13]) for
generalized rational first integrals.

Theorem 1. Assume that the origin is an elementary singular point of the analytic differ-
ential system

d

dt

(
x
y

)
= A

(
x
y

)
+ · · · (3)

with eigenvalues λ1 6= 0 and λ2. Then system (3) has a generalized rational first integral
in some neighborhood of the origin if and only if one of the following conditions holds:

(i) λ1 6= 0 = λ2 and the origin is not an isolated singular point;
(ii) λ1/λ2, λ2/λ1 ∈ Q+ \ N;
(iii) λ1 = λ2 6= 0, A = diag(λ1, λ2);
(iv) λ1/λ2 ∈ N \ {1} or λ2/λ1 ∈ N \ {1} and the germ (3) is analytically equivalent to

its linear part;
(v) λ1/λ2 ∈ Q− and the germ (3) is analytically orbitally equivalent to its linear part.

From this theorem we know that if an analytic system has a generalized rational first
integral then any elementary singular point must be either a saddle, or a center or a node;
it cannot be neither a focus nor a saddle-node.

The notion of remarkable curve of a rational first integral was introduced by Poincaré
(see [13]). It is proved in [5] that there are finitely many remarkable values for a given
rational first integral. As far as we know, since Poincaré’s ones very few results have been
published about the remarkable values with the exception of these last years (see [5] and
[11]).

We next introduce the notions of remarkable values and remarkable curves for generalized
rational first integrals. We say that c ∈ C (respectively c = ∞) is a remarkable value of a
generalized rational first integral H = f/g if f + cg = fn1

1 · · · fnr
r (resp. g = fn1

1 · · · fnr
r ),

where r, ni ∈ N and fi ∈ C{x, y} are non-constant solutions of system (2), for all i ∈
{1, . . . , r}. The curves fi = 0 are called remarkable curves and the ni are their exponents.
If some exponent ni is bigger than one, then c and fi are said to be critical. Finally we
define the remarkable factor R to be the product of all the critical remarkable curves of H
powered to their corresponding exponent minus one. We note that the function R is the
greatest common divisor of g2Hx and g2Hy.

Next proposition improves a result of [11] about the relationship between the exponents
of two curves passing through an elementary singular point and its behavior.

Proposition 2. Assume that the differential system (2) has a generalized rational first
integral H = f/g. Suppose that the origin is an elementary singular point and that exactly
two branches (real or complex) of the curve fg = 0 cross it. Suppose that the two branches
correspond to irreducible solutions f1 = 0 and f2 = 0, and let n1, n2 ∈ Z \ {0} be their
respective exponents in the expression of H. Then:

(i) If n1n2 < 0 then the origin is a node.
(ii) If n1n2 > 0 and both branches are real, then it is a saddle.
(iii) If n1n2 > 0 and both branches are complex conjugate, then it is a center.

Moreover, the quotient of the eigenvalues at the origin is a positive rational multiple of
−n1/n2.

Proof. Set H =
∏p

i=1 f
ni
i and let ki be the cofactor of fi, for all i. Applying Xfi = kifi at

the origin, as fi(0, 0) 6= 0 for i > 2 and (0, 0) is a singular point of the system, one obtains
ki(0, 0) = 0 for all i > 2.
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As XH = 0, applying this expression at the origin and after straightforward computa-
tions, we have

∑p
i=1 niki(0, 0) = 0, and then n1k1(0, 0) + n2k2(0, 0) = 0. Applying similar

arguments to those of [6], both cofactors at the origin are integer multiples of the two
eigenvalues of the vector field at (0, 0), say k1(0, 0) = s1λ and k2(0, 0) = s2µ, for s1, s2 ∈ N
and λ, µ the eigenvalues. Hence

s1
s2

λ

µ
=
k1(0, 0)

k2(0, 0)
= −n2

n1
,

and therefore the proposition follows. �

2.2. The technique of the blow up. Consider the real planar analytic differential system

ẋi = P (xi, yi), ẏi = Q(xi, yi) (4)

of multiplicity m in the variables (xi, yi) and assume that the origin is a degenerate singular
point of this system. The directional blow up in the xi (resp. yi) direction is the change
of variables (xi+1, yi+1) = (xi, yi/xi) (resp. (xi+1, yi+1) = (xi/yi, yi)). This transformation
converts the origin of the (xi, yi)-plane into the line xi+1 = 0 (resp. yi+1 = 0). The
expression of system (4) after the blow up, for instance in the xi direction, is

ẋi+1 = P (xi+1, xi+1yi+1),

ẏi+1 =
Q(xi+1, xi+1yi+1) − yi+1P (xi+1, xi+1yi+1)

xi+1
,

(5)

that is always well-defined since we are assuming that the origin is a singularity.

We note that, after the blow up, xm−1
i+1 is a common factor of ẋi+1 and ẏi+1. Thus we scale

the independent variable to remove it. Along all this paper, when working with system (5)
we will assume that such a reparametrization has been done.

We reproduce in the following two well-known results (see [4]) that provide the relation-
ship between the original singular point of system (4) and the new singularities of system (5).
We recall that a characteristic direction of system (4) is a solution of the equation

Fm(xi, yi) := xiQm(xi, yi) − yi Pm(xi, yi) = 0, (6)

provided that this polynomial is not identically zero. We call Fm the characteristic poly-
nomial. If Fm 6≡ 0 and ϕt is a solution of system (4) tending to the origin in forward or
backward time, then it must do it tangent to one of the characteristic directions.

Proposition 3. Let ϕt = (xi(t), yi(t)) be a trajectory tending to the origin of system (4),
in forward or backward time. Suppose that Fm 6≡ 0. Assume that ϕt is tangent to one of
the two angle directions tan θ = v, v 6= ∞. Then the following statements hold.

(i) The two angle directions θ = arctan v (in [0, 2π)) are characteristic directions.
(ii) The point (0, v) on the (xi+1, yi+1)-plane is an isolated equilibrium point of sys-

tem (5).
(iii) The trajectory ϕt corresponds to a solution of system (5) tending to the singular

point (0, v).
(iv) Conversely, any solution of system (5) tending to the singular point (0, v) on the

(xi+1, yi+1)-plane corresponds to a solution of system (4) tending to the origin in
one of the two angle directions tan θ = v.

The conclusion of the previous proposition is that in order to study the behavior of the
solutions around the origin of system (4) it is enough to study the singular points of the
form (0, v) of system (5), that will be simpler. But, as we said before, it is possible that,
despite they are simpler, some of them are still quite complicated. If this is the case, then we
have to study these degenerate singularities by blowing them up and repeating the process.
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If Fm ≡ 0 then it is clear that there exists a homogeneous polynomial of degree m − 1
Wm−1 6≡ 0 such that Pm = xWm−1 and Qm = yWm−1. We call the directions satisfying
Wm−1 = 0 singular directions.

Proposition 4. If Fm ≡ 0 then for every non-singular direction θ there exists exactly one
semipath tending to the origin in the direction θ. If θ∗ is a singular direction, there may be
either no semipaths tending to the origin in the direction θ∗, or a finite number, or infinitely
many.

3. Preliminary results

In this section we state and prove several results that will be useful in order to show
that the algorithm that we state in section 4 works. All along this section we work with an
analytic system of type (4) and its corresponding blown up system (5) in the xi direction
(the case where the yi directional blow up is applied follows in a similar way). We assume
that system (4) has a generalized rational first integral H = f/g.

We denote by mh the multiplicity of an analytic function h at the origin. We also assume
that for every system only one directional blow up is needed. This means the following: if
we want to do the blow up for instance in the xi direction to system (4), then there is no
curve tending to the origin in this direction. This can be easily ensured by a convenient
rotation of the system.

We use the notation f , g and R also for the corresponding numerator, denominator and
remarkable factor of the blown up first integrals associated to H. In a similar way we use
Fm, and we use m to refer to the multiplicity at a considered singular point.

In the whole process of desingularization we denote the variables of the systems as (xi, yi),
i ∈ N∪{0}. We start with (x0, y0) = (x, y); the (i+1)-th blow up is xi+1 = xi, yi+1 = yi/xi,
and it goes from the i-th desingularization of the initial system (2) to the (i + 1)-th one.
The results in this section are stated for system (4).

First we remark how the integrability objects are transformed after the (i + 1)-th blow
up.

Lemma 5. If h(xi, yi) = 0 is a solution of system (4) with cofactor k, then the func-
tion h(xi+1, xi+1yi+1)/x

mh
i+1 = 0 is a solution of system (5) with k(xi+1, xi+1yi+1)/x

mk
i+1

as cofactor. Moreover the functions H(xi+1, xi+1yi+1) and xωi+1R|yi=xi+1yi+1, where ω =
|mf −mg|−1−mR, are respectively a first integral and the remarkable factor of system (5).

The proof of lemma 5 follows from straightforward computations. Obviously the results
also follow when the blow up xi = xi+1yi+1 is applied instead of yi = xi+1yi+1 .

From lemma 10 below we obtain the multiplicity of R for system (2) in terms of the
multiplicities of the system and of the curves f and g. The multiplicities of the remarkable
factors of the blown up systems can be computed using the multiplicity of R and lemma 5.
We note that we do not need the expression of R but its multiplicity, which is computable
using lemma 10.

In the case where H is a rational first integral, all the remarkable curves of H can be
computed, as there are in the literature several methods to compute them, for instance the
one concerning the extactic curves (see [7, 11]) and a new one provided in [10].

The following proposition allows to control whether the characteristic polynomial Fm of
a blown up system is identically zero without computing the differential system explicitly.
We denote by ĥ the first non-zero jet of an analytic function h.

Proposition 6. We have Fm ≡ 0 if and only if mf+cg = mg for all c ∈ C.
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Proof. Suppose that there is no s ∈ C such that f̂ + sĝ ≡ 0. Then f + cg has always the
same multiplicity and therefore (f̂ + cĝ)|yi=xi+1yi+1/x

mg

i+1 is a polynomial in yi+1 with c as
a parameter that has, varying c, infinitely many solutions. Therefore Fm = 0 has infinitely
many roots. As Fm is to be a polynomial, we have Fm ≡ 0.

On the other side, if Fm ≡ 0 then the origin is crossed by the solutions of the system with
infinitely many slopes. Suppose that there exists s ∈ C such that mf+sg 6= mg. Assume,

without loss of generality, that s = 0. Then f̂ + cg = 0 is equivalent either to ĝ = 0 or to
f̂ = 0 for all c ∈ C and therefore the number of different slopes is finite, a contradiction. �
Remark 1. If Fm 6≡ 0 then there exists s ∈ C ∪ {∞} such that mf+sg > mf+cg for all
c ∈ C ∪ {∞}, c 6= s.

3.1. The dicritical case. The case Fm ≡ 0 is called the dicritical case. We recall that
in the dicritical case we can write Pm = xWm−1 and Qm = yWm−1, where Wm−1 is a
homogeneous polynomial of degree m− 1. Moreover, the blown up system (5) has a line of
singularities, all of them semi-hyperbolic except a finite number. This finite set of singular
points is a subset of the singular points which correspond to the singular directions of
system (4), which is obtained from the equation Wm−1 = 0. Once they are known, they
can be studied separately.

The following proposition, due to Maria Alberich and AF, allows to compute the singular
directions in terms of the first integral.

Proposition 7. Let w be a homogeneous polynomial. Let e3 ∈ N ∪ {0} be the exponent of

w in the factorization of R̂. Consider the following property:

(H1) There exists c ∈ C∪{∞} such that w is a multiple factor of f̂ + cĝ with multiplicity

e1 ∈ N \ {1} and we1 ∤ gcd(f̂ , ĝ).

Then a divisor w of Wm−1 either satisfies (H1) or w| gcd(f̂ , ĝ). Conversely, let w be a

homogeneous polynomial such that either (H1) holds or w divides gcd(f̂ , ĝ) with multiplicity
e2 ∈ N. Then we|Wm−1 and we+1 ∤ Wm−1, where e = e1 − 1 + e2 − e3 if (H1) holds (here

e2 = 0 if w ∤ gcd(f̂ , ĝ)) and e = e2 − e3 otherwise.

Proof. Let Sxi := g2Hxi = fxig − fgxi and Syi := −g2Hyi = −fyig + fgyi . As H is a first

integral of system (2) we have (P,Q) = (Syi , Sxi)/R. From the equalities Ŝyi = −f̂yi ĝ+f̂ ĝyi
and Ŝxi = f̂xi ĝ − f̂ ĝxi , it is clear that gcd(f̂ , ĝ) divides Ŝxi and Ŝyi .

Now if c ∈ C∪{∞} is such that f̂ + cĝ = 0 has a multiple factor w, then both (f̂ + cĝ)xi

and (f̂ + cĝ)yi vanish on w = 0. Hence on w = 0 we have

f̂

ĝ
=
f̂yi
ĝyi

=
f̂xi

ĝxi

= −c,

and therefore w divides both Ŝxi and Ŝyi .

On the other hand, let w be a common factor of Ŝxi and Ŝyi . Then on w = 0 we have

f̂yi ĝ = f̂ ĝyi , f̂xi ĝ = f̂ ĝxi . (7)

If w divides gcd(f̂ , ĝ) with multiplicity e2 ∈ N then these equalities hold on w = 0. Moreover
we can write (7) as

f̂

ĝ
=
f̂yi
ĝyi

=
f̂xi

ĝxi

.

All the polynomials in these equalities are homogeneous and the numerators and denomi-
nators have the same degree two by two, hence all the quotients are equal to a constant,
say −c. Then there exists e1 ∈ N, e1 > e2, such that we1 |(f̂ + cĝ).

The expression of e follows from the explanation above and (P,Q) = (Syi , Sxi)/R. �
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Remark 2. Proposition 7 allows to compute the singular directions without computing the
differential system explicitly. Moreover as a consequence of the computation, we construct
the polynomial Wm−1, and hence the value of m appears naturally, as it is the degree of
Wm−1 plus one.

Proposition 8. Suppose that the origin is a dicritical singular point corresponding to a
singular direction.

(i) If m > 1 then another blow up is required.
(ii) If m = 1 then it is a star-node.

The study of the case where the origin is not dicritical is done in the next subsection.

3.2. The non-dicritical case. The dicritical case leads either to the non-dicritical one
or to a star-node, hence it remains to study the non-dicritical case. From now on in this
section we assume that Fm 6≡ 0.

If mf = mg then there exists s ∈ C ∪ {∞} such that mf+sg > mg (see remark 1). This
curve factorizes after the blow up (for instance yi = xi+1yi+1 and after removing x

mg

i+1) as a
positive power of xi+1 and another polynomial, say W. Therefore from the intersection of
the curves xi+1 = 0 and W = 0 new singular points may appear.

From now on and until the end of section 4 we assume that the curve f + sg = 0 defined
in remark 1 is in the numerator of H, that is s = 0. This transformation can be easily done
taking H + s = (f + sg)/g as first integral instead of H.

Remark 3. From lemma 5 we know that xi+1 = 0 is a remarkable curve of (5) and that
the first integral of system (5) has the same remarkable values as H and also c = 0, as we
are assuming that mf > mg.

The following proposition ensures that all the orbits that are needed in the desingular-
ization process are contained in the curves appearing in the expression of H.

Proposition 9. The whole set of characteristic directions of the differential system (4) at
the origin is obtained from the tangents at the origin of fg = 0; i.e. the set of solutions

yi/xi of the equation f̂ g = 0.

Proof. As mf > mg, f̂ + cg is equal to ĝ for all c 6= 0 and to f̂ for c = 0. Hence all the
characteristic directions of all the solutions of the system at the origin are found either in
f̂ = 0 or in ĝ = 0. �
Remark 4. By proposition 9 we can compute the singular points on xi+1 = 0 after the blow
up yi = xi+1yi+1 without computing the differential system explicitly. From proposition 2,
if the singular points are elementary then we can characterize them. Otherwise a new blow
up is required.

Next result allows to compute the multiplicity m of system (4) at the origin. We shall
see in section 4 that the knowledge of m is a key point in the application of our algorithm.

Lemma 10. We have
mf +mg −mR = m+ 1. (8)

Proof. We write P and Q in terms of f and g:

P = −fyig − fgyi
R

, Q =
fxig − fgxi

R
,

where R is the remarkable factor. We have

R(xiQ− yiP ) =

(
xi
∂f

∂xi
+ yi

∂f

∂yi

)
g −

(
xi
∂g

∂xi
+ yi

∂g

∂yi

)
f = (mf −mg)f̂ ĝ + · · ·

Therefore the lemma follows directly taking multiplicities in the equalities above, as we are
assuming Fm 6≡ 0 and mf 6= mg. �
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Remark 5. When applying a blow up to a differential system (4), by means of a change
of time we cancel a factor xm−1

i+1 appearing in both ẋi+1 and ẏi+1. If m is even then this
change of time implies a change in the orientation of the orbits contained in the half-plane
xi+1 < 0. Thus from proposition 10 in the non-dicritical case and also from proposition 7
in the dicritical case we can compute m to know if such a change of time is to be done,
altogether without computing the system explicitly.

Proposition 11. Assume that a blow up yi = xi+1yi+1 is applied to system (4). Suppose
that the origin is a singular point of system (5) with multiplicity m. Then:

(i) If m > 1 then the origin is degenerate.
(ii) If m = 1 and two branches of fg = 0 pass through the origin not transversally, then

it is nilpotent.
(iii) If m = 1 and both f = 0 and g = 0 pass through the origin transversally, then it

is a node. Moreover f + cg = 0 crosses the origin of system (4) with the slope of
g = 0, for all c ∈ C \ {0}.

(iv) If m = 1 and two branches of f = 0 pass through the origin transversally, then it is
either a saddle or a center, depending on whether the branches are real or complex,
respectively. In the saddle case these branches form the separatrices of the origin.

Proof. We prove each subcase separately.

(i) The origin of system (5) is not elementary, so a new blow up is required.
(ii) As two branches belonging to two different level sets of H meet the origin in the

same direction, the point is not hyperbolic. Thus as m = 1 and the origin cannot be
semi-hyperbolic (see theorem 1), it is nilpotent.

(iii) The singular point is a node as it is elementary and f + cg = 0 crosses it for all
c ∈ C ∪ {∞}.

(iv) The singular point is a saddle or a center as both branches belong to the same level
set c = 0 of H and they cross transversally.

�
Remark 6. We remind here a well-known result due to Seidenberg (see [14]): if a differen-
tial system has a node at the origin, then there is exactly one branch crossing the origin with
a determined slope and there are infinitely many branches crossing the origin with another
determined slope. In our case, f = 0 contains the first branch and f + cg = 0, with c 6= 0,
contain the rest of the branches.

4. The algorithm

We explain in this section how our algorithm works. First we assume that the systems
we deal with have some properties that are stated in the next subsection.

4.1. Assumptions.

(i) If Fm 6≡ 0 then we take H = f/g with mf > mg.
(ii) We suppose that only one of the directional blow ups is to be done.

We make these assumptions for all the systems appearing after the different blow ups.
We note that they are not restrictive. They are done for a better understanding of the
explanation and the process.

4.2. Statement of the algorithm. We describe each step of the algorithm.

(a) We check whether Fm 6≡ 0 and mf = mg. If this is the case, there exists s ∈ C such
that mf+sg > mg and we take f + sg as the numerator of H instead of f .

(b) If Fm 6≡ 0 then we compute the singular points on xi+1 = 0 (or yi+1 = 0, depending on

the direction of the blow up) from the curves f = 0 (after dropping the factor x
mf−mg

i+1 )
and g = 0 (see proposition 9). If Fm ≡ 0 then we follow proposition 7.
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(c) For each singular point of step (b) we compute the multiplicity m of the blown up
system at this point and check whether another blow up is required. This can be done
using propositions 11 and 7.

(d) No new desingularization is to be done for elementary singular points (meaning saddles,
nodes and centers). For the degenerate singular points a new blow up is required. In
this case we check the initial assumptions for the new system and go back to step (a).

(e) The algorithm ends as the chain of blow ups is finite.

The construction of a table is very useful to follow the desingularization process. In this
table each row corresponds to a step of the algorithm, i.e. to a blow up. Each change
of variables is written in the first column. Two columns named SPf and SPg show the
singular points that we obtain from f and g, respectively. In the dicritical case we write
the dicritical points in the cells of both SPf and SPg. Three more columns f̂ , ĝ and R̂ show
the lowest order terms of f , g and R after the singular point is moved to the origin. We
shall write a ⋆ in the cells where no new (relevant) information is to be added. See the
examples in section 5.

When the table is done all the singular points appearing from all the necessary blow ups
have been computed and studied. It is clear in the non-dicritical case that the singular
points come from the intersection of f̂ = 0 and/or ĝ = 0 with xi+1 = 0 on each step. We
can also know their behavior from the multiplicity m of the system at the points and from
f and g, as we stated in proposition 11. The dicritical case reduces to the non-dicritical
one or to a star-node from proposition 8.

4.3. Construction of the local phase portraits. Once the desingularization process
is finished, we need to go back to the initial system. We start at the last system of the
desingularization, say (xn, yn), for some n ∈ N, which corresponds to the last row of the
table. We situate on the (xn, yn)-plane all the singular points (say on xn = 0) and the
lines crossing the yn axis at these points corresponding to the curves belonging to f or g
that provide these singular points. The local behavior of the system at all these singular
points is known: they are saddles, nodes or centers. The plane is then divided into several
canonical regions and we know the behavior of the system at all of them.

Next we check if some half-plane must change the orientation (see remark 5). We also
notice that some quadrants are to be swapped (as it happens in the blow up process) in
the following way:

• If we are applying the xi directional blow up then the second quadrant of the (xi, yi)
system, {xi < 0, yi > 0}, goes to the fourth quadrant of the (xi+1, yi+1) system, as
xi+1 = xi < 0 and yi+1 = yi/xi < 0.

• If we are applying the yi directional blow up then the third quadrant of the (xi, yi)
system, {xi < 0, yi < 0}, goes to the fourth quadrant of the (xi+1, yi+1) system, as
yi+1 = yi < 0 and xi+1 = xi/yi > 0.

Now we change the variables into the previous ones in the desingularization process,
(xn−1, yn−1). The curves we drew are transformed into new curves by the change of vari-
ables; for instance, a curve yn = a + · · · , a ∈ R, writes also yn−1 = axn−1 + · · · , as
yn = yn−1/xn−1. All the singular points of the (xn, yn)-plane on xn = 0 meet now at the
origin. The shapes and situation of the canonical regions can also be modified. The axis
remain invariant if they appear in the corresponding expression of the first integral.

We repeat this procedure until we obtain the local phase portrait of the initial system
at the origin with the initial variables (x0, y0) = (x, y), and then we are finished.

Note that, in the dicritical case, all the points on xi+1 = 0 are singular, and all of them
except a finite number are semi-hyperbolic. Thus for each one of them, say (0, v), there
exists exactly one curve on the (xi, yi)-plane crossing the origin with slope v (see [4]).
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Remark 7. The algorithm we have shown allows to completely study the local behavior
around a singular point, no matter how degenerate it is, without needing to use the blow up
technique explicitly. We have presented an alternative method to this technique for planar
differential systems having a generalized rational first integral which uses the information
that is provided by some specific curves crossing the singular points, that are also computed.

5. Examples

We present in this last section some examples in order to illustrate how the algorithm
must be applied. In all cases we show the corresponding table of desingularization and a
figure with all the different phase portraits that we need to obtain the phase portrait of the
initial system.

As we said in the introduction, a particular case of analytic curves are the polynomial
ones. The first example deals with a polynomial system having a rational first integral.

Example 1. Consider the rational function H = f/g, where f(x, y) = −(x6y3 + x10 −
6x4y6 − y10 + 11x2y9 + 6x10y2 − 8y12 − 24x8y5 + 24x6y8 + 12x14y− 24x12y4 + 8x18)(x6y3 −
x10 − 6x4y6 + y10 + 13x2y9 + 6x10y2 − 8y12 − 24x8y5 + 24x6y8 + 12x14y − 24x12y4 + 8x18)
and g(x, y) = (x2y−2y4 + 2x6)6. We want to study the local behavior of the singular point
at the origin of the polynomial differential system associated to H. As f and g have both
multiplicity eighteen at the origin, we rename f + g (which has multiplicity twenty) as f .
Hence we set f(x, y) = (x10 − y10−x2y9)2. Moreover as g = 0 has a vertical tangent at the
origin, we apply the change x→ x+ 3y to both functions. Let x0 = x and y0 = y.

We construct table 1 as it was explained in section 4. Three blow ups are needed to
completely desingularize the singular point at the origin. We are using lemma 5 in each
blow up; it tells us how the blow up transformation affects objects as the first integral and
the remarkable factor. From table 1 we can study all the singular points appearing in the
whole blow up process:

(1) First blow up, x0 = x1, y0 = x1y1:
• (0, 0): as mR = 6 and mf + mg = 8 we have from lemma 10 that m = 1.

Moreover both f = 0 and g = 0 pass through this point and g = 0 does it
transversally, hence it is a node by proposition 11.

• (0,−1/2) and (0,−1/4): as mR = 2 and mf +mg = 4 we have from lemma 10
that m = 1 in both cases. Moreover only f = 0 passes through these points;
applying proposition 11 we know that they are saddles.

• (0,−1/3): as mR = 6 and mf + mg = 8 we have from lemma 10 that m = 1.
Moreover, both f = 0 and g = 0 pass through this point and g = 0 does it not
transversally, hence by proposition 11 the point is nilpotent and a new blow
up is required.

Before the second blow up we move the point (0,−1/3) to the origin. Lemma 10
and proposition 11 are applied in the sequel in the same way as in the first blow up.

(2) Second blow up, x1 = x2y2, y1 = y2:
• (0, 0): as mR = 9 and mf + mg = 12 we have m = 2, hence a new blow up is

required.
(3) Third blow up, x2 = x3y3, y2 = y3 (where we take into account that now mf < mg

and the roles of f and g are swapped):
• (0, 0): as mR = 8 and mf + mg = 10 we have m = 1. Moreover, both f = 0

and g = 0 pass through this point and f = 0 does it transversally, hence it is
a node.

• (−243/2, 0): as mR = 12 and mf + mg = 14 we have m = 1. Moreover, only
g = 0 passes through this point, hence it is a saddle.
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SPf SPg f̂ ĝ R̂

y0 = x1y1

y1 = − 1
2

y1 = − 1
4

⋆
⋆

⋆
⋆

y1 = 0
y1 = − 1

3

x21l
2
1

x21l
2
2

x21
x21

⋆
⋆
y61
x61

x1l1
x1l2
x1y

5
1

x61

y1 → y1 − 1
3

x1 = x2y2
x2 = 0 x2 = 0 x22 y42l

6
3 x2y

3
2l

5
3

x2 = x3y3
x3 = 0
⋆

⋆
x3 = − 243

2

x23
⋆

y83
y83l

6
4

x3y
7
3

y73l
5
4

Table 1. Application of the algorithm in example 1. The li = 0 are straight
lines crossing the corresponding singular point with neither horizontal nor vertical
tangency. In particular l3 = 2x2+243y2 provides the singular point at x3 = −243/2
of the (x3, y3)-system. The expressions of the other straight lines are irrelevant for
the presentation of the algorithm; as they are neither horizontal nor vertical they
provide an elementary singular point when crossing the straight line xi+1 = 0 or
yi+1 = 0, depending on the blow up.

Now the desingularization process is done. Next we explain how to get the phase portrait
of the initial system to end the process.

(1) After the third blow up we obtain two singular points on the (x3, y3)-plane coming
from the intersection of y3 = 0 and the curves x3 = 0 and x3 = −243/2 + O(y3).

(2) Back to the (x2, y2)-plane we study the origin. The canonical regions of the (x3, y3)-
system are modified and we have swapped the third and fourth quadrants of the
(x3, y3)-plane. The curve y2 = 0 remains invariant, and the others become x2 = 0
and x2 = −243y2/2 + O(y22).

(3) Back to the (x1, y1)-plane and after swapping again the third and fourth quadrants,
y2 = 0 disappears as solution, x2 = 0 becomes x1 = 0 and x2 = −243y2/2 + O(y22)
becomes x1 = −243y21/2 + O(y31). After this update we undo the change y1 →
y1− 1/3 and the singular point is now at y1 = −1/3. There are three more singular
points, as table 1 shows.

(4) Back to the initial system on the (x0, y0)-plane and after swapping the second and
third quadrants, x1 = 0 disappears as solution and only some branches of f = 0
and g = 0 remain as separatrices. f = 0 provides an elliptic sector and g = 0 a
hyperbolic sector.

A diagram of the whole process is shown in figure 1.

�

Next example deals with an analytic system having a generalized rational first integral.

Example 2. Let

f(x, y) = 3y4 + x2y3 − 2x3y2 + 3x5y − x4y2 + 2x7 − 2x5y2 + xy6 +

3x4y4 + y9 + x12y8 + · · · ,
g(x, y) = x2 − 2y2 + x2y − 3x3y + xy3 + 5x5 − 4x3y2 + y5 + · · · ,

where the dots mean higher order terms, be two analytic functions and let H = f/g.
Consider the analytic differential system associated to H. We apply our algorithm in order
to study the local behavior around the singular point at the origin of this system. We
construct table 2, from which we study all the singular points appearing in the whole blow
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(x3, y3) (x2, y2)

(x1, y1) (x0, y0)

1 + 2

1 + 2

4 + 5

4 + 5

10 + 11

9 + 12

g = 0

f = 0

g = 0

g = 0 f = 0

g = 0

f = 0

f = 012 11

10 9

8

8

7

7

6

6

6

6
5

5

4
4

3

3

3
3

2
2

1

1

Figure 1. The desingularization of example 1. The numbers indicate the canon-
ical regions of the systems to show how they change during the desingularization
process. In each system the biggest point represents the origin.

up process. As mf = 4, mg = 2 and m = 5, we have mR = 0 from proposition 10. Therefore
R = 1. After the first blow up y0 = x1y1 the remarkable factor is x1.

(1) First blow up, x0 = x1, y0 = x1y1:
• (0, 0): as mR = 1 and mf + mg = 5 we have m = 3, hence a new blow up is

required.
• (0,

√
2/2) and (0,−

√
2/2): as mR = 1 and mf +mg = 3 we have m = 1 in both

cases. Moreover, both f = 0 and g = 0 pass through these points and g = 0
does it transversally, hence they are nodes.

(2) Second blow up, x1 = x2y2, y1 = y2:
• (0, 0): as mR = 5 and mf + mg = 8 we have m = 2, hence a new blow up is

required.
• (1/2, 0) and (−2, 0): as mR = 4 and mf + mg = 6 we have m = 1 in both

cases. Moreover, only f = 0 passes through these points; they are saddles.
(3) Third blow up, x2 = x3y3, y2 = y3:

• (0, 0): as mR = 8 and mf + mg = 10 we have m = 1. Moreover, only f = 0
passes through this point; it is a saddle.

• (3/2, 0): as mR = 7 and mf + mg = 9 we have m = 1. Moreover, only f = 0
passes through this point; it is a saddle.

A diagram of the whole process is shown in figure 2. In particular there are two elliptic
sectors near the original singular point, see the phase portrait of the (x0, y0) system in figure
2. Note that quadrants II and III swap in the last desingularization step, and moreover
one of the two nodes appearing in the (x1, y1) system is an attractor and the other one is



LOCAL BEHAVIOR OF ANALYTIC VECTOR FIELDS 13

SPf SPg f̂ ĝ R̂

y0 = x1y1

y1 = 0
⋆
⋆

⋆

y1 = −
√
2
2

y1 =
√
2
2

x31l1l2
x21
x21

⋆
l3
l3

x1
x1
x1

x1 = x2y2

x2 = 0

x2 = 1
2

x2 = −2

⋆
⋆
⋆

x22y
5
2l4

y52l5
y52l6

⋆
⋆
⋆

x2y
4
2

y42
y42

x2 = x3y3
x3 = 0

x3 = 3
2

⋆
⋆

x23y
8
3

y83l7

⋆
⋆

x3y
7
3

y73

Table 2. Application of the algorithm in example 2. The li = 0 are straight
lines crossing the corresponding singular point with neither horizontal nor vertical
tangency. In particular l1 = 2x1−y1, l2 = x1+2y1, l3 = x1−4y1 and l4 = 2x2−3y2.
The expressions of the other straight lines are not relevant.

a repeller. When shrinking the straight line x1 = 0 to get the initial system (x0, y0) there
are orbits close to x0 = 0 in the third quadrant approaching (resp. leaving) the origin and
orbits in the fourth quadrant leaving (resp. approaching) the origin. Hence the sector is to
be elliptic. The same happens with the first and second quadrants.

Something similar happens with regions 7–10, but as all of them are hyperbolic the
resulting sectors remain hyperbolic.

(x3, y3) (x2, y2)

(x1, y1) (x0, y0)

7 + 9
8 + 10

12 + 14

11 + 13

g = 0

f = 0

f = 0

f = 0

f = 0
g = 0g = 0

f = 0

f = 0

g = 0

11

10

9 8

7

6

66

5

55

4

44

3

3

3

2

2

2

1

11

12

1314

Figure 2. The desingularization of example 2.

�

The following example appears in [4]. It deals with the dicritical case.
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Example 3. Let f(x, y) = y2 + (x+ y)4 and g(x, y) = (x+ y)2 be two polynomials and let
H = f/g. Consider the polynomial system associated to H. The polynomials f and g have
the same multiplicity at the origin, but there is no s ∈ C such that mf+sg > mg, hence we
are in the dicritical case.

It is clear that gcd(f̂ , ĝ) = 1. On the other hand, f̂ + cg has the multiple factors y2 for

c = 0 and (x+ y)2 for c = ∞. Moreover R̂ = 2(x + y). Thus from proposition 7 we obtain
Wm−1 = W1 = y. From this computation we know that the differential system associated
to H has multiplicity m = 2.

We construct as usual a table of desingularization. Only one blow up is to be done in
order to completely know the behavior of the singular point at the origin of the initial
system. After the blow up x = x0 = x1, y = y0 = x1y1, the multiplicity at the origin is
m = 1. Only f = 0, which is formed by two complex curves, crosses the origin. We have
a center. The desingularization process is finished. Figure 3 shows how we get the phase
portrait of the initial system.

SPf SPg f̂ ĝ R̂

Fm ≡ 0 (0, 0) y20 (x0 + y0)2 x0 + y0

y0 = x1y1 y1 = 0 ⋆ x21 + y21 ⋆ 1

Table 3. Application of the algorithm in example 3.

(x1, y1) (x0, y0)

Figure 3. The desingularization of example 3.

�
To end this section we consider the following problem: given a finite set of analytic curves

crossing the origin, f1 = 0, . . . , fp = 0, we want to construct a planar differential system
having a generalized rational first integral and having these curves as solutions. Moreover
we want to be able to fix a priori the behavior (elliptic, hyperbolic or parabolic) of the
canonical regions defined by the curves when they meet at the origin.

To get this differential system we need to choose convenient integers n1, . . . , np and to
build a function H =

∏p
i=1 f

ni
i in such a way that the desired behavior between each pair

of curves is obtained. We illustrate this idea with an example.

Example 4. Consider the algebraic curves f1(x, y) = y2−x3 = 0, f2(x, y) = −x+y−2xy2 =
0, f3(x, y) = y3 + x5 = 0 and f4(x, y) = 3x2 + y3 − 4x3y4 = 0. We want to construct a
system having a rational first integral such that these four curves determine a local behavior
around the origin as in figure 4. We note that the singular point is not dicritical. From
the figure we know that f2 and f4 must be in a different level set than f1 and f3 (see the
parabolic sectors), therefore we take H = f/g = (fn1

1 fn3
3 )/(fn2

2 fn4
4 ), with ni ∈ N. We
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choose these numerator and denominator because the separatrices of the hyperbolic sectors
must belong to the same level set, while those of a parabolic sector must belong to different
level sets.

f2 = 0

f1 = 0

f3 = 0

f1 = 0

f4 = 0f4 = 0

f2 = 0

f3 = 0

Figure 4. The local behavior around the origin of the differential system in ex-
ample 4.

The polynomial differential system having this function as (rational) first integral has
multiplicity 7 at the origin no matter the values of the ni ∈ N. In order to begin the
application of our algorithm, first of all we do the change of variables x→ x+y, y → x−2y,
as there are curves approaching the origin tangent to both axis. Let n0 := mf − mg =
2n1 − n2 + 3n3 − 2n4 ∈ Z. We take n0 6= 0 as the singular point is not dicritical. We
construct table 4 as usual.

From the construction of table 4 we can study all the singular points appearing in the
whole blow up process:

SPf SPg f̂ ĝ

y0 = x1y1

y1 = 1
2

⋆
⋆

⋆
y1 = −1
y1 = 0

xn0+n1+2n3
1

xn0

1

xn0
1

⋆
xn4
1

yn2
1

y1 → y1 − 1
x1 = x2y2

x2 = 0 x2 = 0 xn0
2 yn0−n4

2 ln4
1

x2 = x3y3
x3 = 0
⋆

⋆

x3 = − 1
9

xn0

3 y2n0−2n4

3

y2n0−2n4
3

⋆
ln4
2

y1 → y1 + 1
2

x1 = x̄2ȳ2
x̄2 = 0 ⋆ x̄⋆2ȳ

⋆
2 l

n1
3 ⋆

x̄2 → x̄2 + ȳ2
ȳ2 = x̄3ȳ3

ȳ3 = 0
ȳ3 = −1

ȳ3 = 27
5

⋆
⋆
⋆

x̄⋆3ȳ
⋆
3 l

n3
4

x̄⋆3ȳ
⋆
3

x̄⋆3l
n1
5

⋆
⋆
⋆

x̄3 = x̄4ȳ4
ȳ4 = 0

ȳ4 = 256
243

⋆
⋆

x̄⋆4ȳ
⋆
4

ȳ⋆4l
n3
6

⋆
⋆

Table 4. Application of the algorithm in example 4. The li = 0 are straight
lines crossing the corresponding singular point with neither horizontal nor vertical
tangency. In particular l1 = 9x2 + y2, l3 = 27x̄2 − 32ȳ2 and l4 = 243x̄3 − 256ȳ3.
The powers of the factors of ĝ marked with a ⋆ are not relevant for the explanation.
The polynomial R̂ in the first row is xn0+n1+2n3−3

1 ; in the other cases it can be

obtained directly from the factors of f̂ and ĝ powered to their respective exponent
minus one.
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1

7 + 9 + 13
14 + 15

16

3 + 5

4 + 11 + 12 8 + 10

2 + 6

(x̄4, ȳ4)

(x̄3, ȳ3)

(x̄2, ȳ2)

(x3, y3)

(x2, y2)

(x1, y1)

(x0, y0)

f2 = 0

f1 = 0

f3 = 0

f1 = 0

f4 = 0f4 = 0

f2 = 0

f3 = 0

14

14

13

13

13

12

12

11

11

10

9 8

7

6

6

6

5

5

5

4

4

4

4

3

3

3

2

2

2

1

1

1

1

15

15

16

16

16

7 + 9

7 + 9

8 + 10

8 + 10
3 + 5

11 + 12

14 + 15

2 + 6

Figure 5. The desingularization of example 4.

(1) First blow up, x0 = x1, y0 = x1y1. As we want the singular point (0, 0) in the
(x1, y1)-plane to be a node in order to obtain an elliptic sector in region 16 (see
figure 5), we take n0 > 0.

• (0, 1/2): as m = 2, a new blow up is required.
• (0,−1): as m = 1, both f = 0 and g = 0 pass through this point not transver-

sally (because n0 > 0), a new blow up is required.
• (0, 0): as m = 1, both f = 0 and g = 0 pass through this point and g = 0 does

it transversally (because n0 > 0), it is a node.
The second and third blow ups concern the point (0,−1). We move this point to
the origin of the (x1, y1)-plane.

(2) Second blow up, x1 = x2y2, y1 = y2.
• (0, 0): as m = 2, a new blow up is required.

(3) Third blow up, x2 = x3y3, y2 = y3. Because of the configuration that we want to
obtain we must take mf > mg. This implies that we must take 2n0 > n4.

• (0, 0): m = 1 and only f = 0 passes through this point; it is a saddle.
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• (−1/9, 0): as m = 1, both f = 0 and g = 0 pass through this point and g = 0
does it transversally, it is a node.

The rest of blow ups concern the point (0, 1/2) in the (x1, y1)-plane. We move this
point to the origin.

(4) Fourth blow up, x1 = x̄2ȳ2, y1 = ȳ2:
• (0, 0): as m = 2, a new blow up is required.

Before the next blow up, and as there are curves with vertical and horizontal tan-
gent, we do the change of variable x̄2 → x̄2 + ȳ2.

(5) Fifth blow up, x̄2 = x̄3, ȳ2 = x̄3ȳ3:
• (0, 0): as m = 2, a new blow up is required.
• (0,−1) and (0, 27/5): in both cases m = 1 and only f = 0 passes through these

points; they are both saddles.
(6) Sixth blow up, x̄3 = x̄4ȳ4, ȳ3 = ȳ4:

• (0, 0) and (256/243, 0): m = 1 and only f = 0 passes through these points;
they are both saddles.

Now the desingularization process is done. To obtain the phase portrait of the initial
system we must undo the changes of variables. As a conclusion, in order to ensure that we
obtain the desired configuration, we must take 2n0 > n4. A rational first integral is the
function H = (f21 f

4
3 )/(f2f

4
4 ). �

From example 4 a natural question arises:

Open question. Given a finite set of analytic curves crossing the origin and a local
topological configuration around this point, is it possible to find an analytic system having
a generalized rational first integral and having a singular point at the origin with the given
local topological behavior?
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