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TOPOLOGICAL ENTROPY AND PERIODS OF GRAPH MAPS

JAUME LLIBRE AND RADU SAGHIN

Abstract. We give a complete description of the set of periods of continuous
self-maps on graphs which have zero topological entropy and all their branching

points are fixed. As a corollary we get a criterion for positive topological

entropy for continuous self-maps on graphs. We also prove that the results are
optimal.

1. Introduction

If a function f is a self-map on some space M , then one of the simplest dynamical
invariants one would like to describe is the set of periodic points. A point x ∈ M
is periodic if there exists n ∈ N such that fn(x) = x, and the smallest n with this
property is called the (least) period of x. The set of periods of f is

Per(f) = {n ∈ N : n is the period of some periodic point x of f}.
This set is well understood in the case of continuous maps on some simple spaces

like the interval ([9]), circle ([1] for example), ’Y’ ([2]), n-odd ([3]), trees with
branching points fixed ([4]). However if the space becomes more complicated, or
higher dimensional, it is very difficult to describe the set of periods for a general
map, so one usually has to add some restrictions.

If M is a metric space and f is continuous, then one can define the topological
entropy of f , or simply the entropy of f , denoted h(f), as an invariant measuring the
complexity of the orbits of f (see [7] for example). The presence of positive entropy
implies chaotic behavior, so one would like to understand when this happens.

A graph is a union of vertexes - points - and edges, which are homeomorphic
to the cloesed interval, and have mutually disjoint interiors. The endpoints of the
edges are vertexes (not necessarily different). An endpoint of a graph is a vertex
which is the endpoint of only one edge. A branching point is a vertex which is the
endpoint of at least three edges (if an edge has both endpoints at that vertex, we
count the edge twice). An ending edge is an edge which contains an endpoint of
the graph. A path in the graph G is the image of a continuous map from [0, 1]
to G. If the endpoints coincide, and the path is not homotopic to a point, then
it is called a cycle. A tree is a graph which does not contain any cycle. One can
put a metric on any graph, first on the edges from the homeomorphism with the
interval, then on the entire graph, by taking the length of the shortest path between
any two points. The simplest examples of graphs are the interval (one edge, two
endpoints), the circle (one edge, one vertex), the n-odd (one branching point, n
edges, n endpoints). A continuous map from a graph to itself is called a graph map.
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For continuous one-dimensional maps, the knowledge of the set Per(f) gives
direct information on the topological entropy of f , and vice versa. In the case of
the interval, positive entropy is equivalent to existence of periodic orbits with least
period not a power of two (and equivalently infinitely many of them). For trees,
if there is a periodic orbit with the period having the greatest odd divisor greater
then some bound depending on the graph, then the topological entropy is positive
([5]).

If the graph contains cycles, then bounds on the greatest odd divisors of periods
are irrelevant for entropy, in their place we have to look at the number of different
greatest odd divisors. For example, the rotation by 1/n on the circle has periodic
points of least period n, and zero entropy. For the circle, if the rotation interval
(see [1] for example) has nonempty interior, then the entropy is positive. In fact, if
there exist two least periods with different greatest odd divisors, then the entropy is
positive. For general graphs, if the number of greatest odd divisors of the numbers
in Per(f) is big enough, then again the entropy must be positive. There are bounds
depending on the graph given in [6] and [8], but they are very big, and in general
not optimal. Also it is known that if the entropy is positive, then there are infinitely
many periodic points (actually infinitely many greatest odd divisors).

We will consider the case when the graph G contain at least one branching point
(the cases of the interval and the circle are well understood), and the continuous
self-map f on the graph G preserves the branching points and has zero entropy.
The assumption that all the branching points are fixed is quite restrictive, but it
allows us to give sharp bounds for the greatest odd divisors of the periods (and not
only their number) for any graph, which are much smaller than the ones in [6] and
[8]. First, we prove that the periods must have a specific form.

Theorem 1.1. Let G be a graph with v vertexes, s edges and e endpoints, at least
one branching point, and f a continuous map from G to itself such that all the
branching points are fixed and the topological entropy of f is zero. Then for any
periodic point p of f , there exist integers 1 ≤ k ≤ e + 2s − 2v + 2, k is odd, and
l ≥ 0, such that the least period of p is equal to k2l.

We also give a complete description of the possible set of periods of such a
self-map f .

Theorem 1.2. Let G be a graph with v vertexes, s edges and e endpoints, at least
one branching point, and f a continuous map from G to itself such that all the
branching points are fixed and the topological entropy of f is zero. Then there exist
integers 1 ≤ k1 < k2 < · · · < kr ≤ e+ 2s− 2v + 2 and l1, l2, . . . , lr ∈ N ∪ {∞} such
that the periods of f are

Per(f) = {1} ∪ {ki2l : 1 ≤ i ≤ r, 0 ≤ l < li}.
Finally, we prove that the result of Theorem 1.2 is sharp.

Proposition 1.3. Let G be a connected graph with v vertexes, s edges and e end-
points. Given any sequence of integers 1 ≤ k1 < k2 < · · · < kr ≤ e + 2s − 2v + 2,
and any l1, l2, . . . , lr ∈ N ∪ {∞}, there exist a continuous map f from G to itself
such that the branching points of G are fixed, the topological entropy of f is zero,
and the set of periods of f is

Per(f) = {1} ∪ {ki2l : 1 ≤ i ≤ r, 0 ≤ l < li}.
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As a simple corollary we get the following result.

Corollary 1.4. Let f be a continuous map on a graph G with e endpoints, s edges,
v vertexes and at least one branching point, which keeps the branching points fixed.
Then the topological entropy of f is positive if and only if there exist a periodic orbit
of period n, where the greatest odd divisor of n is strictly greater than e+2s−2v+2.

We remark that in the above results one may assume that the vertexes of G
are only branching points and endpoints, otherwise one can just replace G with
another graph with these properties, which is homeomorphic to G. Also the results
are the same if we make the extra assumption that the endpoints are also fixed.
If the graph is not connected, the assumption that the branching points are fixed
implies that the map preserves the connected components, and one can study just
the restriction of the map to these components, so we can also assume that the
graph is connected, even if this condition is necessary only in Theorem 1.3. The
results remain true in the case of the interval, and in the case of the circle if we
assume that the vertex is fixed.

In Section 2 we give a description on how the points from a periodic orbit for a
map with the required properties are situated on the edges of the graph. In Section
3 we give a bound for the greatest odd divisor of such a period, and complete the
proofs of Theorems 1.1 and 1.2. In Section 4 we prove Theorem 1.3.

2. Periodic Points and Edges

In this section we will describe how the points from a periodic orbit of a graph
map with zero entropy and the branching points fixed must be situated on the
edges. First we will make some preliminary definitions and remarks.

Let p be a periodic point of period n and let P = {p, f(p), . . . , fn−1(p)} be the
orbit of p. Let B be the set of branching points of G. We call an interval the image
of an embedding i : [0, 1]→ G, with the endpoints i(0) and i(1). If x ∈ B and a ∈ P
then we say that any interval with the endpoints x and a is a branched interval (if
we want to specify that the branching point is x, we will call it x-branched).

We say that the interval A covers the interval B, and we write A→ B, if there
exist i > 0 and an interval C ⊂ A such that f i(C) = B ( if we want to specify i we
say that A i-covers B). This is a transitive relation, if A (i) covers B, and B (j)
covers C, then A (i+ j) covers C. A sequence on intervals A1, A2, . . . , Ak+1 = A1

is called a loop if Ai → Ai+1 for all 1 ≤ i ≤ k. Two loops starting from the same
interval, A1 → A2 → . . . → Ak → A1 and B1 = A1 → B2 → . . . → Bl → B1, are
called essentially different, if there exist 1 < i ≤ k, 1 < j ≤ l, and m > 0, such that
Ai and Bj have disjoint interiors, A1 m-covers Ai, and B1 m-covers Bj .

The following is a well-known result, which is one of the main tools in the study
of the entropy of one-dimensional maps (see [1] for example).

Lemma 2.1. If a continuous map f from a graph G to itself has two essentially
different loops starting from the same interval, then the topological entropy of f is
strictly positive.

In order to simplify the notations, from now on we assume that the only vertexes
of G are the branching points and the endpoints. If S is a finite set, then |S| denotes
its cardinal. The main result of this section is the following.
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Proposition 2.2. Let f be a continuous self-map of the graph G, which has zero
entropy and the branching points fixed. Let P be a periodic orbit of f with period
n. Then there exist integers l > 0 and k ≥ 0 such that n = l2k, and for each edge
E ⊂ G we have exactly one of the following three possibilities:

• E ∩ P = ∅ (there are no points from the periodic orbit on E);
• |E ∩ P | = 2k, and for any i > 0, there exists an edge Ei, such that f i(E ∩
P ) ⊂ Ei (there are 2k points from the periodic orbit on E, and they always
stay on the same edge when we iterate them);
• E ∩ P = P 1

E ∪ P 2
E , |P 1

E | = |P 2
E | = 2k, P 1

E and P 2
E are disjoint, included

in two disjoint intervals, and for every i > 0, there exist edges E1
i and E2

i ,
such that f i(P 1

E) ⊂ E1
i and f i(P 2

E) ⊂ E2
i (there are two disjoint subintervals

in E, each one containing 2k points from the periodic orbit, and the points
from each one of these two subintervals always stay on the same edges when
we iterate them).

Furthermore, an ending edge cannot be of the third type.

Before proving Proposition 2.2 we need several lemmas.

Lemma 2.3. Let f be a continuous self-map on the graph G, with the branching
points fixed, P a periodic orbit, E an edge between a branching point and an end-
point, and assume that a, b ∈ P ∩ E. If there exist i > 0 such that f i(a) and f i(b)
belong to different edges, then h(f) > 0.

Proof. Let x be the branching point bounding E, and assume that the order inside
E is x − a − b. Let A be the interval with endpoints x and b. Because f i(a)
and f i(b) are on different edges, f i(A) must contain two branched intervals with
disjoint interiors, A1 = [z1, f

i(a)] and A2 = [z2, f
i(b)]. There exist j, k ≥ 0 such

that f i+j(a) = b and f i+k(b) = b. This implies that both A1 and A2 will cover A,
so there are two essentially different loops starting from A, and hence, by Lemma
2.1, h(f) > 0. �

Lemma 2.4. Let f be a continuous self-map on the graph G,with the branching
points fixed, P a periodic orbit, E an edge between two branching points, and assume
that a, b, c ∈ P ∩ E are in this order inside an edge E. If there exist i, j > 0 such
that f i(a) and f i(b) are on different edges, and f j(b) and f j(c) are also on different
edges, then h(f) > 0.

Proof. Let x and y be the branching points bounding E, and assume we have the
order x− a− b− c− y. Let A be the interval between a and b inside E, and B the
interval between b and c. Then f i(A) will be a path from f i(a) to f i(b). Because
f i(a) and f i(b) are in different edges, this path must contain two branched intervals
with disjoint interiors A1 = [f i(a), z1] and A2 = [f i(b), z2], so A→ A1 and A→ A2

(z1 and z2 are branching points, not necessarily different). There exists j ≥ 0 such
that f i+j(a) = b, so f j(A2) is a path from z1 to b, so it has to contain either A or
B. The same argument shows that A2 also has to cover either A or B. In the same
way we can prove that B covers two intervals with disjoint interiors B1 and B2, and
each one of these two intervals has to cover either A or B. It is an easy exercise to
show that this would imply the existence of two essentially different loops starting
from A or B, and hence strictly positive entropy. �
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Lemma 2.5. Let f be a continuous self-map on the graph G, E an edge in G
with the endpoints fixed, and P a periodic orbit for f inside E, with period m. If
h(f) = 0 then m must be a power of two.

Proof. Let a and b be the endpoints of E. Let S1 = R/Z, and i : [0, 1) → E be
a continuous function homeomorphic to E \ {b}. Using the standard identification
of S1 with [0, 1), we will also denote by i the map from S1 to E, which may have
an one-sided discontinuity at 0. Let p : G → S1 be the continuous map given by
p(x) = i−1(x) if x ∈ E \{b}, and p(x) = 0 otherwise. Let g : S1 → S1 be defined by
g = p◦f ◦i. Since a and b are fixed by f , it is easy to see that g is a continuous map
of the circle, and f is semi-conjugated to g by p. Since h(f) = 0, we have h(g) = 0
too. The point 0 is fixed for g, and p(P ) is a periodic orbit of g of period m. For
continuous maps of the circle is well known that if the topological entropy is zero,
then every period must be of the type l2k for some unique l (see [1] for example).
In our case l must be one, so m must be a power of two. �

Now we will give the proof of Proposition 2.2.

Proof of Proposition 2.2. Let E be an edge, which contains m′ > 0 points of the
periodic orbit P . Let P ∩ E = PE . Then by Lemmas 2.3 and 2.4, we have two
possibilities.
Case 1. The points in PE never separate under the iterates of f , meaning that
f i(PE) is contained in the same edge for any i ≥ 0. Assume that there exist
0 ≤ i1 < i2 < i3 < n and an edge E′ such that f is(PE) = P s

E′ ⊂ E′, for 1 ≤ s ≤ 3.
We have that fn−is(P s

E′) = PE and fn−is(P r
E′) is inside an edge different from E,

for 1 ≤ s, r ≤ 3, s 6= r. If we choose xs ∈ f is(PE), 1 ≤ s ≤ 3, we can assume
that they are in this order in E′, and it is easy to see that fn−i1(x1) ∈ E, while
fn−i1(x2) /∈ E, and fn−i2(x2) ∈ E, while fn−i2(x3) /∈ E. This contradicts Lemma
2.4.

This means that for any edge E′, there are at most two indexes 0 < i, j < n such
that f i(PE), f j(PE) ⊂ E′ and f i(PE)∩ f j(PE) = ∅. As a consequence on any edge
there can be zero, m = m′ or 2m points from P . The other claims follow easily.
Case 2. The points in PE separate exactly once under the iterates of f , meaning
that there exist 0 < i < n such that PE = P 1

E ∪ P 2
E and f i(P 1

E) and f i(P 2
E) are

on different edges. Because of Lemma 2.4, P 1
E and P 2

E must be inside two disjoint
subintervals of E, and the points inside them will never separate again under the
iterates of f . There exist 0 < i1, i2 < n such that f i1(P 1

E) ⊂ P 2
E and f i2(P 2

E) ⊂ P 1
E ,

so |P 1
E | = |P 2

E | = m = m′/2. Like in the previous case we obtain that any edge can
contain zero, m or 2m points from P , and the other claims follow.

The fact that an ending edge can contain at most m points follows from Lemma
2.3. The fact that m = 2k for some k ≥ 0 follows from Lemma 2.5 applied to an
edge containing points of P and f l, where l = n/m. �

3. Periodic points and sub-trees

In this section we will give a bound for the l which appears in the formula n = l2k

of the statement of Proposition 2.2. We start with a simple lemma concerning
intervals covering each other for maps with zero entropy.

Lemma 3.1. Let F be a finite family of intervals with mutually disjoint interiors
inside the graph G, and f a continuous self-map on G with zero entropy. Then
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there exists an interval A in F such that any iterate of A will cover at most one of
the intervals from F .

Proof. Assume the claim is not true, for any interval in F , some iterate of it covers
two intervals with disjoint interiors in F . Let A1 ∈ F . Then there exist different
B1, C1 ∈ F such that A1 → B1 and A1 → C1. If both B1 and C1 cover A1,
then there exist two essentially different loops starting from A1, and hence positive
entropy, which is a contradiction. This implies that at least one of the intervals B1

and C1 does not cover A1, we denote this interval by A2. Clearly A2 is different
from A1. Repeating the argument, we can find a new interval A3 ∈ F such that
A2 → A3 and A3 does not cover A2. in this way we can construct an infinite
sequence of different intervals in F , A1 → A2 → A3 → . . . , which contradicts the
fact that F is finite. �

We say that the graph G′ is a subgraph of G if G′ ⊂ G (set inclusion). We also
have the following result concerning the endpoints of G′.

Lemma 3.2. Let G be a connected graph with e endpoints, v vertexes and s edges,
and G′ a connected subgraph of G. Then the number of endpoints of G′ is smaller
or equal than e+ 2s− 2v + 2.

Proof. By eventually removing some edges between branching points in G′, without
changing the number of endpoints, we can assume that G′ is a connected tree. Given
a loop L ⊂ G (a closed path in G which is not homotopic to a point), there exists a
point x1 ∈ L\G′, because otherwise G′ would contain a loop and it would not be a
tree. Because G′ is closed, there exists a small open interval I1 around x1 contained
in L \G′, and eventually taking a subinterval, we may assume I1 is strictly inside
an edge of G. Let G1 = G \ I1, be the subgraph of G, containing G′, and having
e + 2 endpoints, s + 1 edges and v + 2 vertexes. We can construct inductively in
this way subgraphs Gi of G, containing G′, with e+ 2i endpoints, s+ i edges and
v + 2i vertexes, as long as there are still loops available, until we obtain a tree T .
This happens when the number of edges minus the number of vertexes is −1, or
s+ i− v− 2i = −1, or i = s− v+ 1. Consequently T will contain G′ and will have
e + 2s − 2v + 2 endpoints, which means that the number of endpoints of G′ must
be at most e+ 2s− 2v + 2. �
Proposition 3.3. Let f,G, P, n, l, k be as in Proposition 2.2. Then l ≤ e + 2s −
2v + 2.

Proof. Let F be a family of intervals with mutually disjoint interiors in G defined
in the following way. If E in an ending edge which contains points from P , x is the
branching point bounding E, and a is the point in E ∩ P which is the closest to
x, then we take the interval [a, x]. If E is an edge between the branching points
x and y, containing points from P , and a and b are the points from E ∩ P which
are closest to x and y respectively, then we take the intervals [a, x] and [b, y]. The
collection of all the intervals obtained in this way will be the family

F = {[ai, xi], ai ∈ P, xi is a branching point, 0 ≤ i ≤ l′ − 1}.
.

It is possible to have ai = aj or xi = xj for some different indexes i and j. We
can express l and l′ in the following way. Let ε be the number of ending edges
containing m = 2k points of P , β1 the number of edges between branching points
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containing m points of P , and β2 the number of edges between branching points
containing 2m points of P . Then l = ε+β1+2β2 and l′ = ε+2β1+2β2. The family
F satisfies the hypothesis of Lemma 3.1, so there exists an interval [a0, x0] ∈ F such
that fni([a0, x0]), which is a path from x0 to fni(a0) = ai, covers at most (actually
exactly) one interval from F , for every i ≥ 0. This implies that there exists a
path γi in G which is homotopic to fni([a0, x0]), with endpoints x0 and ai, which
contains either the interval [xi, ai] or [xj , ai] (where xj is the other branching point
bounding the edge containing ai; does not exist for ending edges), and is disjoint
from the interior of any other interval from F .

Let G′ be the union of [a0, x0] and the paths γi, so it is a connected subgraph of
G. We remark that x0 cannot be an endpoint of G′, otherwise some γi will contain
both [a0, x0] and a branched interval with an endpoint ai, which contradicts the
choice of [a0, x0] (we assume that m ≥ 2, otherwise the conclusion of the proposition
is obviously true). This means that candidates for the endpoints of G′ are ai, for
0 ≤ i ≤ l′ − 1.

Unfortunately in general the number of endpoints of G′ may be smaller than l′

and even l, so we will have to construct another subgraph G′′, which will have at
least l endpoints. This will be done by replacing each path γi by another one, γ′i,
in the following way.

If [ai, xi] is an interval in an ending edge, and i 6= 0, then ai must be an ending
point of G′. In this case we let γ′i = γi.

Now suppose that [xi, xj ] is an edge between branching points, containing the
two intervals [ai, xi] and [aj , xj ] from F . If ai = aj , then m = 1 and the edge
[xi, xj ] contains only one point from P (ai). In this case γi coincides with γj and
ai is an endpoint of G′. In this case again we let γ′i = γi. If ai 6= aj then we have
three possibilities. If γi ∩ γj ∩ (xi, xj) = ∅, then both ai and aj are endpoints of
G′. In this case we let γ′i = γi and γ′j = γj . If γi ∩ γj ∩ (xi, xj) = [ai, aj ], then we
replace γi by γ′i = γi \ [ai, aj), and γj by γ′j = γj \ (ai, aj ] (in this way we create two
endpoints for the new subgraph). If γi∩γj ∩ (xi, xj) = (xi, ai] (or (xj , aj ]), then G′

has one endpoint in (xi, xj), which is aj (or ai). In this case we let again γ′i = γi
and γ′j = γj . This situation cannot happen if [xi, xj ] contains 2m points from
P . This is because [a0, x0] will cover [ai, aj ], and in turn some iterate of this will
contain two branched intervals with disjoint interiors (because they separate), and
these branched intervals will eventually cover back [a0, x0], creating two essentially
different loops from [a0, x0], which would be a contradiction.

Let G′′ = ∪l′−1i=1 γ
′
i ∪ [a0, x0]. From the construction it is easy to see that every

edge of G containing m points from P will also contain at least one endpoint of G′′,
and every edge of G containing 2m points from P will also contain two endpoints
of G′′, so the number of endpoints of G′′ is greater or equal than l. Then Lemma
3.2 implies that l ≤ e+ 2s− 2v + 2. �

Now we can give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Apply directly Propositions 2.2 and 3.3. �

Proof of Theorem 1.2. Apply Propositions 2.2 and 3.3, and the following lemma,
which is a refinement of Lemma 2.5.

Lemma 3.4. Let f be a continuous self-map on the graph G, E an edge in G
with the endpoints fixed, and P a periodic orbit for f inside E, with period 2k. If
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h(f) = 0 then E contains also periodic points of f with least periods all the divisors
of 2k.

Proof. Let g be the map on the circle constructed in Lemma 2.5, then any period
of g is also a period of f . Let g̃ be the lift of g to R which keeps 0 fixed. Suppose
that g̃n([0, 1]) is not contained in [−2, 2], then g̃n([0, 1]) must contain either [−2, 0]
or [0, 2], so the interval [0, 1] will eventually cover itself twice by g, which is a
contradiction because the entropy of g must be zero. A similar argument shows
that 2k must be a period for g̃ also.

So ∪∞n=0g̃
n([0, 1]) = I ⊂ [−2, 2] must be a bounded interval, invariant under g̃.

Because 2k is a period for g̃, Sharkowski order for periods of maps on R implies that
every divisor of 2k must also be a period for g̃, and consequently also for g and f
(we remark here that a similar argument can be used to reduce the last statement
of Lemma 2.5, on periodic points of maps on circle with zero entropy, to the case
of interval maps). �

�

4. Maps on graphs with prescribed periods

In this section we will prove Proposition 1.3. In the case of the interval and the
circle it is well-known, so we will assume again that there is at least one branching
point.

Proof of Theorem 1.3. Step 1. It is enough to construct the map f on a connected
tree T with e′ = e+ 2s− 2v+ 2 endpoints, obtained from G by removing s− v+ 1
small open intervals inside some edges, with the additional assumption that the
endpoints are fixed. From the map on T we can recover the map on G by making
it the identity on the removed intervals. The property of having zero entropy is
preserved by this transformation, and so are the periodic points, except some extra
fixed points for G.

Step 2. It is enough to construct the map f on the tree T with periodic points
of periods ki, 1 ≤ i ≤ r. In order to construct from this a map with periodic orbits
of periods 2lki, for 1 ≤ l < li, one has to ’blow up’ each periodic orbit of period
ki into a periodic interval, and choose the return map to the interval (fki) to have
exactly the periods 2l, 1 ≤ l < li, and with zero entropy (see [1] for example).
Again the property of having zero entropy is preserved by this transformation.

Step 3. The construction of f on the tree T with zero entropy and a periodic
point of period k < e′.

Let [xi, yi] be the ending edges of T , with the endpoints yi, for 1 ≤ i ≤ e′. We
consider the standard metric d on T , such that every edge has length 1, and the
distance between two points is the length of the shortest path between them (the
’taxicab’ metric). Choose k points ai ∈ (xi, yi), 1 ≤ i ≤ k, such that d(ai, xi) =
d(ai, yi) = 1/2. On each edge between branching points, and on the ending edges
[xi, yi] for i > k, we let f be the identity. On each edge [xi, yi], 1 ≤ i ≤ k, we
define f such that f(xi) = xi, f(yi) = yi, f(ai) = ai+1 (with the convention that
k+ 1 = 1), f maps [ai, yi] to the shortest path between yi and ai+1, expanding the
metric by a constant factor ci > 2 (ci is greater than 2 because the length of [ai, yi]
is 1/2, while the length of the path between yi and ai+1 is greater than 1), and f
maps [ai, xi] to the shortest path between xi and ai+1, expanding the metric by a
constant factor di ≥ 1 (di can be 1 if xi = xi+1).
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From construction f has many fixed points, and a periodic orbit with period k.
We will prove that f has no other periods. We have to analyze if there are other
periodic points inside (xi, yi) for 1 ≤ i ≤ k, because all the other points are fixed.

Suppose x ∈ (ai, yi). Because f |[ai,yi] is expanding by a factor d > 2, there
must be an iterate of x which is outside (ai, yi), and from the construction of f ,
all the higher iterates of x will never return to (ai, yi). Consequently x cannot be
a periodic point for f .

Suppose x ∈ (ai, xi). Without loss of generality we can assume that i = 1.
Then f(x) can be either on edges between branching points, in which case further
iterates are fixed, or in (a2, x2). Repeating the argument, we conclude that fk(x) is
either on edges between branching points, in which case further iterates are fixed,
or it is also in (a1, x1), in which case we also have f j(x) ∈ (aj , xj). Then from
the construction we have that fk|[a1,x] expends the metric by a constant factor
d = d1d2 . . . dk. If d = 1 then x is a fixed point, so we do not get any new period
for f . If d > 1 then there is again an iterate fn(x) which must be on some edge
between branching points, so further iterates are fixed, and x cannot be a periodic
point for f .

We see that the set of periods for f is {1, k}, so from [8] for example, we get
that the entropy of f must be zero, because the set of periods is finite (one can also
prove that the non-wandering set consists of fixed points and the periodic orbit of
period k, so the entropy must be zero).

Step 4. The induction.
We will finish the proof using induction on the number of periods. How to

construct a map on the tree T with a periodic orbit of a given period is explained
in Step 3. We assume that we have a map g on the tree T with the periods
1, k1, k2, . . . , kj , and we will construct another map f on the tree T with the periods
k1, k2, . . . , kj , kj+1. Assume we have again a metric on T such that every edge has
length one. Let [xi, y, i] be the ending edges of T , and yi the ending points, for
1 ≤ i ≤ e′. We extend the ending edges by adding to each edge [xi, yi] a new
interval [yi, zi] of length one, and thus we obtain a new tree T ′ ⊃ T , homeomorphic
with T , with ending points zi.

We construct the map f on T ′ in the following way. On T we let f = g, and
on [yi, zi], kj+1 ≤ i ≤ e′, we let f equal to the identity. Choose ai ∈ (yi, zi) such
that d(ai, yi) = d(ai, zi) = 1/2, 1 ≤ i ≤ kj+1. Let f(zi) = zi and f(ai) = ai+1,
for 1 ≤ i ≤ kj+1, with the convention that kj+1 + 1 = 1. On each interval [ai, yi]
and [ai, zi], define f such that the image is the shortest path between ai+1 and y1,
respectively ai+1 and zi, and the metric is expanded by some constant factor greater
that one on each interval. Thus we created a periodic orbit of least period kj+1

for f , and arguments similar as in Step 3 imply that every point in (yi, zi) \ {ai},
1 ≤ i ≤ kj+1, after a finite number of iterates will land in T , so they cannot be
periodic points. This implies that the only periods of f are 1, k1, k2, . . . , kj , kj+1,
and because of this the topological entropy of f is zero.

To construct the map on T , just use a homeomorphism from T ′ to T which maps
the intervals [xi, zi] to [xi, yi] and keeps all the other edges fixed. �
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