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Abstract. We provide sufficient conditions for the existence of periodic so-

lutions of the fourth-order differential equation

u′′′′ + qu′′ − u = εF (u, u′, u′′, u′′′),

where q and ε are real parameters, ε is small and F is a nonlinear function.

1. Introduction and statement of the main results

The objective of this paper is to study the periodic solutions of the fourth-order
differential equation

(1) u′′′′ + qu′′ − u = εF (u, u′, u′′, u′′′),

where q and ε are real parameters, ε is small and F is a nonlinear function. The
prime denotes derivative with respect to an independent variable l.

Equations of the form (1) appear in many contexts, we only mention some of
them in what follows. For instance, Champneys [8] analyzes a class of equations
(1) looking mainly for homoclinic orbits.

When F = ±u2 equation (1) can come from the description of the travelling–
wave solutions of the Korteweg–de Vries equation with an additional fifth-order
dispersive term. This equation has been used to describe chains of coupled nonlinear
oscillators [19] and most notably gravity–capillary shallow water waves [3, 13, 22].
Extended fifth–order Korteweg–de Vries equations have been considered in [6, 9,
10, 15, 16, 18].

Other derivation of (1) with F = ±u2 appears in describing the displacement u of
a compressed strut with bending softness resting on a nonlinear elastic foundation
with dimensionless restoring force proportional to u − u2 [11, 12].

Another nonlinearity is F = ±u3, then equation (1) is called the Extended
Fischer–Kolmogorov equation or the Swift-Hohenberg equation. Equation (1) with
this nonlinearity appears when we study travelling–wave solutions of the nonlinear
Schrödinger equation with an additional fourth–order dispersion term [5, 14] and
in other places, see for instance the book [20] and [2, 7].

We recall that a simple zero r∗
0 of a real function F(r0) is defined by F(r∗

0) = 0
and (dF/dr0)(r

∗
0) ̸= 0.

Our main result on the periodic solutions of the fourth-order differential equation
(1) is the following one.
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Theorem 1. For every positive simple zero r∗
0 of the function

F(r0) =
1

2π

∫ 2π

0

√
2 cos θ√

q +
√

q2 + 4
F (A, B, C, D) dθ,

where

A =

(
q −

√
q2 + 4

)√
q +

√
q2 + 4 r0 sin θ

2
√

2
√

q2 + 4
,

B = − r0 cos θ√
q2 + 4

,

C =

√
q +

√
q2 + 4 r0 sin θ

√
2
√

q2 + 4
,

D =
1

2

(
q√

q2 + 4
+ 1

)
r0 cos θ,

the differential equation (1) has a periodic solution u(l, ε) tending to the periodic
solution

(2) u0(l) = −
√

2 r∗
0√

q2 + 4
√

q +
√

q2 + 4
sin



√

q +
√

q2 + 4

2
l


 ,

of u′′′′ + qu′′ − u = 0 when ε → 0.

Theorem 1 is proved in section 3. Its proof is based in the averaging theory for
computing periodic orbits, see section 2.

Three easy applications of Theorem 1 are given in the following two corollaries.
They are proved in section 4.

Corollary 2. If F (u, u′, u′′, u′′′) = u′ − (u′)3, then the differential equation (1) has
a periodic solution u(l, ε) tending to the periodic solution

u0(l) = − 2
√

2√
3(q +

√
q2 + 4)

sin



√

q +
√

q2 + 4

2
l


 ,

of u′′′′ + qu′′ − u = 0 when ε → 0.

Corollary 3. If F (u, u′, u′′, u′′′) = sin u′, then for every positive integer m there
exists an ε0 > 0 such that for all ε ∈ (0, ε0) the differential equation (1) has at least
m periodic solutions.

Corollary 4. If F (u, u′, u′′, u′′′) = u′′′ − (u′′′)3, then the differential equation (1)
has a periodic solution u(l, ε) tending to the periodic solution

u0(l) = − 4

√
3
√

q +
√

q2 + 4

√
q
(
q +

√
q2 + 4

)
+ 2

sin



√

q +
√

q2 + 4

2
l


 ,

of u′′′′ + qu′′ − u = 0 when ε → 0.
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We denote by gu(u) the derivative of the function g(u) with respect to the vari-
able u. Then we get the following result also proved in section 4.

Corollary 5. Let g(u) be a C2 function. If F (u, u′, u′′, u′′′) = gu(u), then the
function F(r0) of the statement of Theorem 1 is identically zero.

2. Basic results on averaging theory

In this section we present the basic result from the averaging theory that we
shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from differ-
ential systems of the form

(3) ẋ(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 : R × Ω → Rn and
F2 : R × Ω × (−ε0, ε0) → Rn are C2 functions, T–periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

(4) ẋ(t) = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of the system (4) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along a periodic solution x(t, z, 0) as

(5) ẏ = DxF0(t,x(t, z, 0))y.

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (5), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k
coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

We assume that there exists a k–dimensional submanifold Z of Ω filled with
T–periodic solutions of (4). Then an answer to the problem of bifurcation of T–
periodic solutions from the periodic solutions contained in Z for system (3) is given
in the following result.

Theorem 6. Let V be an open and bounded subset of Rk, and let β : Cl(V ) → Rn−k

be a C2 function. We assume that

(i) Z = {zα = (α, β(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the solu-
tion x(t, zα) of (4) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (5) such that the
matrix M−1

zα
(0)−M−1

zα
(T ) has in the upper right corner the k× (n−k) zero

matrix, and in the lower right corner a (n − k) × (n − k) matrix ∆α with
det(∆α) ̸= 0.

We consider the function F : Cl(V ) → Rk

(6) F(α) = ξ

(
1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) ̸= 0, then there is a
T–periodic solution φ(t, ε) of system (3) such that φ(0, ε) → za as ε → 0.

Theorem 6 goes back to Malkin [17] and Roseau [21], for a shorter proof see [4].

Theorem 6 will be used in the next section for proving our Theorem 1.
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3. Proof of Theorem 1

Introducing the variables (x, y, z, v) = (u, u′, u′′, u′′′) we write the fourth–order
differential equation (1) as a first–order differential system defined in an open subset
Ω of R4. Thus we have the differential system

(7)

x′ = y,
y′ = z,
z′ = v,
v′ = x − qz + εF (x, y, z, v).

Of course as before the dot denotes derivative with respect to the independent
variable l. System (7) with ε = 0 will be called the unperturbed system, otherwise
we have the perturbed system. The unperturbed system has a unique singular point,
the origin with eigenvalues

±

√
q +

√
q2 + 4

2
i, ±

√√
q2 + 4 − q

2
.

We shall write system (7) in such a way that the linear part at the origin will be
in its real Jordan normal form. Then, doing the change of variables (x, y, z, v) →
(X, Y, Z, V ) given by




X
Y
Z
V


 =




0
q −

√
q2 + 4

2
0 1

−
√

2

q +
√

q2 + 4
0

√
q +

√
q2 + 4

2
0

√
2√

q2 + 4 − q

q −
√

q2 + 4

2

√√
q2 + 4 − q

2
1

−
√

2√
q2 + 4 − q

q −
√

q2 + 4

2
−

√√
q2 + 4 − q

2
1







x
y
z
v


 ,

the differential system (7) becomes

(8)

X ′ = −

√
q +

√
q2 + 4

2
Y + εG(X, Y, Z, V ),

Y ′ =

√
q +

√
q2 + 4

2
X,

Z ′ =

√√
q2 + 4 − q

2
Z + εG(X, Y, Z, V ),

V ′ = −

√√
q2 + 4 − q

2
V + εG(X,Y, Z, V ),
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where G(X, Y, Z, V ) = F (A,B, C, D) with

A =
1

4
√

2(q2 + 4)

[√
q2 + 4

(√√
q2 + 4 − q (Z − V ) − 2

√
q +

√
q2 + 4 Y

)

+q

(
2
√

q +
√

q2 + 4 Y +
√√

q2 + 4 − q (Z − V )

)]
,

B =
1

2
√

q2 + 4
(−2X + Z + V ),

C =
1

2
√

2(q2 + 4)

(
2
√

q +
√

q2 + 4 Y +
√√

q2 + 4 − q (Z − V )

)
,

D =
1

4
√

q2 + 4

(√
q2 + 4 (V + 2X + Z) − q(V − 2X + Z)

)
,

Note that the linear part of the differential system (8) at the origin is in its real
normal form of Jordan.

Now we pass from the cartesian variables (X, Y, Z, V ) to the cylindrical ones
(r, θ, Z, Y ) of R4, where X = r cos θ and Y = r sin θ. In these new variables the
differential system (8) can be written as

(9)

r′ = ε cos θ H(r, θ, Z, V ),

θ′ =

√
q +

√
q2 + 4

2
− ε

sin θ

r
H(r, θ, Z, V ),

Z ′ =

√√
q2 + 4 − q

2
Z + εH(r, θ, Z, V ),

V ′ = −

√√
q2 + 4 − q

2
V + εH(r, θ, Z, V ),

where H(r, θ, Z, V ) = F (a, b, c, d) with

a =
1

4
√

2(q2 + 4)

[
2
(
q −

√
q2 + 4

)√
q +

√
q2 + 4 r sin θ

−
√√

q2 + 4 − q
(
q +

√
q2 + 4

)
(V − Z)

]
,

b =
1

2
√

q2 + 4
(Z + V − 2 r cos θ) ,

c =
1

2
√

2(q2 + 4)

(√√
q2 + 4 − q (Z − V ) + 2

√
q +

√
q2 + 4 r sin θ

)
,

d =
1

4
√

q2 + 4

(√
q2 + 4(Z + V + 2 r cos θ) − q(Z + V − 2 r cos θ)

)
.
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Now we change the independent variable from l to θ, and denoting the derivative
with respect to θ by a dot the differential system (9) becomes
(10)

ṙ = ε

√
2

q +
√

q2 + 4
cos θ H + O(ε2),

Ż =

√√
q2 + 4 − q

q +
√

q2 + 4
Z

+ε

√
2

(
(q +

√
q2 + 4)r +

√√
q2 + 4 − q

√
q +

√
q2 + 4Z sin θ

)

(
q +

√
q2 + 4

)3/2

r

H + O(ε2),

V̇ = −
√√

q2 + 4 − q

q +
√

q2 + 4
V

+ε

√
2

(
(q +

√
q2 + 4)r −

√√
q2 + 4 − q

√
q +

√
q2 + 4V sin θ

)

(
q +

√
q2 + 4

)3/2

r

H + O(ε2),

where H = H(r, θ, Z, V ).

We shall apply Theorem 6 to the differential system (10). We note that system
(10) can be written as system (3) taking

x =




r
Z
V


 , t = θ, F0(t,x) =




0
√√

q2 + 4 − q

q +
√

q2 + 4
Z

−
√√

q2 + 4 − q

q +
√

q2 + 4
V




,

and

F1(t,x) =




√
2

q +
√

q2 + 4
cos θ H

√
2

(
(q +

√
q2 + 4)r +

√√
q2 + 4 − q

√
q +

√
q2 + 4Z sin θ

)

(
q +

√
q2 + 4

)3/2

r

H

√
2

(
(q +

√
q2 + 4)r −

√√
q2 + 4 − q

√
q +

√
q2 + 4V sin θ

)

(
q +

√
q2 + 4

)3/2

r

H




.

We shall study the periodic solutions of system (4) in our case, i.e. the periodic
solutions of the unperturbed system (10). Clearly these periodic solutions are

(r(θ), Z(θ), V (θ)) = (r0, 0, 0),
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for any r0 > 0; i.e. are all the circles of the plane Z = V = 0 of system (9). Of
course all these periodic solutions in the coordinates (r, Z, V ) have period 2π in the
variable θ.

We shall describe the different elements which appear in the statement of The-
orem 6 in the particular case of the differential system (10). Thus we have that
k = 1 and n = 3. Let r1 > 0 be arbitrarily small and let r2 > 0 be arbitrarily
large. Then we take the open bounded subset V of R as V = (r1, r2), α = r0 and
β : [r1, r2] → R2 defined as β(r0) = (0, 0). The set Z is

Z = {zα = (r0, 0, 0), r0 ∈ [r1, r2]} .

Clearly for each zα ∈ Z we can consider that the solution x(t) = zα = (r0, 0, 0) is
2π–periodic.

Computing the fundamental matrix Mzα(t) of the linear differential system (5)
associated to the 2π–periodic solution zα = (r0, 0, 0) such that Mzα(0) be the
identity of R3, we get

M(t) = Mzα
(t) =




1 0 0

0 e

√√√√√

√
q2 + 4 − q

q +
√

q2 + 4
θ

0

0 0 e

−

√√√√√

√
q2 + 4 − q

q +
√

q2 + 4
θ




.

Note that the matrix Mzα(t) does not depend of the particular periodic orbit zα.
Since the matrix

M−1(0) − M−1(2π) =




0 0 0

0 1 − e

−

√√√√√

√
q2 + 4 − q

q +
√

q2 + 4
2π

0

0 0 1 − e

√√√√√

√
q2 + 4 − q

q +
√

q2 + 4
2π




,

satisfies the assumptions of statement (ii) of Theorem 6 we can apply it to system
(10).

Now ξ : R3 → R is ξ(r, Z, V ) = r. We calculate the function

F(r0) = F(α) = ξ

(
1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
,

=
1

2π

∫ 2π

0

√
2 cos θ√

q +
√

q2 + 4
F (A, B, C, D) dθ,

where the expression of A, B, C and D are the ones given in the statement of
Theorem 1. Then, by Theorem 6 we have that for every simple zero r∗

0 ∈ [r1, r2] of
the function F(r0) we have a periodic solution (r, Z, V )(θ, ε) of system (10) such
that

(r, Z, V )(θ, ε) → (r∗
0 , 0, 0) as ε → 0.
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Going back through the changes of coordinates we get a periodic solution (r, θ, Z, V )(l, ε)
of system (9) such that

(r, θ, Z, V )(l, ε) →


r∗

0 ,

√
q +

√
q2 + 4

2
l, 0, 0


 as ε → 0.

Consequently we obtain a periodic solution (X, Y, Z, V )(l, ε) of system (8) such that

(X, Y, Z, V )(l, ε) →


r∗

0 cos



√

q +
√

q2 + 4

2
l


 , r∗

0 sin



√

q +
√

q2 + 4

2
l


 , 0, 0




as ε → 0. Therefore, since

x =
1

4
√

2(q2 + 4)

(√
q2 + 4

(√√
q2 + 4 − q(Z − V ) − 2

√
q +

√
q2 + 4Y

)

+q

(
2
√

q +
√

q2 + 4 Y +
√√

q2 + 4 − q(Z − V )

))
,

we have a periodic solution (x, y, z, v)(l, ε) of system (7) such that

x(l, ε) → −
√

2 r∗
0√

q2 + 4
√

q +
√

q2 + 4
sin



√

q +
√

q2 + 4

2
l




as ε → 0. Of course, it is easy to check that the previous expression provides
a periodic solution of the linear differential equation u′′′′ + qu′′ − u = 0. Hence
Theorem 1 is proved.

4. Proof of the three corollaries

Proof of Corollary 2. If F (u, u′, u′′, u′′′) = u′ − (u′)3, then the function F(r0) of
the statement of Theorem 1 is

F(r0) = −
r0

(
q2 + 4 − 3r2

0

4

)

√
2 (q2 + 4)

3/2
√

q +
√

q2 + 4
.

From this expression and (2) the corollary follows easily. �

Proof of Corollary 3. If F (u, u′, u′′, u′′′) = sin u′, it is not difficult to show that

F(r0) = −

√
2 J1

(
r0√

q2 + 4

)

√
q +

√
q2 + 4

,

where J1 is the Bessel function of first kind. This function has infinitely many
simple zeros which tends to be equidistant when r0 → ∞, see for more details [1].
Hence the corollary is proved. �
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Proof of Corollary 4. If F (u, u′, u′′, u′′′) = u′′′ − (u′′′)3, then the function F(r0) of
the statement of Theorem 1 is

F(r0) = −

√
q +

√
q2 + 4 r0

((
3r2

0 − 8
)
q2 + 3

√
q2 + 4r2

0q + 6r2
0 − 32

)

16
√

2 (q2 + 4)
3/2

.

From this expression and (2) the corollary follows easily. �
Proof of Corollary 5. If F (u, u′, u′′, u′′′) = gu(u), then we have that

√
2 cos θ√

q +
√

q2 + 4
F (A, B, C,D) =

√
2 cos θ√

q +
√

q2 + 4
g′




(
q −

√
q2 + 4

)√
q +

√
q2 + 4r0 sin θ

2
√

2
√

q2 + 4


 .

Since the primitive of this function is

− 2
√

q2 + 4

π
(√

q2 + 4 − q
)(

q +
√

q2 + 4
)

r0

g




(
q −

√
q2 + 4

)√
q +

√
q2 + 4r0 sin θ

2
√

2
√

q2 + 4


 .

We get that F(r0) = 0. �
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