
C1 SELF–MAPS ON Sn, Sn × Sm, CPn AND HPn

WITH ALL THEIR PERIODIC ORBITS HYPERBOLIC
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Abstract. We study in its homological class the periodic structure of the C1

self–maps on the manifolds Sn (the n–dimensional sphere), Sn × Sm (the prod-
uct space of the n–dimensional with the m–dimensional spheres), CPn (the n–
dimensional complex projective space) and HPn (the n–dimensional quaternion
projective space), having all their periodic orbits hyperbolic.

1. Introduction and statement of the main results

Let M be topological space and f : M → M be a continuous map. A point x
is called fixed if f(x) = x, and periodic of period k if fk(x) = x and f i(x) 6= x if
0 ≤ i < k. By Per(f) we denote the set of periods of all the periodic points of f .

If x ∈ M the set {x, f(x), f2(x), . . . , fn(x), . . .} is called the orbit of the periodic
point x. Here fn means the composition of n times f with itself. To study the
dynamics of the map f is to study all the different kind of orbits of f . Of course if
x is a periodic point of f of period k, then its orbit is {x, f(x), f2(x), . . . , fk−1(x)},
and it is called a periodic orbit.

In this paper we study the periodic dynamics of C1 self–maps f defined on a
given compact manifold M without boundary. Often the periodic orbits play an
important role in the general dynamics of a map, for studying them we can use
topological information. Perhaps the best known example in this direction are the
results contained in the seminal paper entitle Period three implies chaos for continuous
self–maps on the interval, see [11].

For continuous self–maps on compact manifolds one of the most useful tools for
proving the existence of fixed points and in general of periodic points, is the Lefschetz
Fixed Point Theorem and its improvements, see for instance [1, 2, 3, 4, 6, 8, 10, 13, 14].
The Lefschetz zeta function Zf (t) simplifies the study of the periodic points of f . This
is a generating function for the Lefschetz numbers of all iterates of f , see section 2 for
a precise definition and results about it. There we also define the minimal Lefschetz
set of periods, denoted by MPerL(f).

Let f be a C1 map defined on a compact manifold M without boundary. Recall
that if f(x) = x and the Jacobian matrix of f at x, Df(x), has all its eigenvalues
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disjoint from the unit circle, then x is called a hyperbolic fixed point. Moreover if y is
a periodic point of period p, then y is a hyperbolic periodic point if y is a hyperbolic
fixed point of fp. If the points of a periodic orbit are hyperbolic we say that the
periodic orbit is hyperbolic. Of course if a point of a periodic orbit is hyperbolic, then
all the points of the orbit are hyperbolic.

In this work we put our attention on the periodic dynamics of the C1 self–maps
having all their periodic orbits hyperbolic, and such that they are defined on the
compact manifolds without boundary Sn, Sn × Sm, CPn and HPn. Moreover if such
maps have finitely many periodic orbits, then we say that they are of finite type. For
precise definitions see section 2.

We summarize our results in the following four theorems.

Theorem 1. For n ≥ 1 let f be a C1 self-map defined on Sn of degree D with all its
periodic orbits hyperbolic. Then the following statement hold.

(a) If D /∈ {−1, 0, 1}, then f has infinitely many periodic orbits.
(b) If either D = −1 and n odd, or D = 0, or D = 1 and n even, then 1 ∈ Per(f).

Moreover if f is of finite type, then MPerL(f) = {1}.
(c) If D = −1 and n even, then {1, 2} ∩ Per(f) 6= ∅. Moreover if f is of finite

type, then MPerL(f) = ∅.
(d) If D = 1, n odd and f is of finite type, then MPerL(f) = ∅.
Theorem 1 is proved in section 3. As we shall see in its proof its statements (b)

and (c) also hold for continuous self–maps on Sn.
Let P (t)/Q(t) be a rational function, we say that it is irreducible if the greatest

common divisor of the polynomials P (t) and Q(t) in the ring of all polynomials with
complex coefficients is 1.

Theorem 2. For n ≥ 1 let f be a C1 self-map defined on Sn × Sn of degree D with

all its periodic orbits hyperbolic, let
(

a b
c d

)
be the induced linear map on n–th

dimensional homological space of Sn × Sn with rational coefficients. We define the
polynomial p(t) = 1− (a+ d)t+ (ad− bc)t2. Then the following statement hold.

(a) If n is even and, either D /∈ {−1, 0, 1}, or D ∈ {−1, 0, 1} and p(t) /∈ {1, 1 ±
t, (1± t)2, 1± t2}, then f has infinitely many periodic orbits.

(b) If n is odd and some factor of the numerator or of the denominator of the
irreducible rational function p(t)/((1 − t)(1 − Dt)) is different from 1, 1 ± t
and 1 + t2, then f has infinitely many periodic orbits.

(c) Assume that n is even and p(t) ∈ {1, 1± t, (1± t)2, 1± t2}. If D = −1 then
1 ∈ Per(f) if p(t) 6= 1. Moreover if f is of finite type

MPerL(f) =
{

{1} p(t) ∈ {1± t, (1± t)2},
∅ otherwise.

If D = 0 then 1 ∈ Per(f) if p(t) /∈ {1 + t, 1 + t2}. Moreover if f is of finite
type

MPerL(f) =
{

{1} p(t) 6= 1 + t,
∅ otherwise.

If D = 1 then 1 ∈ Per(f) if p(t) 6= (1 + t)2. Moreover if f is of finite type

MPerL(f) =
{

{1} p(t) 6= (1 + t)2,
∅ otherwise.
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(d) Suppose that n odd and all the factors of the numerator and of the denomina-
tor of the irreducible rational function p(t)/((1− t)(1−Dt)) are of the form
1, 1± t and 1 + t2. If D = −1 then 1 ∈ Per(f) if p(t) 6= 1. Moreover if f is
of finite type

MPerL(f) =
{

{1} p(t) ∈ {1± t, (1± t)2},
∅ otherwise.

If D = 0 then 1 ∈ Per(f) if p(t) /∈ {1 − t, 1 − t2}. Moreover if f is of finite
type

MPerL(f) =
{

{1} p(t) 6= 1− t,
∅ otherwise.

If D = 1 then 1 ∈ Per(f) if p(t) 6= (1− t)2. Moreover if f is of finite type

MPerL(f) =
{

{1} p(t) 6= (1− t)2,
∅ otherwise.

Theorem 3. For n 6= m let f be a C1 self-map defined on Sn × Sm of degree D with
all its periodic orbits hyperbolic, and let (a) and (b) be the induced linear maps on its
homological spaces of dimension n and m with coefficients in Q, respectively. Then
the following statement hold.

(a) If n and m are even and {a, b,D} 6⊂ {−1, 0, 1}, then f has infinitely many
periodic orbits.

(b) If n and m are odd, and some factor of the numerator or of the denominator
of the irreducible rational function (1−at)(1−bt)/((1−t)(1−Dt)) is different
from 1 and 1± t, then f has infinitely many periodic orbits.

(c) If n is even and m is odd, and some factor of the numerator or of the denom-
inator of the irreducible rational function (1− bt)(1−Dt)/((1− t)(1− at)) is
different from 1 and 1± t, then f has infinitely many periodic orbits.

(d) If n is odd and m is even, and some factor of the numerator or of the denom-
inator of the irreducible rational function (1− at)(1−Dt)/((1− t)(1− bt)) is
different from 1 and 1± t, then f has infinitely many periodic orbits.

(e) Assume that n and m are even and {a, b,D} ⊂ {−1, 0, 1}. Then 1 ∈ Per(f)
if 1 + a+ b+D 6= 0. Moreover if f is of finite type

MPerL(f) =
{

{1} if 1 + a+ b+D 6= 0,
∅ otherwise.

(f) Assume that n and m are odd, and all the factors of the numerator and of the
denominator of the irreducible rational function Zf (t) = (1−at)(1−bt)/((1−
t)(1−Dt)) are 1 or 1± t. Then 1 ∈ Per(f) if 1 +D 6= a+ b. Moreover if f
is of finite type

MPerL(f) =
{

{1} if Zf (t) 6= 1,
∅ otherwise.

(g) Assume that n is even and m is odd, and all the factors of the numerator and
of the denominator of the irreducible rational function Zf (t) = (1 − bt)(1 −
Dt)/((1−t)(1−at)) are 1 or 1±t. Then 1 ∈ Per(f) if 1+a 6= b+b. Moreover
if f is of finite type

MPerL(f) =
{

{1} if Zf (t) 6= 1,
∅ otherwise.
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(h) Assume that n is odd and m is even, and all the factors of the numerator and
of the denominator of the irreducible rational function Zf (t) = (1 − at)(1 −
Dt)/((1−t)(1−bt)) are 1 or 1±t. Then 1 ∈ Per(f) if 1+b 6= a+D. Moreover
if f is of finite type

MPerL(f) =
{

{1} if Zf (t) 6= 1,
∅ otherwise.

Theorems 2 and 3 are proved in section 4.

Theorem 4. For n ≥ 1 let f be a C1 self-map defined on either CPn or HPn with
generator a ∈ Z and all its periodic orbits hyperbolic. Then the following statement
hold.

(a) If a /∈ {−1, 0, 1}, then f has infinitely many periodic orbits.
(b) Assume that a ∈ {−1, 0, 1}. Then 1 ∈ Per(f) except perhaps if a = −1 and n

is odd. Moreover if f is of finite type

MPerL(f) =
{

∅ if a = −1 and n is odd,
{1} otherwise.

Theorem 4 is proved in section 5.
In fact our results are in some sense inspired in the seminal paper in this direction

of Franks [7] where he studied similar problems for C1 maps on the circle, the 2–
dimensional sphere and the 2–dimensional disk.

2. Frank’s Theorem

Probably the main contribution of the Lefschetz’s work in 1920’s was to link the
homology class of a given map with an earlier work on the indices of Brouwer on the
continuous self–maps on compact manifolds. These two notions provide equivalent
definitions for the Lefschetz numbers, and from their comparison, can be obtained
information about the existence of fixed points.

Let M be an n–dimensional manifold. We denote by Hk(M,Q) for k = 0, 1, ..., n
the homological groups with coefficients in Q. Each of these groups is a finite linear
space over Q.

Given a continuous map f : M → M there exist n + 1 induced linear maps f∗k :
Hk(M,Q) → Hk(M,Q) for k = 0, 1, . . . , n by f . Every linear map f∗k is given by an
nk × nk matrix with integer entries, where nk is the dimension of Hk(M,Q).

Given a continuous map f :M→M on a compact n–dimensional manifold M, its
Lefschetz number L(f) is defined as

(1) L(f) =

n∑

k=0

(−1)ktrace(f∗k).

One of the main results connecting the algebraic topology with the fixed point theory
is the Lefschetz Fixed Point Theorem which establishes the existence of a fixed point
if L(f) 6= 0, see for instance [3].

Our aim is to obtain information on the set of periods of f . To this purpose it
is useful to have information on the whole sequence {L(fm)}∞m=0 of the Lefschetz
numbers of all iterates of f . Thus we define the Lefschetz zeta function of f as

Zf (t) = exp

( ∞∑

m=1

L(fm)

m
tm

)
.
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This function generates the whole sequence of Lefschetz numbers, and it may be
independently computed through

(2) Zf (t) =

n∏

k=0

det(Ink
− tf∗k)

(−1)k+1

,

where Ink
is the nk × nk identity matrix, and we take det(Ink

− tf∗k) = 1 if nk = 0.
Note that the expression (2) is a rational function in t. So the information on the
infinite sequence of integers {L(fm)}∞m=0 is contained in two polynomials with integer
coefficients, for more details see [8].

If γ is a hyperbolic periodic orbit of period p, then for each x ∈ γ let Eu
x denotes

the subspace of the tangent space TxM generated by the eigenvectors of Dfp(x)
corresponding to the eigenvalues whose moduli are greater than one. Let Es

x be the
subspace of TxM generated by the remaining eigenvectors. We define the orientation
type ∆ of γ to be +1 if Dfp(x) : Eu

x → Eu
x preserves orientation, and -1 if it reverses

orientation. The index u of γ is the dimension of Eu
x for some x ∈ γ. We note that

the definitions of ∆ and u do not depend on the point x, only depend of the periodic
orbit γ. Finally we associated the triple (p, u,∆) to the periodic orbit γ.

For f the periodic data is defined as the collection composed by all triples (p, u,∆),
where a same triple can occur more than once provided it corresponds to different
periodic orbits. Franks in [8] proved the following result which will play a key role
for proving our results.

Theorem 5. Let f be a C1 self–map defined on a compact manifold without boundary
having finitely many periodic orbits all of them hyperbolic, and let Σ be the period data
of f . Then the Lefschetz zeta function of f satisfies

(3) Zf (t) =
∏

(p,u,∆)∈Σ

(1−∆tp)(−1)u+1

.

The statement of Theorem 5 allows us to define the minimal Lefschetz set of periods
for a C1 map on a compact manifold without boundary having finitely many periodic
points all of them hyperbolic. Such a map has a Lefschetz zeta function of the form
(3).

Note that in general the expression of one of these Lefschetz zeta functions is not
unique as product of the elements of the form (1± tp)±1. For instance the following
Lefschetz zeta function can be written in four different ways in the form given by (3):

Zf (t) =
(1− t3)2(1 + t3)

(1− t)6(1 + t)3
=

(1− t3)(1− t6)

(1− t)6(1 + t)3
=

(1− t3)(1− t6)

(1− t)3(1− t2)3
=

(1− t3)2(1 + t3)

(1− t)3(1− t2)3
.

According with Theorem 5, the first expression will provide the periods {1, 3} for f ,
the second the periods {1, 3, 6}, the third the period {1, 2, 3, 6}, and finally the fourth
the periods {1, 2, 3}. Then for this Lefschetz zeta function Zf (t) we will define its
minimal Lefschetz set of periods as

MPerL(f) = {1, 3} ∩ {1, 3, 6} ∩ {1, 2, 3, 6} ∩ {1, 2, 3} = {1, 3}.
In general for the Lefschetz zeta function Zf (t) of a C1 map f on a compact man-

ifold without boundary having finitely many periodic points all of them hyperbolic,
we define its minimal Lefschetz set of periods as the intersection of all sets of periods
forced by the finitely many different representations of Zf (t) as products of the form
(1± tp)±1.
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Note that always
MPerL(f) ⊆ Per(f).

In general it is unknown when MPerL(f) = Per(f) for some f .

3. C1 self–maps on Sn

For n ≥ 1 let f : Sn → Sn be a C1 map. The homological groups of Sn over Q are
of the form

Hq(Sn,Q) =

{
Q if q ∈ {0, n},
0 otherwise.

Furthermore the induced linear maps are f∗0 = (1), f∗i = (0) for i = 1, ..., n− 1 and
f∗n = (D) where D is the degree of the map f , see for more details [5] or [15]. From
(2) the Lefschetz zeta function of f is

(4) Zf (t) =
(1−Dt)(−1)n+1

1− t
.

Proof of Theorem 1. Assume that we are under the assumptions of Theorem 1 and
D /∈ {−1, 0, 1}. Then, since expressions (3) and (4) are not compatible, the map f
has infinitely many hyperbolic periodic points. Consequently statement (a) is proved.

From (1) we get that L(f) = 1+(−1)nD, and L(f2) = 1+(−1)nD2. So under the
assumptions of statement (b) we have that L(f) 6= 0, and under the hypotheses of
statement (c) we obtain that L(f2) = 2. Hence, by the Lefschetz fixed point Theorem,
if L(f) 6= 0 we obtain that 1 ∈ Per(f), and if L(f2) 6= 0 we have that 1 ∈ Per(f2), i.e.
{1, 2} ∩ Per(f) 6= ∅. Therefore, without assuming that f is of finite type statements
(b) and (c) are proved.

Assume that f is of finite type, so the Lefschetz zeta function is given by (3) and
(4). Then, if D = −1 and n odd, then Zf (t) = (1 + t)/(1 − t). If D = 0, then
Zf (t) = 1/(1 − t). If D = 1 and n even, then Zf (t) = 1/(1 − t)2. If D = −1 and
n even, then Zf (t) = 1/((1 + t)(1 − t)) = 1/(1 − t2). Finally, if D = 1 and n odd,
then Zf (t) = 1. Therefore, from Theorem 5 and the definition of MPerL(f), it follows
easily the proofs of statements (b), (c) and (d). ¤

4. C1 self–maps on Sn × Sm

We shall need the following lemma proved in [12], but since its proof is shorter we
add it here for completeness.

Lemma 6. There are no even numbers in MPerL(f).

Proof. If the number 2d is in MPerL(f) then (1 ± t2d)m is a factor of the Lefschetz
zeta function Zf (t), for some m 6= 0. So if the factor is (1 − t2d)m it can be written
as (1− td)m(1+ td)m, since the intersection of the exponents is taken over all possible
expressions (3) of Zf (t), the number 2d is not in MPerL(f).

If the factor is (1 + t2d)m, then it can be written as

(1 + t2d)m =
(1 + t2d)m(1− t2d)m

(1− t2d)m
=

(1− t4d)m

(1− td)m(1 + td)m
.

Therefore 2d /∈ MPerL(f). ¤
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4.1. Case n = m. For n ≥ 1 let f : Sn×Sn → Sn×Sn be a C1 map. The homological
groups of Sn × Sn over Q are of the form

Hq(Sn × Sn,Q) =





Q if q ∈ {0, 2n},
Q⊕Q if q = n,

0 otherwise.

The induced linear maps are f∗0 = (1), f∗n =

(
a b

c d

)
with a, b, c, d ∈ Z , f∗2n =

(D) where D is the degree of the map f and f∗i = (0) for i ∈ {0, ..., 2n}, i 6= 0, n, 2n
(see for more details [5]). From (2) the Lefschetz zeta function of f is

(5) Zf (t) =
p(t)(−1)n+1

(1− t)(1−Dt)
.

where p(t is defined in the statement of Theorem 2.

Proof of Theorem 2. Under the conditions stated in statements (a) or (b) the expres-
sions of (3) and (5) are not compatible. Therefore, Theorem 5 forces that the map f
has infinitely many hyperbolic periodic points.

>From (1) we have that L(f) = 1 +D + (−1)n(a + d). Since a + d is equal to 0,
∓1, ∓2 and ∓1 if p(t) is 1, 1± t, (1± t)2 and 1± t2, respectively. From the Lefschetz
fixed point theorem it follows the first part of statements (c) and (d).

When f if of finite type the second part of statements (c) and (d) follow easily
from (5), Theorem 5 and Lemma 6. ¤

4.2. Case n 6= m. For n,m ≥ 1, let f : Sn × Sm → Sn × Sm be a C1 map. The
homological groups of Sn × Sm over Q are of the form

Hq(Sn × Sm,Q) =

{
Q if q ∈ {0, n,m, n+m},
0 otherwise.

The induced linear maps are f∗0 = (1), f∗n = (a), f∗m = (b) with a, b ∈ Z, f∗n+m =
(D), where D is the degree of the map f and f∗i = (0) for i ∈ {0, ..., n + m},
i 6= 0, n,m, n +m (see for more details [5]). From (2) the Lefschetz zeta function of
f is of the form

(6) Zf (t) =
(1− at)(−1)n+1

(1− bt)(−1)m+1

(1−Dt)(−1)n+m+1

1− t
.

Proof of Theorem 3. The proofs of statements (a), (b), (c) and (d) follow from the
fact that under their assumptions the expression of the Lefschetz zeta function (6)
is not compatible with (3), and consequently Theorem 5 implies that the map f has
infinitely many hyperbolic periodic points.

By formula (1) the Lefschetz number of f is L(f) = 1 + (−1)na + (−1)mb +
(−1)n+mD. Therefore, by the Lefschetz fixed point theorem it follows immediately
the first part of the statements (e), (f), (g) and (h).

When f if of finite type the second part of statements (e), (f), (g) and (h) follow
easily from (5) and Theorem 5. ¤
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5. C1 self–maps on CPn and HPn

5.1. Case CPn. For n ≥ 1 let f : CPn → CPn be a C1 map. The homological groups
of CPn over Q are of the form

Hq(CPn,Q) =

{
Q if q ∈ {0, 2, 4, ..., 2n},
0 otherwise.

The induced linear maps are f∗q = (a
q
2 ) for q ∈ {0, 2, 4, ..., 2n} with a ∈ Z, and

f∗q = (0) otherwise (see for more details [15, Corollary 5.28]).
From (2) the Lefschetz zeta function of f has the form

(7) Zf (t) =

(∏

q

(1− aq/2t)

)−1

,

where q runs over {0, 2, 4, ..., 2n}.
5.2. Case HPn. For n ≥ 1 let f : HPn → HPn be a C1 map. The homological
groups of HPn over Q are of the form

Hq(HPn,Q) =

{
Q if q ∈ {0, 4, 8, ..., 4n},
0 otherwise.

The induced linear maps are f∗q = (a
q
4 ) for q ∈ {0, 4, 8, ..., 4n} with a ∈ Z, and

f∗q = (0) otherwise (see for more details [15, Corollary 5.33]).
From (2) the Lefschetz zeta function of f has the form

(8) Zf (t) =

(∏

q

(1− aq/4t)

)−1

,

where q runs over {0, 4, 8, ..., 4n}.
Proof of Theorem 4. First we assume that f : CPn → CPn. Suppose that a /∈
{−1, 0, 1}, therefore the morphology of the Lefschetz zeta function given by (7) is
not compatible with (3), and Theorem 5 implies that the map f has infinitely many
hyperbolic periodic points. This proves statement (a).

By formula (1) the Lefschetz number of f is

L(f) = 1 +
∑

q=2,...,2n

(−1)qaq/2 = 1 +

n∑

k=1

ak =
1− an+1

1− a
.

If a = −1 then L(f) = (1 − (−1)n+1)/2 which is different from zero for n even. If
a = 0 then L(f) = 1. If a = 1 then L(f) = n + 1. Therefore, by the Lefschetz fixed
point theorem it follows the first part of statement (b).

Now assume that f is of finite type. From (7) and if a = −1 we obtain thaqt

Zf (t) =

{
(1− t2)1−n(1− t)−1 if n is even,
(1− t2)−n if n is odd.

If a = 0 then Zf (t) = 1 − t. If a = 1 then Zf (t) = (1 − t)−n. So, from Theorem 5
and the definition of MPerL(f) we get the second part of statement (b).

The proof for a self–map defined on HPn is analogous to the described one changing
the role of q/2 by q/4, and the proof is over. ¤
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