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Abstract. We deal withm-periodic, n-th order difference equations and study
whether they can be globally linearized. We give an affirmative answer when
m = n + 1 and for most of the known examples appearing in the literature.
Our main tool is a refinement of the Montgomery-Bochner Theorem.

1. Introduction. In this paper we investigate the linearization of periodic differ-
ence equations defined on an open subset of R. A difference equation or a recurrence
of order n on R of class Ck (k ∈ N ∪ {0} ∪ {∞} ∪ {ω}) is an equation of the form:

xj+n = f(xj , xj+1, . . . , xj+n−1) (1)

where xi ∈ R for all i ∈ N, and f is a Ck map from an open subset of Rn into R.
The study of the dynamics of the recurrence (1) is given by the dynamics of

the associated map F : U → U, where U is an open subset of Rn, not necessarily
connected, and F is given by

F (x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn)). (2)

We will say that equation (1) is m-periodic if Fm = Id and m is the smallest
natural with this property. Clearly, in this case, m ≥ n and the only possibility for
m = n is when f(x1, . . . , xn) = x1.

Recall that it is said that a map F : U → U, Ck-linearizes on an open set U ⊂ Rn

if there exists a Ck-homeomorphism, ψ : U → ψ(U) ⊂ Rn, for which G := ψ◦F ◦ψ−1

is the restriction of a linear map to ψ(U). The map ψ is called a linearization of
F on U . When the map F is of the form (2) and the linearized map G is as well
of the form (2) then we will say that the associated recurrence (1) linearizes in the
corresponding domain.

Notice that real periodic difference equations are a particular case of periodic
maps on subsets of Rn. These maps have been largely studied. In order to have
a better understanding of our goal when we restrict our interest to maps of the
form (2), first we give a brief summary of some of the most relevant results on
general periodic maps on Rn.
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It is a well-known result that every periodic Ck map on R is either the identity,
or 2-periodic and that in this later case it Ck-linearizes (notice that in this situation
this is equivalent to say that it is Ck-conjugated to −Id), see for instance [18]. From
a classical result of Kerékjártó, see [13] we also know that any Ck, k ≥ 0, m-periodic
map on R2 is C0-linearizable on R2. This situation changes when n ≥ 3. In a series
of papers, Bing shows that for any m ≥ 2 there are continuous m-periodic maps
in R3 which are not linearizable, see [6, 7]. On the other hand Montgomery and
Bochner prove a local result saying that a Ck, k ≥ 1, m-periodic map having a fixed
point p is locally Ck-linearizable in a neighborhood of p, see [21] or Theorem 2.1
below. However in [12, 16, 17] it is shown that for n ≥ 7 there are continuous and
also differentiable periodic maps on Rn without fixed points.

In this context it is natural to wonder whether real m-periodic difference equa-
tions linearize. The main result of this paper answers this question when m = n+1.
We prove:

Theorem A. Let U ⊂ Rn be an open connected set and let F : U → U given by
F (x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn)) be a (n+ 1)-periodic recurrence of class
Ck. Then F is Ck-linearizable on U. More precisely, f is either increasing or de-
creasing with respect x1. If f is decreasing with respect x1 then F is Ck-conjugated to
L1(x1, . . . , xn) = (x2, . . . , xn,−

∑n
i=1 xi) on ψ(U), where ψ is the Ck-linearization.

Otherwise, n is odd and F is Ck-conjugated to the linear map L2(x1, . . . , xn) =
(x2, . . . , xn,

∑n
i=1(−1)i+1xi) also on ψ(U). Moreover when U = Rn the recurrence

is Ck-linearizable on the whole Rn and hence it has a fixed point.

For the particular case that U = (R+)n this result is also proved in the recent
paper [8] using different tools and an equivalent notation.

It is also natural to check whether the examples of periodic difference equations
appearing in the literature linearize or not. This is the second goal of this paper.

As we will see, many periodic difference equations correspond to maps F of the
form (2), defined only on some proper subset U ⊂ Rn. Let us see which are some
natural properties that these open sets U should satisfy. The special form of the
map F and its periodicity implies that F (U) = U and imposes restrictions on its
shape. In particular if F is periodic we get that πi(U) = πj(U) for any i, j = 1, . . . , n
where πi denotes the i-th projection. The characterization of the structure of these
periodic difference equations is perhaps a too general problem because, for example
when U is not connected the map F can permute the different components, and
moreover since an iterate of F is not a difference equation we cannot reduce the
problem to the study of the difference equation on a connected open set. So it seems
that the question of the linearization of a recurrence must be formulated when U is
homeomorphic to Rn. Notice that in this case all the projections πi(U), i = 1, . . . , n
have to be equal to the same open interval I ⊂ R.

Now we can state with more precision the question we deal with:
Question: Consider a couple U and F such that:

• The set U ⊂ Rn is homeomorphic to Rn.
• The map F : U → U is of the form (2), is of class Ck and is m-periodic on U .

Is is true that F linearizes? If yes, is it possible to get a linearized map of the
form (2)?

Under this point of view we collect from the literature as many as possible couples
U and F under the above hypotheses and we prove that they linearize as difference
equations. It is worth to comment here that while in this paper our approach
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to the periodicity problem is through the existence of a linearization, there are
different points of view. For instance in [9] it is proved that most periodic maps are
completely integrable.

We need to introduce some preliminary definitions. In the particular case where
the linearization of a recurrence is given by a conjugacy ψ of the form

ψ(x1, . . . , xn) = (ψ̃(x1), . . . , ψ̃(xn)), (3)

being ψ̃ : I = π1(U) → R, we will say that the recurrence trivially linearizes on U .
Notice that each r ∈ N and each m-periodic difference equation of order n of the

form (1) generates a new rm-periodic difference equation of order rn given by

xj+rn = f(xj , xj+r , . . . , xj+r(n−1)), (4)

or equivalently a periodic map of the form (2) with

F (x1, x2, . . . , xrn) = (x2, x3, . . . , xrn, f(x1, x1+r, x1+2r . . . , x1+r(n−1))),

defined on some open subset of Rrn. We will say that (4) is a difference equation
derived from (1). If there is no any difference equation such that (1) is derived from
it, then we will say that (1) is minimal. For instance, from this point of view the
well-known Lyness periodic difference equations

xj+2 =
xj+1 + 1

xj
(5-periodic), xj+3 =

xj+1 + xj+2 + 1

xj
(8-periodic), (5)

are clearly minimal, while the derived periodic difference equations

xj+2r =
xj+r + 1

xj
(5r-periodic), xj+3r =

xj+r + xj+2r + 1

xj
(8r-periodic),

with 1 < r ∈ N, are not.
It is not difficult to prove that if a difference equation of the form (1) is Ck-

linearizable on U then all the difference equations (4) derived from it are as well
Ck-linearizable on the corresponding domains. Hence, from now on we will only
center our attention on periodic minimal difference equations.

Many periodic examples exhibited in the literature consist on difference equations
defined on U = (R+)n, where R+ = {x ∈ R, x > 0}, and they are trivially Cω

linearizable. This is the case for the ones appearing in [1, 3, 4, 5, 20],

xj+n =
C

xjxj+1 · · ·xj+n−1
, C > 0, (n+ 1)-periodic,

xj+n =
xjxj+2 · · ·xj+n−1

xj+1xj+3 · · ·xj+n−2
, n odd, (n+ 1)-periodic,

xj+3 = xj

(
xj+2

xj+1

)φ

, where φ2 = φ+ 1, 5-periodic.

To see this it suffices to consider the linearization (3) given by the analytic map

ψ̃ : (0,∞) → R, where ψ̃(x) = lnx. We want to comment that the goal of these
papers is not to prove that the above difference equations are periodic, because as
we have seen this is quite easy, but to prove that they are the only ones once some
special form of the difference equation and some period are fixed.

On the other hand periodic recurrences which seem not to be trivially linearizable
are given by the Lyness equations (5) and in the papers [2, 3, 10, 14, 15]. We will
study them in Section 4.



4 ANNA CIMA, ARMENGOL GASULL AND FRANCESC MAÑOSAS

In Subsection 4.1 we prove that the Lyness recurrences (5) are not trivially
linearizable but they are Cω linearizable. We point out that we do not study the
8-periodic recurrence given in [15],

xj+3 =
xj+1 − xj+2 − 1

xj
,

because it can be seen that it has no connected invariant regions.
In Subsection 4.2 we also prove global linearization results for the max-type

periodic recurrences, like the 5-periodic one,

xj+2 = max(xj+1, 0)− xj ,

defined on the whole R2.
That all the periodic recurrences given in [2], constructed by using symmetric

functions, are linearizable is proved in Subsection 4.3.
Finally, in Subsection 4.4 we make some comments on the periodic recurrences

given by Coxeter in [14].

2. Preliminary results. In this section we recall three classical results, the Mont-
gomery-Bochner Theorem about local linearization of periodic maps with a fixed
point, the Kerékjártó Theorem about the linearization of planar periodic maps and
a theorem that gives a standard way for proving that a local homeomorphism is
a global one: the properness of the homeomorphism. We also prove the first one,
because it inspired some of our proofs.

Theorem 2.1. (Montgomery-Bochner Theorem, see [21]) Let U ⊂ Rn be an open
set and let F : U → U be a map of class Cr(U), r ≥ 1, such that Fm = Id for some
integer number m ≥ 1. If p ∈ U is a fixed point of F then there is a neighborhood
of p in U where the dynamical system generated by F is Ck linearizable. Moreover
the conjugated linear system is given by the linear map L(x) := d(F )p x.

Proof. Consider the map from U into Rn, defined as

ψ =
1

m

m−1∑

i=0

L−i ◦ F i.

Note that since F is m-periodic then L is also m-periodic and then L ◦ ψ = ψ ◦ F.
That ψ is locally invertible and has the same regularity as F follows by applying
the Inverse Function Theorem, because d(ψ)p = Id.

Remark 2.2. Notice that from the proof of the above Theorem it is easy to get
the classification of Ck-periodic maps in R as either the identity or globally Ck-
conjugated to −Id.

Theorem 2.3. (Kerékjártó’s Theorem, see [13]) Let U ⊂ R2 be homeomorphic to
R2 and let F : U → U be a Ck, m-periodic map, k ≥ 0. Then F is C0-linearizable.

Corollary 2.4. Consider a second order Ck-periodic recurrence. Let U ⊂ R2 be the
open set where the map F, given in (2) and associated to it, is defined and assume
that U is homeomorphic to R2. Then the recurrence is linearizable in U.

Proof. From Kerékjártó’s Theorem it is clear that F is linearizable. We only need to
prove that it is always possible to make a further linear change of variables such that
this linear map is of the form (2). Since we are in R2 the only situations where this is
not possible would be the ones where the linear map L is either L = Id or L = −Id.
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Clearly the first case is impossible because the only map conjugated to the identity
is the identity itself, which is not a difference equation. Similarly, in the second case
the recurrence would be 2-periodic, but the only 2-periodic recurrence is the one
given by the map F (x, y) = (y, x) which is clearly not conjugated to −Id, because
the dimension of the corresponding spaces of fixed points do not coincide.

Recall that a continuous map F : Rn → Rn is proper if and only if F−1(C) is a
compact set whenever C is a compact set. Sometimes is useful to use the following
characterization for the properness of a map F : for any sequence {xn}n leaving
any compact of Rn, the sequence {F (xn)}n also leaves any compact of Rn.

The next result implies that in Rn a local homeomorphism having this property
is indeed a global homeomorphism.

Theorem 2.5. ( [22]) Consider F : Rn → Rn. Then F is a homeomorphism of Rn

onto Rn if and only if F is a local homeomorphism and it is a proper map.

As a corollary of the above result it is not difficult to get a more general one that
we will use in Section 4.

Corollary 2.6. Let U and V open subsets of Rn. Assume that both sets are home-
omorphic to Rn and F : U → V. Then F is a homeomorphism of U into V if and
only if it is a local homeomorphism and for any sequence {xn}n leaving any compact
set of U , the sequence {F (xn)}n leaves also any compact set of V.

3. Proof of Theorem A. We start by proving some preliminary results. The
first one is already known, see [15, 19], but we include a proof for the sake of
completeness.

Lemma 3.1. Let L : Rn → Rn be a periodic linear map be such that L(x1, . . . , xn) =
(x2, . . . , xn, l(x1, x2, . . . , xn)). Then the characteristic polynomial of L has no mul-
tiple roots.

Proof. Since L is linear we can consider L : Cn → Cn. Since for any λ ∈ C, for any
Jordan block and for any m ∈ N,




λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ




m

6= Id

we get that L is diagonalizable. So to prove the result it suffices to show that for
any λ eigenvalue of L the corresponding space of eigenvectors is one dimensional.
Let λ be an eigenvalue of L and 0 6= e ∈ Cn such that L(e) = λe. Then e =
(x1, λx1, . . . , λ

n−1x1) = x1(1, λ, . . . , λ
n−1) and the result follows.

Note that the decomposition of xm − 1, m ≥ 1 in real factors is

xm − 1 =

{
(x+ 1)(x− 1)

∏((m−2)/2
j=1 (x2 + sjx+ 1), when m is even,

(x− 1)
∏((m−1)/2

j=1 (x2 + sjx+ 1), when m is odd,
(6)

where sj = −2Re(xj) = −2Re(xj) being xj and xj all the couples of non-real
conjugated m-roots of the unity.
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Lemma 3.2. Any m-periodic, n-th order real linear difference equation writes as

xn+j = −an−1xn+j−1 − an−2xn+j−2 − · · · − a2xj+2 − a1xj+1 − a0xj ,

with corresponding linear map in Rn

L(x1, x2, . . . , xn) = (x2, x3, . . . , xn,−an−1xn−an−2xn−1−· · ·−a2x3−a1x2−a0x1),
where

xm − 1

Pm−n(x)
= xn + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x

2 + a1x+ a0 := Qn(x),

and Pm−n(x) is any polynomial of degree m−n constructed by taking different real
factors of the decomposition of xm − 1 given in (6).

Proof. From Lemma 3.1 the characteristic polynomial of L, which is Qn(λ), can not
have multiple roots. On the other hand it is a real polynomial with degree n and
all its roots must be m-roots of the unity. So the result follows.

Notice that some of the difference equations generated in the above lemma can
be m′-periodic with m′ a divisor of m.

Corollary 3.3. There are only two different (n+ 1)-periodic linear recurrences of
order n with real coefficients. If we write them as

L(x1, . . . , xn) = (x2, . . . , xn, l(x1, x2, . . .))

then either n is arbitrary and

l(x1, . . . , xn) = −
n∑

i=1

xi

or n is odd and

l(x1, . . . , xn) =

n∑

i=1

(−1)i+1xi.

Proof. From Lemma 3.2 it suffices to study how many polynomials of degree n can
be constructed from the decomposition of xn+1 − 1 given in (6). When n is even

case this implies that Qn(x) =
xn+1−1
x−1 =

∑n
i=0 x

i. In the odd case there is another

possibility, namely Qn(x) =
xn+1−1
x+1 =

∑n
i=0(−1)i+1xi.

Let F : U → U given by F (x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn)) be a con-
tinuous (n + 1)-periodic recurrence, where U is an open connected subset of Rn

and let the open interval πj(U) = I ⊂ R be any of its projections. Also for any
i ∈ {1, . . . , n} let πi : U −→ Rn−1 the projection that eliminates the i-coordinate.
For each i ∈ {1, . . . , n} and for any (x1, . . . , xn−1) ∈ πi(U) set

Ii(x1,...,xn−1)
= {t ∈ I : (x1, . . . , t, . . . , xn−1) ∈ U}.

Clearly Ii(x1,...,xn−1)
is and open subset of I and hence it is a countable union of

open intervals which are its connected components.

Now we define f
(x1,...,xn−1)
i : Ii(x1,...,xn−1)

→ I by

f
(x1,...,xn−1)
i (x) = f(x1, . . . , xi−1, x, xi, . . . , xn−1).

Notice that f
(x1,...,xn−1)
i is a continuous map for any i ∈ {1, . . . , n} and for all

(x1, . . . , xn−1) ∈ πi(U).
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Lemma 3.4. Let F : U → U be a continuous (n+ 1)-periodic recurrence

F (x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn)),

where U is an open connected subset of Rn and π(U) = I. Then for any i ∈
{1, . . . , n} and for all (x1, . . . , xn−1) ∈ πi(U), f

(x1,...,xn−1)
i is an homeomorphism

of Ii(x1,...,xn−1)
into its image. Moreover either f

(x1,...,xn−1)
i is decreasing for all

i ∈ {1, . . . , n} and for all (x1, . . . , xn−1) ∈ πi(U) or n is odd and (−1)if
(x1,...,xn−1)
i

is decreasing for all i ∈ {1, . . . , n} and for all (x1, . . . , xn−1) ∈ Rn−1.

Proof. From the fact that F is (n+1)-periodic it follows that for any i ∈ {1, . . . , n}
and for all (x1, . . . , xn−1) ∈ πi(U), and x ∈ Ii(x1,...,xn−1)

we have

f(xi, . . . , xn−1, f(x1, . . . , xi−1, x, xi, . . . , xn−1), x1, . . . , xi−1) = x, (7)

which can be written as

f
(xi,...,xn−1,x1,...,xi−1)
n−i+1 (f

(x1,...,xn−1)
i (x)) = x.

Thus we obtain that

f
(xi,...,xn−1,x1,...,xi−1)
n−i+1 ◦ f (x1,...,xn−1)

i = Id.

Applying the above equality to n−i+1 instead of i and (xi, . . . , xn−1, x1, . . . , xi−1)
instead of (x1, . . . , xn−1) we get

f
(x1,...,xn−1)
i ◦ f (xi,...,xn−1,x1,...,xi−1)

n−i+1 = Id.

This proves that f
(x1,...,xn−1)
i is a homeomorphism of Ii(x1,...,xn−1)

into its image.

Since Ii(x1,...,xn−1)
is a countable union of open intervals this implies that f

(x1,...,xn−1)
i

is monotone on each of the connected components of Ii(x1,...,xn−1)
.

For any fixed i ∈ {1, . . . , n} we claim that either for all (x1 . . . , xn−1) ∈ πi(U),

f
(x1,...,xn−1)
i is increasing on all the connected components of Ii(x1,...,xn−1)

or for all

(x1 . . . , xn−1) ∈ πi(U), f
(x1,...,xn−1)
i is decreasing on all the connected components

of Ii(x1,...,xn−1)
. To do this consider

V = {(x1, . . . , xn) ∈ U : f
(x1,...,xi−1,xi+1,...,xn)
i is increasing at xi}.

If V = ∅ the claim is proved. So assume that x ∈ V and set A = (a1, b1) × . . . ×
(an, bn) be an open neighborhood of x in U.Then, for any (y1,. . ., yi−1, yi+1,. . ., yn) ∈
πi(A), f i

(y1,...,yi−1,yi+1,...,yn)
is defined in (ai, bi). Thus the family

f i
(y1,...,yi−1,yi+1,...,yn)

∣∣∣
(ai,bi)

, with (y1, . . . , yi−1, yi+1, . . . , yn) ∈ πi(A),

is a continuous family of monotone homeomorphisms on (ai, bi). Since x ∈ A and
x ∈ V we have that (x1, . . . , xi−1, xi+1, . . . , xn) ∈ πi(A) and f i

(x1,...,xi−1,xi+1,...,xn)
is

increasing on (ai, bi). By continuity arguments this implies that f i
(y1,...,yi−1,yi+1,...,yn)

is increasing in (ai, bi) for all (y1, . . . , yi−1, yi+1, . . . , yn) ∈ πi(A). Hence A ⊂ V and
V is a open subset of U. The same argument can be used to show that V is closed
in U. Since U is connected we obtain V = U and the claim is proved.

Since from the above observation the character (increasing or decreasing) of the

maps f
(x1,...,xn−1)
i is independent of (x1, . . . , xn−1) from now on we will speak about

the character of the maps fi
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Consider now the case when f1 is decreasing. Note that in this case fn is also
decreasing. We will prove by induction that fi is decreasing for all i = 1, . . . , n.
For i = 1 there is nothing to prove. Assume now that fi is decreasing and we will
prove that fi+1 is also decreasing. Suppose to arrive a contradiction that fi+1 is
increasing and consider the equality

f(x2, . . . , xn, f(x1, . . . , xn)) = x1.

When xi+1 increases, the i and n coordinates of y = (x2, . . . , xn, f(x1, . . . , xn)) also
increase. Since by induction hypothesis fi and fn are decreasing it follows that the
left part of this equation decreases when the (i + 1)-th coordinate increases. This
contradicts the fact that the right part of the equation is independent of xi+1. This
proves that fi+1 is decreasing.

Now it remains the case when f1 is increasing. Remember that in this case fn is
also increasing. We must to prove that (−1)ifi is decreasing for i = 1, . . . , n. To do
this it suffices to show that if fi is increasing (respectively decreasing) then fi+1 is
decreasing (respectively increasing). To do this consider the equation

f(x2, . . . , xn, f(x1, . . . , xn)) = x1

and suppose for instance that fi is increasing. Suppose to arrive a contradiction
that fi+1 is also increasing. Then when xi+1 increases the i-th and n-th coordinates
of y = (x2, . . . , xn, f(x1, . . . , xn)) increase and since fi and fn are increasing then
the left part of the equation increases when xi+1 increases which contradicts the
fact that the right part of the equation does not depends on xi+1. The other case
follows by the same argument.

Lastly, note that in this last case, since fi and fn−i+1 must have the same
character and (−1)ifi must be increasing, this implies that n is odd.

Lemma 3.5. Let F : U → U be a (n+ 1)-periodic recurrence of class C1,

F (x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn)),

where U is an open connected subset of Rn. Then ∂f
∂xi

6= 0 for all i = 1, . . . , n.

Moreover either ∂f
∂xi

< 0 for all i = 1, . . . , n or n is odd and (−1)i ∂f
∂xi

< 0.

Proof. First of all note that since F ◦ Fn = Id it follows that F is a diffeo-

morphism on U. Hence (−1)n+1
(

∂f
∂x1

)
x

= det (d(F )x) 6= 0. From the equality

f(F (x1, . . . , xn)) = x1 we deduce that
(

∂f
∂xn

)
F (x1,...,xn)

.
(

∂f
∂x1

)
(x1,...,xn)

= 1. This

implies that ∂f
∂xn

6= 0 and has the same sign as ∂f
∂x1

. We also get
(
∂f

∂xi

)

F (x1,...,xn)

+

(
∂f

∂xn

)

F (x1,...,xn)

(
∂f

∂xi+1

)

(x1,...,xn)

= 0 (8)

for i = 1, . . . , n− 1.
Now assume that ∂f

∂x1
< 0. Then ∂f

∂xn
< 0 and from equation (8) for i = 1 we

obtain that ∂f
∂x2

< 0. Thus applying recursively equation (8) for i = j we obtain

that ∂f
∂xj+1

< 0.

Lastly assume that ∂f
∂x1

> 0. Then ∂f
∂xn

> 0. Also applying equation (8) for i = 1

we obtain that ∂f
∂x2

< 0. Thus applying recursively equation (8) for i = j we obtain

that ∂f
∂xj

∂f
∂xj+1

< 0. So we get that (−1)i ∂f
∂xi

< 0 for i = 1, . . . , n. In particular
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(−1)n ∂f
∂xn

< 0 and since ∂f
∂xn

> 0 we deduce that n must be odd. This finish the
proof of the Lemma.

Proof of Theorem A. From Lemma 3.4 we already know that f1 is a homeomor-
phism of I into its image. So either f is increasing with respect x1 or it is decreas-
ing.

We consider first the case when f is increasing with respect x1. From Lemma 3.4
it follows that n is odd and f is increasing with respect to the odd coordinates and
decreasing with respect to the even coordinates.

First of all we will prove that F is C0-conjugated to L2. Similarly that in the
proof of the Montgomery-Bochner Theorem, consider the map ϕ : U → ϕ(U) given
by ϕ = 1

n+1

∑n
i=0 L

−i
2 ◦ F i. We have that

ϕ ◦ F = L2 ◦ ϕ
and we will prove that ϕ is an homeomorphism of U into ϕ(U). Notice that, in
contrast with the proof of Montgomery-Bochner Theorem, we are not assuming
smoothness conditions on F . Using that F and L2 are (n + 1)-periodic, for i =
1, . . . , n− 1 we obtain

F i(x1, . . . , xn) = (xi+1, . . . , xn, f(x1, . . . , xn), x1, . . . , xi−1)

and

Fn(x1, . . . , xn) = (f(x1, . . . , xn), x1, . . . , xn−1).

Also for i = 2, . . . , n we have

L−i
2 (x1, . . . , xn) = Ln+1−i

2 (x1, . . . , xn)

= (xn+2−i, . . . , xn,
n∑

j=1

(−1)j+1xj , x1, . . . , xn−i),

and

L−1
2 (x1, . . . , xn) = Ln

2 (x1, . . . , xn) =
( n∑

j=1

(−1)j+1xj , x1, . . . , xn−1

)
.

Thus we obtain that

L−i
2 (F i(x1, . . . , xn) =

(
x1, . . . , xi−1, xi + (−1)i+1

( n∑

j=1

(−1)jxj + f(x1, . . . , xn)
)
, xi+1, . . . , xn

)
(9)

and if we denote by ϕj the j component of ϕ we get,

ϕj(x1, . . . , xn) =
1

n+ 1

(
(n+ 1)xj + (−1)j+1

( n∑

i=1

(−1)ixi + f(x1, . . . , xn)
))
.

To prove the invertibility of ϕ it suffices to show that for any (u1, . . . , un) ∈ ϕ(U)
the system

ϕj(x1, . . . , xn) = uj, j = 1, . . . , n (10)

has only one solution. To do this for any j = 2, 4, . . . , n− 1 we get

(n+ 1)(uj + u1) = (n+ 1) (ϕj(x1 . . . , xn) + ϕ1(x1 . . . , xn)) = (n+ 1)(xj + x1).

Then xj = uj + u1 − x1. On the other hand for j = 3, 5 . . . , n we have

(n+ 1)(uj − u1) = (n+ 1) (ϕj(x1 . . . , xn)− ϕ1(x1 . . . , xn)) = (n+ 1)(xj − x1),
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and we obtain xj = uj − u1 + x1. Substituting in the first equation we get

(n+ 1)x1 − nx1 + (n− 1)u1+
n∑

i=2

(−1)iui + f(x1,−x1 + u2 + u1, . . . , x1 + un − u1) = (n+ 1)u1.

Hence,

x1 + f(x1,−x1 + u2 + u1, . . . , (−1)i+1x1 + ui + (−1)iu1, . . . , x1 + un − u1)

= 2u1 −
n∑

i=2

(−1)iui.

Now we consider the map g(u1,...un) : J ⊂ R → R defined by

g(u1,...,un)(x) = x+f(x,−x+u2+u1, . . . , (−1)i+1x+ui+(−1)iu1, . . . , x+un−u1).

Since by Lemma 3.4, f is decreasing in its even variables and increasing in its odd
variables it follows that g(u1,...un) is increasing and so it is injective, as we wanted
to see.

Finally, when U = Rn we have that limx→±∞ g(u1,...un)(x) = ±∞. Then g(u1,...un)

is a homeomorphism of R. Hence ϕ has a global continuous inverse in the whole Rn

given by

ϕ−1(u1, . . . , un) = (x1, u2 + u1 + x1, . . . , un − u1 + x1)

where x1 = g−1
(u1,...un)

(2u1 −
∑n

i=2(−1)iui).

Until now we have proved that ϕ is a C0-conjugation between F and L2. Now
assume that F is of class Ck with k ≥ 1. Then by construction ϕ is also of class Ck.
So to prove the theorem in this case it only remains to see that ϕ−1 also is of class
Ck. By the Inverse Function Theorem it suffices to show that det (d(ϕ)x) 6= 0, for
all x ∈ Rn. Differentiating the expression of ϕ we obtain

d(ϕ)x =
1

n+ 1




n+ a1(x) 1 + a2(x) −1 + a3(x) . . . −1 + an(x)
1− a1(x) n− a2(x) 1− a3(x) . . . 1− an(x)

−1 + a1(x) 1 + a2(x) n+ a3(x) . . . −1 + an(x)
...

...
...

...
...

−1 + a1(x) 1 + a2(x) −1 + a3(x) . . . n+ an(x)



,

where for the sake of simplicity we write ai(x) =
(

∂f
∂xi

)
(x), i = 1, 2, . . . , n.

In order to compute the determinant of the above matrix we first consider the
simplest one

An(x) :=




−1 + a1(x) 1 + a2(x) −1 + a3(x) . . . −1 + an(x)
1− a1(x) −1− a2(x) 1− a3(x) . . . 1− an(x)

−1 + a1(x) 1 + a2(x) −1 + a3(x) . . . −1 + an(x)
...

...
...

...
...

−1 + a1(x) 1 + a2(x) −1 + a3(x) . . . −1 + an(x)



.
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Notice that d(ϕ)x =
1

n+ 1

(
An(x) + (n+1)Id

)
. Clearly An(x) has n− 1 null eigen-

values and hence its characteristic polynomial is

Pn(λ, x) := det(An(x)− λId) = −λn +
(
− n+

n∑

i=1

(−1)i+1ai(x)
)
λn−1.

Since

det (d(ϕ)x) =

(
1

n+ 1

)n

Pn(−(n+ 1), x) =
1

n+ 1

(
1 +

n∑

i=1

(−1)i+1ai(x)

)
,

we get that

det(d(ϕ)x) =
1

n+ 1

(
1 +

n∑

i=1

(−1)i+1

(
∂f

∂xi

)
(x)

)
.

Remember that in our case f is increasing with respect the first coordinate, so
∂f
∂x1

> 0. Then by Lemma 3.5 we get that (−1)i+1 ∂f
∂xi

> 0 for i = 1, . . . , n. Thus

det (d(ϕ)x) > 0 and this finishes the proof of this case.
Now assume that f is decreasing with respect to x1. As in the previous case, we

first prove that F is C0-conjugated to L1. Again the conjugation that we consider is
similar to the one used in the proof of the Montgomery-Bochner Theorem. Consider
ψ : U → ψ(U) defined as ψ = 1

n+1

∑n
i=0 L

−i
1 ◦ F i. In this case we get that

ψj(x1, . . . , xn) =
1

n+ 1

(
(n+ 1)xj −

n∑

i=1

xi − f(x1, . . . , xn)

)
,

where ψj is the j component of ψ.
Arguing as is in the previous case we obtain that the inverse of ψ is

ψ−1(u1, . . . , un) = (x1, u2 − u1 + x1, . . . , un − u1 + x1),

where x1 = f−1
(u1,...,un)

(2u1 +
∑n

i=2 ui) and f(u1,...un) : J ⊂ R → R is defined as

f(u1,...,un)(x) = x− f(x, x+ u2 − u1, . . . , x+ un − u1).

Notice that again by Lemma 3.4, f is decreasing in all its variables and so it follows
that f(u1,...,un) is increasing giving the injectivity of the map, as we wanted to prove.

When U = Rn we have that limx→±∞ f(u1,...,un)(x) = ±∞, proving that f(u1,...,un)

is a homeomorphism of R.
To show that ψ is a Ck-conjugation between F and L1 when F is of class Ck with

k ≥ 1, we will show that det (d(ψ)x) 6= 0 for x ∈ R. After some computations we
have that

d(ψ)x =
1

n+ 1




n−
(

∂f
∂x1

)
(x) −1−

(
∂f
∂x2

)
(x) . . . −1−

(
∂f
∂xn

)
(x)

−1−
(

∂f
∂x1

)
(x) n−

(
∂f
∂x2

)
(x) . . . −1−

(
∂f
∂xn

)
(x)

...
...

...
...

−1−
(

∂f
∂x1

)
(x) −1−

(
∂f
∂x2

)
(x) . . . n−

(
∂f
∂xn

)
(x)




and

det (d(ψ)x) =
(−1)n

n+ 1

(
1−

n∑

i=1

(
∂f

∂xi

)
(x)

)
.
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Since in our case f is decreasing with respect the first coordinate, we get that ∂f
∂x1

<

0. Then by Lemma 3.5 we have that ∂f
∂xi

< 0 for i = 1, . . . , n. Thus det (d(ψ)x) 6= 0
as we wanted to see. This ends the proof of the theorem.

4. Non–trivial linearizations. In this section we give non–trivial linearizations
for most of the known periodic recurrences.

4.1. Lyness type maps. This subsection is devoted to study the linearizations
of the well-known Lyness maps. Recall that they are given by G(x, y) = (y, 1+y

x )

which is 5-periodic and H(x, y, z) = (y, z, 1+y+z
x ) which is 8-periodic.

First we consider the map G. Easy computations show that G and its iterates are
defined in R2 \L where L is the union of the straight lines x = 0, x = −1, y = 0, y =
−1, x+ y = −1. Clearly R2 \ L has twelve connected components and G fixes two
components and permutes the rest. We denote by A = {(x, y) ∈ R2 : x > 0, y > 0}
and by B the interior of the triangle with vertices (−1, 0), (−1,−1) and (0,−1)
which are the two components invariants by G. The next Lemma shows that G|A
and G|B are not trivially linearizable.

Lemma 4.1. The maps G|A and G|B are not trivially linearizable.

Proof. Along this proof we will denote by C any of the two sets A or B, indistinctly.

Also, we set p = (c, c) for the corresponding fixed point, (a, a) = 1+
√
5

2 (1, 1) or

(b, b) = 1−
√
5

2 (1, 1).
We will prove our result by contradiction. Assume that G|C is trivially lineariz-

able. The point p = (c, c) with c2 = c+ 1 belongs to C and it is a fixed point of G.
The Montgomery-Bochner Theorem implies that G is conjugated in a neighborhood
of p to the linear recurrence given by (dG)p that is L(x, y) = (y,−x+ y/c). Then it
must exists a homeomorphism ϕ : π(C) → ϕ(π(C)), where π(C) is the projection
of C into any of the coordinate axis, such that

ϕ

(
1 + y

x

)
= −ϕ(x) + ϕ(y)

c
(11)

for all (x, y) ∈ C. Note also that ϕ must satisfy that ϕ (c) = 0 because the map ϕ
has to send the fixed point of G|C to the fixed point of L. Thus putting x = c in
the above equality we obtain

ϕ

(
1 + y

c

)
=
ϕ(y)

c
, (12)

for all y ∈ C ∩ {x = c}.
In the case C = A, c = a equation (12) implies that ϕ can be extended contin-

uously to 0 putting ϕ(0) = aϕ (1/a) . Since a−2 = 1 − a−1, by using again (12) we
get

ϕ(1) = ϕ(
1

a2
+

1

a
) = ϕ

(
1 + 1/a

a

)
=
ϕ(1/a)

a
.

On the other hand, by (11),

ϕ(1) = −ϕ(1) + ϕ(0)

a
= −ϕ(1) + 1

a
aϕ(

1

a
) = −ϕ(1) + ϕ(

1

a
)

which gives that ϕ(1) = ϕ(1/a)/2. The above two equations imply that ϕ(1/a) = 0
and since ϕ(a) = 0 this contradicts the fact that ϕ is a homeomorphism.
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Consider now the case C = B, c = b. In this situation, equation (12) implies
that ϕ can be extended continuously to −1 putting ϕ(−1) = ϕ(−1− b)/b. Then,
by (11), we get

ϕ(−1) =
ϕ(−1− b)

b
=

1

b
ϕ

(
1 + b

−1

)
=

1

b

(
−ϕ(−1) +

ϕ(b)

b

)
=

1

b
(−ϕ(−1))

which implies ϕ(−1) = 0 = ϕ(b). This equality is again in contradiction with the
fact that ϕ is a homeomorphism. So the result follows.

Despite the fact that G|A and G|B are not trivially linearizable we prove that
they are Cω-linearizable. It is worth to comment that the fact that they are C0-
linearizable follows from Kerékjártó’s Theorem, see Corollary 2.4.

Theorem 4.2. The maps G|A and G|B are Cω-linearizable.

Proof. As in the proof of Lemma 4.1, we denote by C anyone of the two sets A or
B, indistinctly and by p = (c, c), with c2 = c + 1, the corresponding fixed point,

(a, a) or (b, b), where a = 1+
√
5

2 and b = 1−
√
5

2 .
To prove the theorem we will use Corollary 2.6 to show that the local Cω-

linearization ϕ at the fixed point given in the proof of the Montgomery-Bochner
Theorem is indeed a global Cω-linearization from C into R2.

As a first step we compute ϕ and prove that in both cases it is a locally Cω

invertible map.
By the proof of Montgomery-Bochner Theorem we know that the linearization

near p is given by the map

ϕc(z) =
1

5

4∑

i=0

L−i(G|iC(z)),

being z = (x, y) and L(x, y) = (y,−x+ y/c). After some computations we get that
ϕc(x, y) = (ϕ1

c(x, y), ϕ
2
c(x, y)), where ϕc : C → ϕc(C)

ϕ1
c(x, y) =

1

5

(
2x+ (c− 1)

(
y +

x+ 1

y

)
− c

(
1 + y

x
+

1 + x+ y

xy

))
, (13)

ϕ2
c(x, y) = ϕ1

c(y, x) = ϕ1
c

(
y,

1 + y

x

)
, (14)

and moreover that

det
(
d(ϕc)(x,y)

)
=

1

25x3y3

(
(2 + c)

(
x3y3 +x4y +y4x+x3 +y3 +2x2 +2y2 + x+ y

)

+ (−1 + 2 c)x2y2 (x+ y) + (1 + 3 c)xy
(
x2 + y2

)

+ 5cxy (x+ y) + (3 + 4 c)xy
)
:=

Φc(x, y)

25x3y3
. (15)

Note also that when c = a = 1+
√
5

2 , then 2 + c,−1 + 2c, 1 + 3c, c and 3 + 4c are

all positive. Hence det (d(ϕa)) |A > 0 and we have proved that ϕa : A → R2 is a
local Cω diffeomorphism.

We claim that det (d(ϕb)) |B does not vanish. Since the proof of this fact requires
some more computations we postpone it for the moment. From the claim we get
that ϕb : B → R2 is also a local diffeomorphism.

Let us prove now that in both cases ϕc : C → ϕc(C) is a proper map.
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When C = A, consider the map ϕa : A→ R2. To see that it is proper it suffices
to prove that given a sequence {pn = (xn, yn)}n of points contained in A, that
approaches either to its boundary ∂A = {(x, y) : x = 0, y ≥ 0} ∪ {(x, y) : x ≥
0, y = 0} or to infinity, then {ϕa(pn)}n tends to infinity.

The above assertion is easy to prove by doing a case by case study. For instance,
assume that {xn}n tends to infinity and {yn}n remains bounded. Then, by (13) we
get that {ϕ1

a(pn)}n tends to +∞ because the negative terms remain bounded. The
other cases follow similarly.

To prove the properness of ϕb : B → ϕb(B) is a little bit more complicated.
Clearly ϕb extends continuously to the boundary of the triangle B except at the
points (−1, 0) and (0,−1). Some computations show the following facts:

(a) The image by ϕb of the segment given by the equation x + y + 1 = 0 with
x ∈ (−1, 0) is the segment ℓ1 with endpoints (−1, 2− b) and (2− b,−1).

(b) The image by ϕb of the segment given by the equation x + 1 = 0 with y ∈
[−1, 0) is the segment ℓ2 with endpoints (2b− 2, 2− b) and (−1,−1).

(c) The image by ϕb of the segment given by the equation y + 1 = 0 with x ∈
[−1, 0) is the segment ℓ3 with endpoints (2− b, 2b− 2) and (−1,−1).

(d) The set of accumulation points of ϕb(z) when z tends to (−1, 0) and z ∈ B is
the segment ℓ4 with endpoints (2b− 2, 2− b) and (−1, 2− b).

(e) The set of accumulation points of ϕb(z) when z tends to (0,−1) and z ∈ B is
the segment ℓ5 with endpoints (2− b, 2b− 2) and (2− b,−1).

The five segments described in the above list determine a pentagone in R2. We
denote by P the open bounded component of R2 \ ∪5

i=1ℓi . Clearly ϕ(B) ⊂ P
and for all pn ∈ B with pn → ∂(B) we get that ϕb(pn) → ∪5

i=1ℓi = ∂(P ). Thus
ϕb : B → P = ϕb(B) is a proper map.

In short, we have proved that for C either A or B, the map ϕc : C → P = ϕc(C)
given in (13) is proper and a local Cω diffeomorphism. Hence by Corollary 2.6 the
theorem follows.

To end the proof we have to prove the above claim. Concretely we will prove
that the function Φb(x, y) given in (15) does not vanish on B. To do this it is more
convenient to use the new coordinates u, v given by x = u − 1, y = v − u − 1. By
using them we write

Φb(x, y) = Φb(u− 1, v − u− 1) := D(u, v),

where D(u, v) is a polynomial of degree 6. It is clear that it suffices to prove that
D(u, v) does not vanishes on the interior of a new triangle, B′ that in the (u, v)
coordinates has the boundary given by the straight lines u = 0, v = 1 and u−v = 0.
In Figure 1 we illustrate the situation by plotting the triangle B′ and the algebraic
curve D(u, v) = 0. Let us prove this fact.

Our proof follows by showing that for each v ∈ (0, 1), the equation D(u, v) = 0
has always six simple real solutions and that none of the corresponding points is
inside the triangle B′. This result will be a consequence of the following facts:

(a) The resultant of D(u, v) with respect to v does not vanish when u ∈ (0, 1).
(b) The functions D(0, v) and D(v, v) do not vanish when v ∈ [0, 1).
(c) The function D(u, 1) does not vanish when u ∈ (0, 1).
(d) The function D(u, 0) has six real roots, all of them simple and the correspond-

ing points are outside B′.
(f) The algebraic curve D has two branches at each of the points (0, 1) and (1, 1)

and none of them enters in the triangle B′.
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Figure 1. Triangle B′ and the algebraic curve D(u, v) = 0.

Before proving the above statements let us see how our result follows from them.
By item (d) we know that D(u, 0) has six simple real roots, all outside B′. First
of all, let us see that for all fixed v ∈ [0, 1) the polynomial Dv : u → D(u, v) has

always six simple real roots. Since Dv(u) = (
√
5 − 5)/2u6 + · · · and by item (a),

Res(D(u, v), v) is not zero in our region, we know that there are no multiple roots.
Since the roots depend continuously (even in the complex) on v and the coefficients
ofDv are real, the number of real roots has to be always six. Again by the continuity
of the roots with respect to v, the only way for changing the number of real roots
of Dv in B′ is that for some v ∈ (0, 1) some root passes through its boundary.
Precisely, items (a)–(c) and (f) prevent this fact. Thus the result follows.

Let us prove statements (a)–(f). Straightforward computations give that

Res(D(u, v), v) =

(
500

√
5− 1125

256

)
u2(u− 1)2

(
8u2 + (3

√
5− 7)u+ 15− 5

√
5
)
×

(
2u3 + (

√
5− 5)u2 + (9− 3

√
5)u− 2

)2 (
2u− 3−

√
5
)3

×
(
−2u3 + (9 + 3

√
5)u2 − (25 + 13

√
5)u + 22 + 12

√
5
)2
.

From the above expression it is easy to prove statement (a).
Simple computations give that D(0, v) = D(v, v) = p(v) and D(u, 1) = u2p(u),

where

p(v) =

(√
5− 5

4

)(
2v2 − 2v − 5− 3

√
5
)
(v − 1)2

and that

D(u, 0) =

(√
5− 5

16

)(
2u4 − (15 + 5

√
5)u2 + 15 + 7

√
5
)(

4u2 + 2
√
5− 6

)
.

Hence we can easily check that items (b), (c) and (d) follow.
Finally, to prove statement (f), observe that near (0, 1) we have

D(u, v) =

(
5 + 5

√
5

2

)[
u2 + (v − 1)

2
]
−
(
15 + 9

√
5

2

)
u (v − 1) +O3(u, v − 1),
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and near (1, 1),

D(u, v) =

(
5 + 5

√
5

2

)
(u− 1)

2

+

(
5−

√
5

2

)[
(u− 1) (v − 1)− (v − 1)

2
]
+O3(u − 1, v − 1).

Hence in both cases the two lines given by the quadratic part of D near the points
does not enter inside B′. This fact implies that locally the same result holds for the
curve D(u, v) = 0. Hence the claim follows.

We could also consider the same questions that we have developed in this section
for the two dimensional Lyness map, but for the three dimensional Lyness map,
H(x, y, z) = (y, z, 1+y+z

x ). All that we have done in this direction seems to indicate
that the results would be the same that in the two dimensional case, and that the
techniques to prove them are also the same, but with much more computational
effort. For instance it can be proved that H and its iterates are defined in R3 \ L
where L is now the union of the surfaces x = 0, y = 0, z = 0, y = −(x+1)(z+1), x+
y = −1 and z + y = −1. Then R3 \ L is divided into a finite number of connected
components and only two of them are fixed by H. They are A = {(x, y, z) ∈ R3 :
x > 0, y > 0, z > 0} and the bounded region B limited by the two planes x+y = −1,
z+y = −1 and the surface y = −(x+1)(z+1). Moreover each one of them contains
a fixed point (c, c, c) with c2 = 2c + 1. In both cases it is also not difficult to get
the candidate ϕc to be the linearization, given similarly that in the proof of the
Montgomery-Bochner Theorem. Moreover when C = A it is easy to see that ϕa

is a local diffeomorphism. On the other hand, at least at the level of numerical
experiments, it also seems true that when C = B, the determinant of d (ϕb) on B
does not vanish, and so, that ϕb is also a local diffeomorphism. We have not done
all the details but we believe that H |C , for C either A or B, is linearizable and the
linearization is given by ϕc.

4.2. Max-type equations. By Corollary 2.4 it is clear that the well-known ex-
amples

xj+2 = max(xj+1, 0)− xj (5-periodic), xj+2 = |xj+1| − xj (9-periodic), (16)

appearing for instance in [15], C0-linearize. This subsection is devoted to find a
piecewise linear linearization of the 5-periodic example and indicate the main steps
to perform a similar study for the third order Lyness recurrence,

xj+3 = max(xj+2, xj+1, 0)− xj , (8-periodic). (17)

The first equation of (16) and equation (17) are often also called Lyness equations
because they can be seen as the limit when λ tends to infinity of the difference
equations

zn+2 = logλ (1 + λzn+1)− zn

and

zn+3 = logλ (1 + λzn+1 + λzn+2)− zn,

which (for λ > 0 and positive initial conditions) are clearly trivially conjugated to

the two and three dimensional Lyness equations, respectively, by means of ψ̃(x) =
λx.
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Proposition 4.3. The map

F (x, y) = (y,max (0, y)− x) (18)

is globally conjugated to the linear 5-periodic map

L(x, y) = (y,−x+
√
5− 1

2
y),

by means of a piecewise linear conjugation.

Proof. Using that our map F (x, y) is the limit when λ tends to infinity of the map
(y , logλ(λ

0 + λy)− x) it is easily seen that each five-cycle is given by

x , y , max (0, y)− x , max (0, x, y)− x− y , max (0, x)− y.

A simple calculation shows that the two components of the map ψ = 1
5

∑4
i=0(L

−i ◦
F i) are

ψ1(x, y) =
1

5

(
(4 + 2k)x+ (k + 1)(y −max (0, y)−max (0, x, y)) + kmax (0, x)

)

and ψ2(x, y) = ψ1(y, x), where k = (
√
5−1)/2. The map ψ(x, y) is piecewise linear.

In fact, it can be written as

ψ(x, y) =





((2k + 3)x , −(k + 1)x+ (3k + 4)y) /5 if (x, y) ∈ R1,
((2k + 3)x+ (k + 1)y , −(k + 1)x+ (2k + 4)y) /5 if (x, y) ∈ R2,
((2k + 4)x− (k + 1)y , (k + 1)x+ (2k + 3)y) /5 if (x, y) ∈ R3,
((2k + 4)x+ (k + 1)y , (k + 1)x+ (2k + 4)y) /5 if (x, y) ∈ R4,
((3k + 4)x− (k + 1)y , (2k + 3)y) /5 if (x, y) ∈ R5,

where the regions Ri are defined by

R1 = {(x, y) ∈ R2 : y ≥ 0, x− y ≥ 0}, R2 = {(x, y) ∈ R2 : x ≥ 0, y ≤ 0},
R3 = {(x, y) ∈ R2 : x ≤ 0, y ≥ 0}, R4 = {(x, y) ∈ R2 : x ≤ 0, y ≤ 0},
R5 = {(x, y) ∈ R2 : x ≥ 0, y − x ≥ 0}.

These five regions are delimited by five half-straight lines, starting at the origin,
and the map ψ sends these lines to other five different half-straight lines. Further-
more, the restriction of ψ at each Ri is a linear map with positive determinant, so
each of these linear maps preserves the orientation. Hence, ψ is a homeomorphism
from R2 to itself.

In a similar manner, if we consider equation (17), for each x, y, z ∈ R the eight-
cycle can be determined trough the expressions:

x, y, z,m1 − x,m2 − x− y,m3 − x− y − z,m2 − y − z,m4 − z, (19)

where

m1 = max (0, y, z), m2 = max (0, x, y, z, x+ z),
m3 = max (0, x, y, 2y, z, x+ y, x+ z, y + z), m4 = max (0, x, y).

A computation similar to the one performed above and inspired again by the proof
of the Montgomery-Bochner Theorem by taking L(x, y, z) = (y, z,−x + ky + kz)

with k =
√
2− 1, gives the function ψ(x, y, z) defined in components as:
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ψ1(x, y, z)=
1

8

(
(8 + 2k)x+ (2 + 2k) y + 2z − (2 + k) (m1 +m3) + km4

)
,

ψ2(x, y, z)=
1

8

(
(2 + 2k)x+ (8 + 2k) y + (2 + 2k) z +m1 − (4 + 2k)m2−m3+m4

)
,

ψ3(x, y, z)=
1

8

(
2x+ (2 + 2k) y + (8 + 2k) z + km1 − (2 + k)(m3 +m4)

)
.

Clearly ψ(x, y, z) is again a piecewise linear map. To prove that it is bijective is a
tedious task because the whole space R3 is divided into many pieces. Nevertheless on
each of these pieces is a linear map. Although we have not performed the complete
study we are convinced that it is a homeomorphism from R3 into itself.

4.3. Periodic recurrences constructed from symmetric functions. We recall
the nice family of periodic recurrences introduced in [2]. Let U ⊂ Rk+1 be an open
set and G : U → R a symmetric map (i.e. invariant with respect any permutation
of the (k + 1) variables) and such that the function

µ −→ G(y1,y2,...,yk)(µ) := G(y1, y2, . . . , yk, µ)

is invertible for all points (y1, y2, . . . , yk) such that (y1, y2, . . . , yk, λ) ∈ U for some
λ ∈ R.

Theorem 4.4. ([2]) Let G and U be defined as above. Let p be a positive integer
such that p > n and λ any real fixed number. Suppose that p− n divides n and set
ℓ = n/(p− n). Then the recurrence associated to the map

F (x1, x2, . . . , xn) =
(
x2, . . . , xn−1, G

−1
(x1,x1+(p−n),...,x1+(ℓ−1)(p−n)),

(λ)
)

is periodic of period p.

Remark 4.5. Observe that all the periodic recurrences given in Theorem 4.4 with
p−n > 1 are derived from the (n+1)-periodic recurrences corresponding to p = n+1,
given by the map

F (x1, x2, . . . , xn) =
(
x2, . . . , xn−1, G

−1
(x1,x2,...,xn)

(λ)
)
. (20)

By using this remark, Theorem A and the easy fact that when a difference
equation is Ck-linearizable then all the difference equations derived from it are as
well Ck-linearizable, we get the following result:

Theorem 4.6. Consider a periodic difference equation of the ones given in Theo-
rem 4.4 defined on some open connected set U. Then it is linearizable.

Notice also, that from the symmetry of G it is easy to see that all the recurrences
given in Theorem 4.4 linearize into only one of the two linear possible models given
in Theorem A, the one given by the map L1.

In order to see some concrete recurrences for which the above result works we
give a family of examples. It includes some of the ones given in [2]. Consider the
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symmetric polynomials in k variables:

σ0(x1, . . . , xk) = 1,
σ1(x1, . . . , xk) = x1 + · · ·+ xk,
σ2(x1, . . . , xk) = x1x2 + x1x3 + · · ·+ xk−1xk,

...
...

...
σk−1(x1, . . . , xk) = x1x2 . . . xk−1 + x1x2 . . . xk−2xk + · · ·+ x2x3 . . . xk,
σk(x1, . . . , xk) = x1x2 . . . xk.

Associated to them and for k = n+ 1 take the polynomial

G(x1, x2, . . . , xn, µ) =
n+1∑

i=0

αi σi(x1, . . . , xn, µ),

where αi are fixed arbitrary real numbers. Then if we solve G(x1, x2, . . . , xn, µ)=λ
we get that

µ = G−1
(x1,x2,...,xn)

(λ) =
λ−∑n

i=0 αi σi(x1, . . . , xn)∑n
i=1 αi σi−1(x1, . . . , xn)

.

Hence, in a suitable open set U , the recurrence given by the map

F (x1, x2, . . . , xn) =

(
x2, . . . , xn−1,

λ−∑n
i=0 αi σi(x1, . . . , xn)∑n

i=1 αi σi−1(x1, . . . , xn)

)

is (n + 1)-periodic. In particular, when α2 6= 0, the second order 3-periodic recur-
rences generated by this method are

xj+2 =
a− b(xj + xj+1)− xjxj+1

b+ xj + xj+1
,

where a = (λ− α0)/α2 and b = α1/α2 are arbitrary real parameters.

4.4. Coxeter difference equations. For each n ∈ N, Coxeter gives in his nice
paper [14] the following (n+ 3)-periodic recurrences:

xj+n = 1− xj+n−1

1− xj+n−2

1− xj+n−3

1− · · · xj+1

1− xj

:= fn(xj , xj+1, . . . , xj+n−1).

For instance, for n = 2, 3, we get

xj+2 = 1− xj+1

1− xj
, and xj+3 =

1− xj − xj+1 − xj+2 + xjxj+2

1− xj − xj+1
,

respectively. Observe that for n = 2 the above recurrence corresponds, in the new
variables uj = xj − 1, to the 5-periodic Lyness equation. Coxeter’s proof of the
global periodicity is geometrical. In [11] we provide an algebraic proof together
with some other properties of these recurrences. In particular we show that they
have [n+2

2 ] different fixed points.
We do not know a way of studying the problem of global linearization of the

general Coxeter recurrences at each of the connected components which contains
each of the [n+2

2 ] fixed points. For instance, when n = 3, the 6-periodic map
associated to the recurrence is

F3(x, y, z) =

(
y, z,

1− x− y − z + xz

1− x− y

)
.
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It is well-defined in R3 \ L where L is the union of the surfaces x = 0, y = 0, z =
0, 1−x−y−z+xz = 0, x+y−1 and y+z−1 = 0. Then the fixed point (13 ,

1
3 ,

1
3 ) is in

the invariant bounded connected component limited by the planes x = 0, y = 0 and
z = 0 and the surface 1− x− y− z+ xz = 0. The other fixed point (1, 1, 1) is in an
unbounded invariant connected component. From this study and using similar tools
that the ones introduced to study the Lyness type recurrences we are convinced that
we could prove a global linearization result for this case. Nevertheless a new tool,
maybe using the geometric flavor of the Coxeter recurrences, should be introduced
to study the problem for arbitrary n.

4.5. Acknowledgements. We thank Rafael Ortega for stimulating discussions on
periodic maps.
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