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Abstract

We prove that any classical Liénard differential equatibegree four has at most one
limit cycle, and the limit cycle is hyperbolic if it exists.his result gives a positive answer to
the conjecture by A. Lins, W. de Melo and C. C. Pughifp 1977 about the number of limit
cycles for polynomial Liénard differential equations foe= 4.

2000 Mathematics Subject Classificati@#C07, 34C08, 37G15.

Keywords and phrasesiénard equations, limit cycle.

1 Introduction

The study of Liénard differential equations has a longdnisand a lot of results were obtained,
see B] for example. A classical polynomial Liénard differeftguation can be written as a planar
system

& =y—F(z),

y. = -,
whereF'(z) is a polynomial of degree. In 1977 A. Lins, W. de Melo and C. C. Pugh conjectured
in [4] that the classical Liénard differential equation of degn > 3 has at most[”T‘l] limit
cycles, Where["T‘l] means the largest integer less than or equégtb. They also proved that
the conjecture is true far = 3. In 2007 F. Dumortier, D. Panazzolo and R. Roussé&ijefve
a counterexample to this conjecture for= 7 and they mentioned that it can be extended to
n > 7 odd. Recently, P. De Maesschalck and F. Dumortier proveil ithft the classical Liénard
differential equation of degree > 6 can have["T‘l] + 2 limit cycles. In the last two papers the
discussions are based on singular perturbation theorythenduthors used relaxation oscillation
solutions to study the number of limit cycles.

In 1982 Xianwu Zeng gave some results about the uniquendssibtycle for Liénard dif-
ferential equations ind, 7]. As an application he found a sufficient condition to guéeanthe
unigueness of limit cycles for a subclass of classical aidrdifferential equations of degree 4.
In Remark3.9 we will precisely explain how this condition can be appliedpartial cases in our
study. Some techniques in this paper are stimulated orlweddrom Zeng's work. We will prove
the following theorem.

(1.1)
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Theorem 1.1. Any classical L&nard differential equation of degree four has at most ontli
cycle, and the limit cycle is hyperbolic, if it exists.

Theoreml.1shows that the Lins-de Melo-Pugh’s conjecture is also toue: f= 4. So at this
moment only remains open the conjecturesior 5. We give a setting of the equation and some
lemmas in Section 2, then prove Theorehisin Section 3.

2 Preliminaries
Consider a classical Liénard Equation of the forinl), where F'(x) is a polynomial of degree
four.

Lemma 2.1. Without loss of generality, we can transfo(fin1) to

Y= _(x - )‘)7 1)

where) is a constant, and the functiafi has the form

b 1
F(x) = §x2 + gaz?’ + 1:1:4, (2.2)

satisfyinga > 0,b > 0 anda > %bQ. Moreover, the shape of the curg := {(z,y) : y = F(x)}
has only 4 cases, shown in Figure 1. The shape looks as in égséd{ > %bZ; in case (B) if
a = 1b% wherez’ = —1b corresponding to the inflection point; in case (CE#? < a < 1b%,

where
1 1
Ty = 5(—1) — Vb2 —4da) <zxpy = 5(—6 + V0% — 4a), (2.3)

corresponding to the left local minimum and the local maxmrespectively; and in case (D) if

a = 2b% wherez,, = —2 andz); = —£. Inthe last casé”(z) = 12%(z + 2)2.
y
Cr
x : | E
0 ' xm Ty -2 %
(A) (C) (D)

Figure 1. The different shapes 6%

Proof. SinceF in (1.1) is a polynomial of degree 4, its graph has at least one lotsd@e
point. We shift the origin to this point, thei.(l) has the formZ.1) with

F(z) = az® + Ba® + ya?,

wherey # 0. Doing the change of variables and parametey, \) — ((47)*%3:, (47)*§y, (47)*%/\),
equation 2.1) keeps the same form with as in @.2).
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Since F'(z) = x(a + bz + %), Cr has one or two local minimum point(s). If the local
minimum is unigue, then it is the origin, and we have> 0. If b < 0, then doing the change of
variables and parametér, ¢, \) — (—xz, —t, —\), the form of the equation and the shape’of
do not change, but in the new variables the equatiorbha$).

If Cr has two local minimum points and the minimum values are w@ffg then we put the
origin at the lower one. If the other minimum point is locatéght to the origin, then doing the
change of variables and parametert, \) — (—z,—t,—\) we move it to the left. If the two
local minimum points have the same minimum value, we put tigéroat the right one. Thus the
left local minimum and the unique local maximum appeas,gtandx); respectively, with the
expressions given ir2(3). In this case, since,, < zy; < 0 anda > 0, we certainly havé > 0.

By usingF(z) = 2?(% + 2z + 12?) > 0 we havea > 202, The classification of shapes for
Cr is easily obtained fron#” (z) = x(a + bz + x?). Note that in case (C) we have the estimates

—2 <y, <-t<ay<-t<o. O

Lemma 2.2. Under the assumptions of Lemi@d. if system(2.1) has a limit cycle, them > 0,
b > 0, and the value oh satisfies one of the following necessary conditions:

(i) A € (—2£,0) in cases (A) and (B);

(i) A € (zm,za) U (—2,0) in case (C);

(i) A€ (=2, -5)u(-2,0) in case (D).

Proof. If system @.1) has a limit cycle, it must surround the unique singular pdif, =
(A, F(\)). We do the change of variables= = — \,w = y — F(\), which moves the origin
to M,. Denote the part ot for z > 0 by ]-“j and reverse the left part (far < 0) to right
by symmetry with respect te-axis, and denote it by, . Itis well known that, see for instance

the Exercise 1 of Chapter 4 ir8]f a necessary condition for the existence of a limit cycle is
FY nFy \ {0} # 0, see Figure 2.

Y

A O ©

Figure 2. ComparingFy with Fy

Let F1(z) = F(z + \), then itis easy to find that; () — F1(—z) = 0 is equivalent to

z{<g+/\>z2+/\()\2+b/\+a)}:0, (2.4)

wherea > 0 andb > 0, see Lemm&.1 The solutionz = 0 corresponds to the intersection of
]—“A+ andF, atthe origin. Itis clear that ib = 0, then .4) has no any positive solution far, so
we haveb > 0 anda > 2b* > 0.



In cases (A) and (B), by Lemnialwe haveb? — 4a < 0, if (2.4) has a positive solution in
then\ € (—£,0).

In case (C) we have\? + bA + a) = (A — z,,) (A — zp7) andaz,, < 27 < —% < 0,if (2.4
has a positive solution inthen\ € (z,,, za) U (—2,0).

Finally, a = 2b? in case (D), and\? + bA +a) = (A + 2)(A + &), we can similarly find the

necessary conditioh € (—2, —%) U (-2,0). O

From the proof of Lemm&.2we have the following result.

Corollary 2.3. For system(2.1), the set}";r N F, \ {0} consists of at most one point.

To study the properties of the cur¢g-, we define a functio = z(x) by F(x) = F(z) for
Z < 0 < z. Note thaty = F'(x) has an inverse function = g(y) for x > 0. In cases (A) and (B)
the functionz(x) is single-valued. In case (C) it is single-valued fo€ (0, z) U (z, +00), where
T =g(F(xy,)) andz = g(F(xpr)), and three-valued for € (z, ). Let

u(z) =z + 2(z), v(r) =zz(z) <0, forz > 0. (2.5)

Lemma 2.4. In cases (A) - (C) witlu > 0 andb > 0 we have-2 < u(z) < 0 for z € (0, +o0),
whereu(z) is defined for any branch af in case (C).

Proof. By usingF'(z(z)) = F(x) itis easy to find that
u(z) (3u(x)? + 4bu(x) + 6a) = 2(3u(x) + 2b) v(z). (2.6)

Note thata > 0,0 > 0, v(z) < 0, andu(z) — 0 asxz — 0 (in case (C) this is true for the nearest
branch ofz to they-axis). Henceu(z) < 0 as0 < = < 1. For the other branches afin case
(C), |z| is bigger, hence we still hawe(x) < 0. On the other hand,

2.\? 2
3u(x)? + 4bu(x) + 6a = 3 <u(ﬂc) + §b> +6 <a - §b2> > 0,

because: > 2b? (see Lemma.1). Hence from 2.6) we findu(z) < 0 and3u(z) + 2b > 0 for
all z > 0, because(z) < 0 forall z > 0. O

3 Proof of Theorem1.1

By Lemmas2.1 and2.2 we only need to consider the uniqueness of limit cycles fetesy @.1)
under the conditions described in these lemmas. More igaise will prove the following result.

Theorem 3.1. If system(2.1) has a limit cycle, then it is unique and hyperbolic. Moreopviee
limit cycle is stable in cases (A) and (B), and in cases (C) @dwith A € (—%, 0); unstable in

case (C) with\ € (z,,,, zar) and in case (D) with\ € (—%b, —g).

Any limit cycle of system 2.1) must surround the unique singular poiit £'()\)). For con-
venience we let = x — X andy = y — F'(\), then still use(z, y) instead of(z, ), system 2.1)
becomes

Y= —x.

(3.1)
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whereE(z) = F(z + \) — F(\) = a1z + asa? + aza® + 2%, and
ay =Ma+bA+ N2, ay = %(a + 26X\ +3)?), a3 = %(b +3)). (3.2)

By using Lemmag.1and2.2it is easy to verify the following result.

Lemma 3.2. If system(3.1) has a limit cycle, then the following statements hold.

(i) a1 < 0 < agin cases (A), (B), and in cases (C) and (D) witle (—%,O).

(i) a1 > 0 > ag in case (C) With\ € (z,,, zr), and in case (D) withy € (-2, —2).
Lemma 3.3. Supposer > 0,b > 0. If A € (—%,0), then% (@) has exactly one zero point
x*, located in(—o0, 0). Moreover in cases (C) and (D)

x* € (xm — A\, xar — A). (3.3)

In case (C) ifA € (zm,z), let G(z) = E(—x), then-L (G;g’”)
located in(—o0, 0), and more precisely

) has exactly one zero point',

x* e (MA—xp). (3.4)
Proof. Calculation shows
d (E'(x) 1 3 2 2
— = — 22>+ (b+ — + bA 4+ a)l. .
< > 3 2z (b+ 3Nz A(A bA + a)] (3.5

It is easy to check that iA < (—%,0) thenb + 3\ > 0 and —A(\? + bA + a) > 0, hence
the above function has no real solution for> 0. It is well-known that for a cubic equation
ard + Ba? + v = 0, if A = ay(27a?y + 453) > 0, then the equation has exactly one real
solution. For the numerator 085 we havea > 0, 8 > 0 andy > 0, henceA > 0. So 3.5) has
exactly one zero point for < 0. Since in cases (C) and () (z) = F'(z + \) has two negative

zeros atr,,, — A < xps — A, the unique zero o% (%) must between them, implyin@(3).

We next consider the casec (x,,, zar). LetG(z) = E(—=z), then

d (G'(z) 1 3 2 2

el = 223 — . .

dac( . ) x2[ac (b+3X)z" + A(A* + bA + a)] (3.6)
In this case we have+ 3\ < 0 and\(\? + b) + a) > 0, hence the above equality is positive for
x > 0, and still has exactly one zero point fer< 0. (3.4) can be checked similarly. O
Lemma 3.4. Suppose: > 0,b > 0 and\ € (—%,O). Letz = Z(x) be defined by (z) = E()
for z < —\ < z. Then in cases (A) - (C) the functioriz) = % — @ has exactly one zero

pointx; > —A\, satisfying(z — z1)o(x) > 0. Moreoverz(z;) > x,, — A in case (C).

Proof. Itis convenient to us€ = = + \, and to prove that (§) = % - % has exactly

one zero folf < 0 < &, whereF is given in €.2), andé = £(¢) is defined byF (¢) = F(£). In

fact¢ and¢ here are the: andz in Lemma2.4. It is easy to findr (&) = —W where

FED = —8E+E+Db—N+ME+ @) +AE+ D + Xa a7
= —v(u+b+A) + A’ +bu+a), -
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u=¢+¢andv = ££. By Lemma2.4, in cases (A) - (C)-2 < u < 0 for & > 0. Solvingv

from (2.6) and substituting it in%.7), we findo (§) = %, where

g(u) = =3u* + 3\ — Th)u® — 2(2b% — 3bX + 3a)u® + 2b(2b\ — 3a)u + 4abA. (3.8)

Note thatg(—2) = 22(b+3X)(9a — 2b%) > 0 andg(0) = 4abX < 0, we can use Sturm Theorem
to obtain thatg(u) has exactly one root for & (—%b, 0), which implies the desired result. We
give the detailed computations in Appendix 1. Note #h@dt) = e\ < 0 and in case (C) we have
o(&) > 0 whené(€) = x,,, hencei () >z, — A. O

Suppose that systers.() has a limit cycleL, thenF," N F, \ {O} # 0. By Corollary2.3,
it contains a unique point. Let = ¢(x) for y > E(z) andy = ¢(x) for y < E(z) are the
expressions of., andL intersectCg at pointsP and(@, wherezp < 0 < zq, and intersects the
y-axis at points4 and B, wherey4 < 0 < yp.

We will study the sign of the following integral alongfor system 8.1).
! /

B, | _E
x 1+ Ex) —vy

Ip(L) = —j{ E'(z)dt = dz, (3.9)
L+ L+

where L+ means that the integral is taken alohglockwise, given by the direction of the vector

field (3.1). The different forms of (L), listed above, will be used in different places.

Since—F’(x) is the divergence of vector fiel®(l), the following result is easily obtained
from Theorem 2.2 off] or Theorem 1.23 of{] for instance.

Lemma 3.5. If I5(L) < 0 (or > 0), then the limit cycld. is stable (or unstable) and hyperbolic.

Lemma 3.6. Suppose that/(x) < 0 < E(—z) for 0 < z < 1, and there is azy > 0 such that
E(z¢) = E(—xz9) and E(z) < E(—z) for 0 < = < x, then the following statements hold:

() Y(—z) <Y(z) <0< p(—z) < p(x) for0 < = < xp.

(i) zp < —x09 @ndzg > xo.

(i) yp = F(zp) <yq = F(zq).

(iv) In the regionzy; — A < = < +4oo system(3.1) has at most one limit cyclé, and
Ip(L) < 0if L exists.

Proof. Statement (i) follows easily from the fact that= ¢(x) andy = (z) satisfy the
differential equationg—g = ﬁ and by using the Differential Inequality Theorem. Statetsen
(i) and (iii) follow from [5], aaso can see the formula (4.47) &fi [ Statement (iv) follows from

Lemma3.3and the famous Uniqueness Theorem of Zhang, see Theoreri[£]6 o O

Definition 3.7. A piece of arc{(z,y) : y = E(z),0 < a < g} C Cg is called aU-arg if
E(a) = E(f) andE(z) < E(B) for all z € («, 5). Similarly, an arc{(z,y) : y = E(z),a <
f <0} C Cgiscalled aA-arg if E(«) = E(B) and E(x) > E(pB) forall z € (a, 8).

Note that by Lemma&.2, if system B8.1) has a limit cycle and’r has two local minimum
points then these two minimum points are located in two salébe origin, hence &/-arc or a
A-arc, that we will treat, is simply a convex or concave cunithva unique local minimum or
local maximum.



Lemma 3.8. Suppose that syste8.1) has a limit cycleL, and that in the bounded region iy
the curveCy contains al/-arc or a A-arc, forz € [a, /], then

Ig[a, p] == —/ E'(x)dt <0.
{z€[e,B]}NLT

Proof. Suppose that the orbit meets the curvé&'r at points P and () respectively, then
y = ¢(z) is monotonically increasing far € (zp,0) and decreasing for € (0,z¢), and
y = ¢ () is monotonically decreasing fare (zp,0) and increasing for € (0, zq).

Y

Figure 3. The curv&'r has al/-arc.

We first consider thé/-arc forz € [, 8] (o = 0in Figure 3). Note thafp|a, 8] = I5[o, ]+
1], 8], wherel%, and I, are integrals taken along= ¢ () and alongy = () respectively.
By formula 3.9) we have

B 7& s Bﬂ T
Ig[a’ﬁ]_/ E(s)—«p(S)d +/v E(x)_“)(x)d ’

«

where~ corresponds to the minimum point on thlearc. As we did in the proof of Lemma 4,
i(z) € (a,7) is the function defined by(z) = E(z) for z € (v,3), then% = ggg We
change variable in the first integral By= z(z), then we find

b () (ole) — p(2(@)
Soa = Z. .
Tile. A) / B0 — @) BEGE@) — eG@)" (3.10)

Since forz € (v,5) we haveE'(z) > 0, p(x) < ¢(&(z)), E(z) < ¢(z) and E(Z(x)) <
©(%(x)), we obtainI £ [, 8] < 0. Similarly, we getIE[ , 3] < 0. Note thaty)(z) > 1(
x € (v, ), but the integral is taken frori to « for x.

The proof for aA-arc forx < 0 is completely similar. O

&
—~
8
Nt
—
(@]
=

Proof of Theorem 3.1

(I) cases (A) and (B).
We suppose that systerf.{) has a limit cycleL, expressed by = ¢(x) aboveCr and by
y = ¢(x) belowCg, andL intersectCg at P and (@ respectively (we will use these notations in
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all cases). Sinc&(z) < 0 < E(—z) for 0 < z < 3, andCg has a unique minimum point, we
havexy > 3, whereE(xg) = E(—x9). By Lemma3.6, xp < —xg, xg > xo > 5, andyg > yp,
see Figure 4.

Figure 4. The cases (A) and (B).

We first prove
IE[O,.Z‘Q] < IE[ﬁ,l‘Q] < IEW,ZL‘Q*], (3.11)

where@Q* = (Cg N{y = yp}) \ {P}, and

TQ* E/(ZE) El(.’L’)

1518, xo+] = / [ - dx,
b= | Ee - Bo - @
wherey = ¢*(z) andy = ¢*(x) are orbits of system3(1) from pointQ*, above and below'r
respectively. Itis obvious that*(z) < p(x) andy*(x) > ¥(z) for f < x < zg-.

Since{z € [0, 4]} N Cg is aU-arc, by Lemm&.8we havel[0, 3] < 0. On the other hand
IE[O,QCQ] = IE[O,B] + IE[ﬁ,xQ], henceIE[O,xQ] < IE[ﬁ,l‘Q].

Denote the region for > § and bounded by the orbits and L* by G, and using the Green
formula we obtain

I8, 2q+] — Ig[B,zq] = //G % <Ea(f)> dxdy + Eéﬂ) (yp—ya+yp —yc). (3.12)

Note thatE’(3) > 0, and by Lemmz8.3 we have & E;ff”) > 01in G, becauser > 3 > 0 and
A € (—2,0). Hencel [, 2¢+] — Ig[B,z¢] > 0, and B.11) is proved.
We next prove

Ig[zp,0] + IE[B,ZL‘Q*] < 0. (3.13)

For this purpose we use the functién= z(x), defined byE(x) = E(z) for z € [3,z¢g-] and
z € [zp,0], then

) 0 ’ s T o* ,LU
If[wp, 0] + If [B,20+] = /w ﬁdﬁ/ﬁ ) ﬁ“'



Changing variable by = Z(x) in firstintegral and notindZ(z) = E(z) andi’(z) = E'(z)/E' (%),
we have

. [ E'(x) (¢ (z) —
If[zp, 0] + If [B,q-] —/ﬁ (E(z) — ¢*(2))(E(Z(z)) — p(&(x)))

We prove that

n(z) = p(z(z)) —¢*(x) >0, forze B, xg). (3.14)

It is easy to see)(3) = ¢(0) — ¢*(8) > 0 andn(zg+) = p(rp) — ¢*(zg-) = 0. We let
w(x) = ¢(Z(x)), then

dw(z) _ dpdi z E'(z) x E’(:I:)/ E/(:Z‘)

z

dv  didx E)- @) E () E)-—wl) =

Note thatE(z) = F(Z) < w(x), and @/ @ <lfor0<z—pg<1,sincez(z) - 0—-0
asr — [+ 0, we have

dw(x) x
dr E(z) —w(z)’

O<z—-pB<l.

On the other hand

do*(z) x
dr  E(z) — ¢*(z)’ 0= B =aq

Thusn(z) = p(Z(z)) —¢*(x) = w(z) —¢*(x) isincreasing foH < - < 1. Butn(zg-) =0,
implies that 8.14) holds, as it is shown in Figure 5 (i). The reason is as folloivihere is some
© € (8,4) such thaty(z) < 0, then 28 _ @) \yould have at least two zeros, see Figure

5(||), this contradlcts Lemma&.4

AT A

xW TQ=
0] (||) (iii) (iv)

Figure 5. The different behavior of the functigi).

Similarly, we havelg[xp, 0] + Ig [8,zg+] < 0, hence 8.13) follows.
From @3.11) and @.13) we havelg ([0, x| < I3[, zq+] < —Ig[xzp,0], implying

IE(L) = IE[ZCP,O] —I—IE[O,JCQ] < 0.

Therefore by Lemma.5the limit cycle L, if exists, is hyperbolic and stable, and it must be unique,
because two stable limit cycles surrounding a unique sargylcannot co-exist.

(I) Case (C) with \ € (—£,0).



The proof is essentially the same as above with some modificaiote thatr; = xy; — A,
whereZ is the local maximum point of'z. If a limit cycle L does not cross the line= z; (i. e.
xp > xz), then by Lemma.6 (iv), Ig(L) < 0. So we supposep < xz. If xp € [xy,xz),
whereU is the left local minimum point of 'z, then the proof is similar and even simpler. So we
supposerp < xy, and there are three possibilities depending;on> 0, yy = 0 andyy < 0,
shown in Figure 6 (i), (i) and (iii) respectively.

<

o S

(i) (i)

Figure 6. The case (C) with € (—%,0).

In any case the straight lingy = yy} cutsCg at pointsV andW for z > 0 (zy > xv).
We take@* on Cr as above. Note thatg > zo > xw, wherexy > 0 with the property
E(z) = E(—x0). In cases (i) and (ii) of Figure 6, we also hamg > z¢ > 3, heref is the only
positive zero ofE(z) = 0.

For case (ii) we have, = 0 andzy = 5. By using the same way as in the proof for cases
(A) and (B), we can prove

IE[ﬁW,J)Q] < IE[I’W,.TQ*] < —IE[xP,J)U], (315)
i.e. Iplxp,zy|+Iplzw, zq) < 0. Infact, by Lemmée.4we have@ > @ > 0forx > xy

andz(z) < zy, hence it is enough to usgzg-) = 0 to show that)(z) = ¢(Z(z)) — ¢*(x) is
monotonically decreasing far € [z, zg+) andn(xz) > 0for z € (xw,zq+), See Figure 5 (jii).
On the other handg [z, zw] < 0 is obviously true by Lemma.8 because the part 6fz from
point U to pointWW consists of a\-arc and a/-arc.

For case (i) of Figure 6z(z) € (zy,0) whenz € (B,zw) andz(z) € (zp,zy) When
x € (xw,zg+). We first prove 8.15 by the same way as above, and find out thaty + 0) =
o(xy) — ¢*(zw) > 0. By Lemma3.8 we havelg[zy,xy] < 0, and by a similar proof of
(3.15 we havelg[zy,0] + Ig[B,zw] < 0, because in this casg5) = ¢(0) — ¢(8) > 0,
n'(B) = 0—¢'(8) > 0andn(zw —0) = p(zv)—¢" (aw) > ¢(zv)—¢*(xw) = n(zw +0) >0,
hence by using Lemma4 we obtainn(z) = ¢(z(z)) — ¢*(x) > 0for x € (8, xw ), shown in
Figure 5 (iv).

Finally for case (iii) of Figure 6, we have3(1l5 by the same way than in case (i), and
Ig[zR,0] + Ig[zy,zw] < 0 by Lemma3.8, whereR is the intersection point of'r with z-
axis betweer/ and the origin. It remains to provg;[xy, xg| + I£[0, zy] < 0. We can use the
same arguments than the proof of Lem& let z = z(x) for x € (0,zy) andz € (xy,xR),
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defined byE(xz) = E(Z). Then we have a similar formula like the right hand side31.(), an
integral from0 to zy. SinceE’(x) < 0, we need to show(x) — p(Z(x)) > 0 for z € (0, zy).
If we reverse the part af'g for © < x 7 to the right (symmetry with respect to the life = =, })
then, by .4) with A = x,;, there is no intersection with’g for x > x . This implies that if we
reverse the part af'r for x < 0 to the right (symmetry with respect to the life = 0}), then the
image arc ofCr from point R to pointU is located right to the arc @f'r from pointO to pointV'.
Thus we haver(z) > ¢(—x) > ¢(Z(x)). The first estimate is by Lemn®a6 (i), and the second
by monotonicity of thep andz(z) < —z for x € (0, zv ).

(1) Case (C) with A € (2, xr).

We will prove that if system3.1) has a limit cycleL, thenIg(L) > 0. Thus by Lemm&.5
L is hyperbolic unstable and the limit cycle is unique. Fornamence we do the transformation
(x,t) — (—z, —t), then equation3.1) becomes

=y —Gla), (3.16)
Yy=—x,

whereG(z) = E(—z) = —a1x + as2? — azz® + 124, a;(2) is the same as irB(2) for j = 1,2

or 3. For system3.16), we provels(L) < 0.

We still useP = (zp,yp) € Cg and@ = (z2q,yq) € Cq to denote the most left and most
right points of the limit cycleL, then by Lemma.6, zp < —z9 < 0 < 29 < g andyp < yq,
wherez satisfiesG(xy) = G(—zp). By Lemma3.3and a similar result of Lemma.6 (iv), if
xp > xz, WwhereZ is the local maximum point and; = X\ — z3; < 0, thenIg(L) < 0. Hence
we only consider the case> < z .

Y Yy Yy
AV
YC /A
~y T A
Koo
Vo) v ¥()

(iii)
0] (i)

Figure 7. The three possibilities for case (C) Witk (2., za) andzp € (zvv,x2).

Subcase llI-1: zp € [zy,x 7).

Note thatl is the left local minimum point of ' andxy; = A. Itis possiblexg < xy (Figure
7 (1)) orzg > xy, whereV is the right local minimum point of ¢ andzy = v = A — 2, > 0.
The cases (ii) and (iii) of Figure 7 correspondye < 0 andyg > 0 respectively. Ifyp > 0in
case (iii), then the discussion is similar to case (ii).
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In case (iii) of Figure 7, we havk&;[zp, x5] < 0, because@dy < 0 along this part of .
Similarly I [z, zg] < 0. The rest part o’ consists of a\-arc and &/-arc, hence by Lemma
3.8 Ig[xs, x k] < 0. Combining them together we have(L) < 0.

We will prove I[zp,zg| < 0in case (i) and¢[zp, zx] < 0in case (ii). Since the proofs
are similar, we give details for the former, and only expkhie difference for the later.

Observing case (i) of Figure 7g[xp,zs| < 0, we need to provég|zg, zg] < 0 for the A-
like-arc SZ Q). We use the same method than for théike-arc in Figure 6 (iii). We need to prove
Iglzs,xz] + Ig[zz,2q] < 0. Forz € (xzz,zq) we definez = Z(z) € (zg,22) by G(z) =
G(z). SinceG'(z) < 0for z € (zz,2q), we need to prove(z) = ¢(z) — p(Z(z)) > 0in
x € (xz,xq). Itis obvious thatp(x) > 0 for z € (2, 0]. A sufficient condition ofp(x) > 0 for
xz € (0,zq) iszg > v, see Figure 8 (i), because in this case we have —z(z) for z € (0,z¢),
hencep(z) > p(—x) > ¢(Z(x)). The first estimate is by Lemn®é6 (i), and the second estimate
is by the monotonicity ofp(x) for z < 0. We next prove that ik € (z,,, —g], thenzy > . In
fact fromG(—z) = G(z) we find a unique positive solution

b \/3)\()\2 A+ a) 317

—(b+3))
whereb + 3\ < 0 andA(A\? + b\ +a) > 0for X\ € (v, 7ar), andzd — 42 =22 — (A —2,)% =
(=2(b+3)))"1x()\, a,b), where
X\, a,b) = (b+ 3\ (b + 20V b2 — 4a + 1203 + 14bX\% + 5%\ + b(b? — 2a).

By using the Fourier-Budan Criterion (explained in Appent), it is not hard to findy (X, a, b) >
0for A € (m, — 5], wherea > 0,b > 0 and2b? < a < 1b2,

For case (ii) of Figure 7, we need to prokg[z s, ] < 0fortheA-arc SZK. IfA € (z,, —g],
the proof is exactly the same as above.

o\
0 : \ : / \
: / . Ca
v \%4 N /// | .

()

(ii)

Figure 8. The study faro > v andzo < -y respectively.

It remains to consider the case € (—%,xM) andzy < . In this case we will prove
Iglzp,zg] < 0 directly by using some suitable transformations, borrodeth [6] due to Xi-
anwu Zeng.
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We denoteCq, = {(z,y)|y = G(z),z > 0} andCq_ = {(z,y)|y = G(—z),z > 0},
o4 (x) = p(x) andy (z) = P(z) for z € (0,2¢), andy_(z) = ¢(—z) andy_(z) = (—x)
for x € (0,2p/), where P’ is the symmetry point of. (3,0) is the only intersection point of
Cq_ with the z-axis forz € (0, |A|) and (xo, G(z0)) is the only intersection point af’, and
Cq_. We certainly haved < x4, and by assumptiong < -, see Figure 8 (ii).

Letk = Z—g > land letz(z) = k*(z— )+ B forz € (B, zr), wherezg = 75 (zp — )+ 6.
Thenz(z) € (B,zp) for z € (B,zg). Let H(z) = +G_(2(z)), whereG_(z) = G(—=z) for
x>0, and lety (z) = 1o (Z(z)) andy (z) = 1¢—(Z(z)). Note thatG’_(z) = —G'(—x) and
by change of variable = —s we have

P e N L O R <A )
felor, =4l ‘/xp [G(t)—so(t) a@_M “ o18)
_ /xw [_ Glis) ,  G() } n '
8 G_(s) —p-(s)  G_(s)—v-(s)]
Then changing variable by= z(z), we obtain
o [T H(2) H'(z) .
talor, )= | e ) (519

By definition we haveyr = H(zp) = 1G—(Z(zr)) = typ = yq. Itis easy to find that

G (v)—G_(z) = G'(2) + G'(—z) = 2[—(b+3\)2? = AN?+bA+a)] > 0, if z >z, (3.20)

wherex; = —W < xp, see B.17). HenceG" (z) < G’ (x) < 0forx € (zg,x2),

wherezy =max(zpr, zq). This impliesH'(z) < 0 for z € (8, zR).

We letCy = {(z,y)|y = H(z),8 < = < xg}, and prove thaly N C¢, consists of a
unique point, hencer < xq, sinceyr = yq. Infact, if Cy N Cq,. = 0 for x € (B,2R), then
zg > zg andH (z) > G4 (z) for z € (8, 2r). Note that the function = ¢1(z) = 1¢_(Z(2))
satisfies the differential equation

- = N fl(xay)v y>H(.%’), (321)

and the functiory = ¢ (x) satisfies the differential equation

j—i N ﬁ =t fi(@,y), y> Gy(x). (3.22)

Hence for any: € (5,z¢g) andy > H(z) > G (z) we have

fl(xvy)< <f+(f[f,y)<0,

H(z) —y

becauser(z) > x > 0. By the Differential Inequality Theorem we fing; () > ¢ (z) for
z € (B,zq). This impliesp(8) > ¢4 (B), contradicting the facd < ¢1(8) = +p_(8) <
©—(B) < 4(B) by Lemma3.6 (i).
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ThereforeCyy N Ce, # 0. Sinced > H(z) = +G_(z(z)) > G_(Z(x)), the intersection
Cu N Cg, happens for > x4. In Appendix 2 we will prove the following property:

G\ (z) — H'(z) > 0if G4(x) = H(z) andz € (¢, zR). (3.23)

HenceC'y N Cg, consists of a unique point, ant; < xq.

Thus we can defing = (z) € (0,zg) by H(x) = Gy(&(x)) for x € (B,zg). Let

w2(x) = @4(2(z)) andye(x) = 4 (z(x)), then by a change of variable = z(x), noting

di _ _H'(z)
i = TG Ve have

[ Gy G s
el Q]_/o [G+(s)—<p+(s) G+(S>—¢+(S>]d

- /;R {H(xl)r{,—(g[:z(x) B H(jl_(fpl(m)} da.

From 3.19 and @.24) we have thaf¢[Xp, — ] + 1[0, 2| equals to
n [ H(5)(oale) — () () (4 () — ()
/g [(H( = o @) (H@) — (@) T H@) — n @) (B @) - W»] do. (3.25)

We prove that forc € (3, zR)

§(x) = pa(x) —p1(x) >0, n(x) :=ha(z) — Y1 (z) <O. (3.26)

Therefore, by 8.25 and @.26), combining with the fact thai;[—3, 0] < 0 (by Lemma3.8), we
havef(;[xp,an] < 0.

To prove @.26), we first study the behavior @f(z) = ¢, (2(z)) — 19— (Z(x)) andn(z) =
Y4 (2(z)) — 1¢—(2(z)) at the endpoints: = 3 andz = xp. Itis obvious that fork = Z—g > 1
we have

(3.24)

22(B) = 9:0) > 5 (6) > 1o~ (8) = p1(8) > 0,

$a(8) = +(0) < ¥-(8) < 29— (8) = 1(8) < 0

and Lo
€9 = L 0 G — k(8 0=k (5) >0,
7 () = ¥/, (0 >&(g§)—kw'<ﬁ>=o—kw'<ﬁ><0.
Hence we obtain
£(B)>0,&(8)>0; n(B) <0, n(B)<O0. (3.27)

On the other hand we have
1 1
£(zRr) = @y (iUQ) - %90— (xpr) = yQ — EIUP/ =0,
and similarlyn(zr) = 0. So we have

{(xgr) =0, n(xzgr) = 0. (3.28)
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We have shown that the functiops= ¢;(x) andy = v, (z) satisfy the differential equation
(3.21); it is easy to find that the functions= @2 (x) > H(z) andy = ¢»(z) < H(x) satisfy

dy @) kGL(E(@) () kGL(#(x) (G ()
T xR AT e e v ) B
In Appendix 2 we will prove that for: € (3, xr)

G (&(r)  kGL(2(x))

= 0 has at most one zero (3.30)

under conditionG, (&(x)) = w (i. e. the definitionH (x) = G4 (z(x))). Comparing two
differential equations3.21) and @.29 and using the fact3(30), we obtain that’(z) andn’(x)
have at most one zero ine (3, zr). Thus, by using the fact8(27) and 3.28 we obtain 8.26),
the behavior of(z) looks like Figure 5 (i), and the behavior g{x) looks like the symmetry of
&(x) with respect taj-axis.

Finally, for case (ii) of Figure 7, the proof di;[zp,z k] < 0 is the same. Instead 08.9
we usef(zr) > 0andn(zgr) < 0.

Subcase llI-2: zp < xy = .

In this case we need to prove three facts: £g) > zv = v, (b) Ig[\,7] < 0, and (c)
Iglzp, N + Igly, zg] < 0.

We first reverse the left part @f;, symmetric with respect to the lifer = =}, and denote
the image ofC¢ by Cg, thenCy is entirely below the right part af’; for z > =z, see Figure 9
(). To check this, we take = x;; in (2.4), thenz = 0 (equivalent tar = =z here) is the only
zero. We also usg ands) as the images ap andv for x < z .

Note that!; := z; — zy = |xpy| = —xpy @ndl,. := xy — 7 = xp1 — T, hencel; — ¢, =
T — 2z = 3(b—3Vb2 — 4a) > 0, since2b? < a < 1b?. This impliesy = z > v, wherelU
is the image olJ.

0} (ii)

Figure 9. The case (C) with € (z,,, ) @andzp > .
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Now we compare the relative positions pfwith , and that ofy with ¢, for z > 0. Since
V|e—0 > 1|.—0, and the functiony = v () satisfies the differential equation

dy  x+c ~
dr — G(z) —y
whereG(z) = G(—(x + ¢)), ¢ = 2|zz| > 0; andy = ¥(x) < G(z) satisfies

dy x T+c

dr G-y Gl-@to) -y

because’(—(z + ¢)) < G(x) as we mentioned above. Hengeis entirely stay above). On
the other handp|,—o < ¢|.—0. If @ crossesp at some pointz’, p(z’)), then it would stay above
o forall z > 2/, because) = ¢(z) > G(z) andy = ¢(x) > G(z) satisfy the above equation

respectively, but
T T +c

G-y G-@+e)—y
In this casep would not meet) at P/, leading to a contradiction.

Thus we obtain that the region bounded fay = 0}, ¢ and+ is entirely contained in the
region bounded byz = 0}, ¢ and, hence fact (a) is true, i.e:qg > ~, becauserg > ¥ and
v > .

To prove fact (b), i.elg[\, 7] = Iglzy,zy] < 0, we can use exactly the same way as we
prove Ig[zp,xzg| < O for the case (i) of Figure 7, using points and V' instead of the points
P and @ respectively. Note thajy < yy < 0 and the discussion of Appendix 2 is made for
Z(x) € (B, |\|) andz(x) € (0,7).

Finally we prove fact (c), i. e.

0>

Ig[zp, A\ + Ig[y,xQ] < 0. (3.31)

Along the straight line§z = A} and{z = ~} we haveG’(z) = 0. If we shift the regiort2,
bounded by = ¢(x), y = ¢(z) andz < ), to right for a distance = |\| — v = x,,, — 2\ > 0,
and reverse it to the right hand side, symmetric with resfeettte y-axis, thent2 maps toQ2*, and
the line{z = A} maps to the lindz = ~}. By the same discussion as above we obtain fHat
is entirely contained in the regid®y, bounded by = ¢(z), y = ¥ (z) andz > ~, see Figure 9
(i). We remark here that it is not necessary that the imagégpfor « € (zp, ) is entirely below
Cg for z € (v,zq), but it is enough for our purpose that this is true at leass@ne interval of
T > .

We denote{(z,y) : y = ¢(z) Uth(z),zp <z < A} by{(z,y) : 2 = 2(y),yp <y < ya}
and{(z,y) : y = " (x) Uy*(x),y <z < xp-} by {(z,y) : 2 = 2*(y), yp- <y < ya-}, where
ya = ya- andyp = yp~, see Figure 9 (ii). Them(y) = —(z*(y) + ¢), and by using§.9)

Ielep ] = / "Eaw),, / wEw) o),

s z(y) s (@ (y) + o)
Let I [y, zg+] = —Iglzp, A = yyﬁ* %d@; then to verify 8.31) is equivalent to
show
_(IG[’%:UQ] - IEJ[W?xQ*D > 0. (332)
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Note thatG’(y) = 0, andG’(—(v+¢)) = G'(\) = 0, by using Green formula we express the left
side of 8.32 as

T T () - (s man e ] i (557

Computations show that the first integrand is equal to

1 1
J— 2 —_ e —
2(b+3X+¢) + AN + A+ a) <x2 + (x+c)2> >0,
becauser > v > 0,b+ 3 \+c=b+ a2y, + A< b+x, +xy =0andA(A2 +bX+a) >0
for A € (xm,xa). And the second integrand is given i8.§), which is also positive because
b+ 3\ < 0. Therefore 8.32), hence 8.31) is proved.

(IV) Case (D).

By Lemma2.1F(z) = 22 (2+2)2. We do the change of variables and parametef, \) —
(—(x + 2),~t,—~(\ + Z)), then the case (D) with € (—2, %) becomes case (D) with
A€ (—%,O) , and the proof of later case is similar to case (C) witk (—%,O), see Figure 10.
Similarly to case (iii) in Figure 6 we can obtaiy[zy, zq] < Ij[rv,zo<] andIgxy, zy] < 0.

Figure 10. The case (D) with € (—2,0).

In this case by symmetry we havg[zy, xg«|+1g[xp, xy| = 0. Thereforelp(L) = Ig[z,, vy ]+
IE[xU,xv] + IE[xv,.’EQ] < 0.

The proof of Theoren3.1is finished. O

Remark 3.9. By using his results ind], Xianwu Zeng proved in{] that if system

&=y — (bix+ box? + b3a® + z4),
y = -,

(3.33)
satisfiesh; < 0 < b3 and b§ — 4bybs + 8b1 < 0, then it has at most one limit cycle.
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Doing scaling(z,y) — (4§x, 4§y) we can change systef8.1) to the form(3.33 with b; =
ai, by = 4§a2 andbs = 4§a3, hence the first condition is equivalentd9 < 0 < ag and the
second condition become&a3 —2azaz+a1) = £b(2b°—9a) < 0. Itis clear that the uniqueness
of limit cycle for cases (A), (B), and cases (C) and (D) witk (—g, 0) can be directly obtained
by Zheng’s result. But the case (C) withe (z,,,, x7) does not satisfy the conditions, see Lemma
3.2

Appendix 1

We prove that the polynomiagj(u) in (3.8) has exactly one real root far € (u,0), where
up = —%b andb > 0. For a real serie§cy, c1, ..., ¢, } we denote byV{cy, ¢y, ..., ¢, } the number
of change of signs in this series (skip zero(s) if it appeatkis series). To find the number of real
roots of f(x) for x € (a,b), the following two criteria are well known.

Criterion A (Fourier-Budan) If
N{f(a). f'(a), " (@), s f (@)} = p,
N ONMONEORS OIS

thenp > ¢, and the number of real roots (counting the multiplicity)fd¢f) for = € (a,b) is equal
to eitherp — q or p — ¢ — r, wherer is a positive even integer. In particular, jif = ¢ (resp.
p = q+ 1), thenf(x) has no (resp. has unique) real root (n, b).

Criterion B (Sturm) Assume thajf (z) has no multiple root ina,b), and we construct the
series{ fo(z), f1(2), fa(), .., fs(2)} as follows: fo(z) = f(x), fi(z) = f'(x). Divide fo(x)
by f1(z) and take the remainder with negative signfaéer); then dividef; (x) by fo(z) and take
the remainder with negative sign &s(z),..., the last remainder with negative sign (a non-zero
number) isfs(z). If

N{fo(a), fi(a), fa(a), ..., fs(a)} = p,
N{fo(b), f1(b), f2(b), ..., fs(b)} = q,
thenp > ¢ and the number of real roots ¢f(z) for = € (a, b) is qual top — q.

We first use Criterion B to prove thatu) has no multiple root for, € (u1,0). Eliminationa
from g(u) = 0 andg’(u) = 0 we find (3u + 2b)h(u, A, b) = 0, where

h(u, A\, b) = 2b(3u + 2b)A% — u(3u® + 12bu + 8b*)\ + 6u?(u + b)%.

By Lemma2.4we have3u + 2b > 0. Let us showh(u, A, b) # 0 for u € (u1,0), A € (—2,0)
andb > 0. This contradiction gives the desired result. In fadty, 0,b) = 6u?(u + b)2 > 0,
h(u, —%,b) = &(3u+2b)(18u+27bu?+12b%u+2b%) > 0. Herel8u®+27bu? +12b%u+2b° > 0

for u € (uy,0) andb > 0 can be checked easily by using Criterion B. Then eliminatirfgom
h(u, \,b) = 0 and Zh(u, A, b) = 0 we obtain—9A* + 306 bA> + 264 b°X\% + 725°\ + 8b* = 0,
which is impossible fob > 0 and\ € (—%,0) by using Criterion B again. Hence we may use
special values ofu, b) to check the sign of(u, A, b), and it is easy to find that(—2, \,6) > 0

for A € (—2,0).
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Now we have proved thaf(u) has no multiple root fo: € (u1,0). Sinceg(u;) = %(b +
3\)(9a — 2b%) > 0 andg(0) = 4abX < 0, it is enough to find the number of real roots fg)
by choosing special values bf> 0, 2b* < a < 1b? andA € (—2,0). We can verify by Criterion
B that if we choos€a, b, \) = (8.6,6,—1) theng(u) has exactly one zero ~ —0.638407 in
(—4,0). Thereforeg(u) has exactly one root far € (uy,0).

Appendix 2

We first prove 8.23), i. e.
G (z) — H'(z) = G'(z) + kG'(—z(x)) > 0, for z € (zo,zR).
Note thatk > 1 and
kG (—z(z)) > G'(—x(z)) > 0, G'(x) <0, for z € (zg,zR),
hence it is enough to prove
G'(z) + G'(=x(x)) > 0, for z € (0, zR). (3.34)

Sincez(z) = k*(x — B) + B we writeZ(x) = z + ¢, wherec = ¢(z) increases with: > x¢ > 3.
Sincexzp < zg < yandz(zr) = xp < |A|, we havec € (0,cp,), wherec,, = |A| — vy =
Zm — 2X > 0. Itis easy to find tha€’ (z) + G'(—(x + ¢)) has the expression

f(z,¢) = =[3c+2(b+ 3N)](2? + cx) — (2 + 2eA 4+ 2XH)b — (c 4+ 2\) (2 + A + a + N?).

We will prove thatf(z,c) > 0 for z € [z9,7] andc € [0,c,,] with 26> < a < 1b* and
A€ (—g,l‘M).

If ¢ = co := —2(b+3)), thenf(z, o) = Zb(9a — 2b%) > 0. If ¢ # o, then we can rewrite
f(x,c)as

Flz,e) = —3(c — ) ((x n 5)2 _ g(c)) , (3.35)

where
(c+ 2)0)(? 4 2bc + 4e) + 4da + 4bX + 40?)

9(e) = = 12(c — ¢2)
Sincec + 2\ < 0 for ¢ € (0, ¢,,) and the second factor in the above numerator, as a quadratic

polynomial in¢, has a negative root and a positive ropt= Vb2 — 4a — (b + 2)\) < o < ¢, it
IS clear that

f(z,c) >0, forall z > 0, if ¢ € [c1,cal.

We next prove that
f(z,c) >0, for z € (zg,7), if c€ (0,c1) U (ca,cm).

Whenc € (0,¢1) U (¢2,¢m), We haveyg(c) > 0 and
f(w.0) = =3(c—c1) (2 + 5+ V9(0)) (@ = 2(0)),
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wherez(c) = y/g(c) — § is the only possible positive root gf. We will prove that
2'(c) <0, for c € (0,c1) U (ca,cm). (3.36)

This implies the desired result. In fact,dfe (0,c;), thenz(c) < z(0) = % < xp
(see B.17), hencef(x,c) > 0 for z € (zg, +00); if cincreases frone, thenz(c) decreases from
+o00, hencef(x,c) > 0 for x € (0,z(c)). By (3.36 we havex(c) > z(cy,) for ¢ € (c2,¢p,), and
a computation gives(c,,) = =, this would finish the proof.

It remains to prove3.36). It is easy to see that

(3.37)

We will prove that foru = (a,b,\) € K = {2b* < a < 3b%,b > 0,—% < X\ < 2} we have
2'(0) <0, 2'(c1) <0, 2'(c2) <0, 2'(c;,) <0, (3.38)

and it is not hard to check that if we takg = (ao, by, o) = (8.6,6,—2.4) € K thenz'(c) <0
for ¢ € [0, ¢1] U [co, ¢]. Thus, if there argr; € K andé € (0,¢1) U (¢a, ¢p,), Such thatt’(¢) > 0
for u = wy, then by continuity we would find g, € K and¢ € (0,¢1) U (e2, ¢n), Satisfying
2'(¢) = 2" (¢) = 0 for u = po. Eliminatinge from 2/(¢) = 0 andz” (¢) = 0 we obtain

a®b"(b* — 4a)*(b* — 3a)® (9a — 26°)" = 0,

which is impossible foy, € K. This contradiction proves3(36).
At last we need to shows(38). Since

'(0)(24/9(0)) ==1(\) = _% B \/%’

wheres(A\) = 63 + 6bA% + 2%\ + ab. If s(\) > 0, we immediately have’(0) < 0. So we use
the same continuity argument to sha(0) < 0 in cases(\) < 0. Computation gives
(I) T(—Q) _ vV b2—4a(b—\/ b2—4a)
2/ 2b

< 0.

(i) r(zar) = —Vb2—4a<§j;§g;{’;g b"=49) 0, since(b? —3a)2 —b2 (b2 —4a) = a(9a—2b%) > 0

(iii) 7(A) < Ofor A € [— 2,;sz] when(a,b) = (8.6,6).

A(A2+bA+a)

(iv) Eliminating 13N

from 7(\) = 0 andr’(\) = 0 we have
5(A)(36A 4 36DA? + 126*\ + 2b° — 3ab) = 0,

which is impossible, becaus¢)) < 0 as we supposed ané \* + 36bA\% 4 12b?\ 4 2b% — 3ab =
6s(\) + b(2b% — 9a) < 0. Thus we have’(0) < 0.

To provez’(c;) < 0 for j = 1,2, m itis enough to show/'(c;) < 0, see 8.37), and we have

_ _ 2
_ —2\/b27 3a) — bvb* — 4da
(b —3vb? —4a)?
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The numerator o (cz) is —5b(9a — 2b%) < 0, henceim,_,c,+0 ¢'(c) = —oc. And

(o) =  b(5a — b?) — (b? — 3a)Vb? — 4a
gAem) = (b — 3v/b? — 4a)?
becauséb(5a —b?))% — (b — 3a)?(b* — 4a) = 4a®(9a—2b%) > 0. The proof of 8.23 is finished.
We next prove .30, i.e.

<0,

(3.39)

A~

G'(i(x) | kG(—2(2)

has at most one zero ine (5, zgr) for k > 1. If z(x) < z(z), then by Lemm&.3and @3.20) we
have
G'(2(x)  kG(=2() 1
() I(x) x(x)
where—z(z) € (A, —f). Hence we suppose(z) > z(z) and letz(z) = &(z) + c¢. Note that
&(xg) = zg andz(xg) = zps, hencec € (0, ¢, ), and B.39 becomes

(G'(z(2)) + G'(=2(x)) > 0,

A€, c) = Gléf) + 5 G/(;(fc* D (1 ke + s + 008 + b +ag,  (3.40)

where

a3 =—(3k —1)c— (1 +k)(b+ 3N\,

ag = —3kc? — (2k + 1)(b+ 3X\)c — (k — 1)(a + 26X + 3)\?),

a1 = —ke® — k(b +3\)c? — (k — 1)(a+ 26X + 3X%)c — (1 + k)A(A2 + bA + a),
ag = —cA(A\? + b\ +a).

We need to prove that (£, ¢) = 0 has at most one zero e (0,~) for ¢ € (0,¢,,), k > 1 and
(a,b,\) € K, wherec,, and K are the same as above. Note tH&0, c) < 0 and A(+o0,¢) < 0,
if as < 0 then by the Fourier-Budan Criterion (see Appendixdl}, ¢) has at most two zeros for

£ €(0,+00);if a3 >0,i.e.0<c < —%,then

(3k + 1)(k — 1)
3k — 1

e e(b+3\) — (k —1)(a+ 2bXA + 3A2) > 0,

becausék > 1, b+ 3\ < 0 anda + 2bA + 322 = (A2 + bA +a) + A(b +2)\) < 0. Thus by
the Fourier-Budan Criteriod (&, ¢) still has at most two zeros f@ € (0, +o0c). We will prove
that A(v,c) > 0for c € (0,¢y,) and(a, b, \) € K, this immediately implies that(£, ¢c) = 0 has
exactly one simple zero i6 € (0,~) for ¢ € (0, ¢, ). From @.40) we have

A1,¢) = & (b+ 20+ 0) (Bac® + Bre+ o), (3.41)

where

B = —(b+ 2\ + Vb2 — 4a),
B = —(3b+ TA\) Vb2 — 4a — 3b> — TbA — 8\% + 6a,
Bo = —(2b% + 8bA + 1072 — 2a)V/b?2 — 4a — 2b% + 8(2a — b*)\ — 10bA% — 8A3 + 6ab.
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Since By, < 0 and we will prove3y > 0, henceByc® + Bic + By = 0 has a unique positive
zero point, and direct computation shows this zero poinacty c,,, henceA(v,c) > 0 for
c € (0,¢y,)and(a,b,\) € K.

To checksy > 0, we note that

Bolxe—p = 3(0° — 4a)(b — V7 — 4a) > 0,
50|>\_:cM 2(b% — 4a)(b — 31 — 4a) > 0,
66()\”)‘:—5 20\/b% — da — 4(b? — 4a).

Sincedb?(b? — 4a) — 16(b? — 4a)? = 4(b* — 4a)(16a — 3b?) > 0, we haveB()(/\)\)\:_g > 0. Itis
2
obviousf’(\) = —48 < 0, hence the number of change of signgight A = —2 is 1, no matter

the sign ofs(/ (— ) On the other handj, has even number of zeros fare (— 2,;1cM) implying
Bo > 0for e (— 2,arM) The proof of 8.30) is finished.
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