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Equations of Degree Four

Chengzhi Li1 and Jaume Llibre2

1School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China

2Departament de Matem̀atiques, Universitat Autònoma de Barcelona, Spain
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Abstract

We prove that any classical Liénard differential equationof degree four has at most one
limit cycle, and the limit cycle is hyperbolic if it exists. This result gives a positive answer to
the conjecture by A. Lins, W. de Melo and C. C. Pugh [4] in 1977 about the number of limit
cycles for polynomial Liénard differential equations forn = 4.
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1 Introduction

The study of Liénard differential equations has a long history and a lot of results were obtained,
see [8] for example. A classical polynomial Liénard differential equation can be written as a planar
system

ẋ = y − F (x),
ẏ = −x, (1.1)

whereF (x) is a polynomial of degreen. In 1977 A. Lins, W. de Melo and C. C. Pugh conjectured
in [4] that the classical Liénard differential equation of degreen ≥ 3 has at most

[
n−1
2

]
limit

cycles, where
[
n−1
2

]
means the largest integer less than or equal ton−1

2 . They also proved that
the conjecture is true forn = 3. In 2007 F. Dumortier, D. Panazzolo and R. Roussarie [3] gave
a counterexample to this conjecture forn = 7 and they mentioned that it can be extended to
n ≥ 7 odd. Recently, P. De Maesschalck and F. Dumortier proved in [1] that the classical Liénard
differential equation of degreen ≥ 6 can have

[
n−1
2

]
+ 2 limit cycles. In the last two papers the

discussions are based on singular perturbation theory, andthe authors used relaxation oscillation
solutions to study the number of limit cycles.

In 1982 Xianwu Zeng gave some results about the uniqueness oflimit cycle for Liénard dif-
ferential equations in [6, 7]. As an application he found a sufficient condition to guarantee the
uniqueness of limit cycles for a subclass of classical Liénard differential equations of degree 4.
In Remark3.9 we will precisely explain how this condition can be applied to partial cases in our
study. Some techniques in this paper are stimulated or borrowed from Zeng’s work. We will prove
the following theorem.
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Theorem 1.1. Any classical Líenard differential equation of degree four has at most one limit
cycle, and the limit cycle is hyperbolic, if it exists.

Theorem1.1shows that the Lins-de Melo-Pugh’s conjecture is also true for n = 4. So at this
moment only remains open the conjecture forn = 5. We give a setting of the equation and some
lemmas in Section 2, then prove Theorems1.1 in Section 3.

2 Preliminaries

Consider a classical Liénard Equation of the form (1.1), whereF (x) is a polynomial of degree
four.

Lemma 2.1. Without loss of generality, we can transform(1.1) to

ẋ = y − F (x),
ẏ = −(x− λ),

(2.1)

whereλ is a constant, and the functionF has the form

F (x) =
a

2
x2 +

b

3
x3 +

1

4
x4, (2.2)

satisfyinga ≥ 0, b ≥ 0 anda ≥ 2
9b

2. Moreover, the shape of the curveCF := {(x, y) : y = F (x)}
has only 4 cases, shown in Figure 1. The shape looks as in case (A) if a > 1

4b
2; in case (B) if

a = 1
4b

2, wherex′ = −1
2b corresponding to the inflection point; in case (C) if2

9b
2 < a < 1

4b
2,

where

xm =
1

2
(−b−

√
b2 − 4a) < xM =

1

2
(−b+

√
b2 − 4a), (2.3)

corresponding to the left local minimum and the local maximum respectively; and in case (D) if
a = 2

9b
2 wherexm = −2b

3 andxM = − b
3 . In the last caseF (x) = 1

4x
2(x+ 2b

3 )
2.

xxxx
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Figure 1. The different shapes ofCF

Proof. SinceF in (1.1) is a polynomial of degree 4, its graph has at least one local extreme
point. We shift the origin to this point, then (1.1) has the form (2.1) with

F (x) = αx2 + βx3 + γx4,

whereγ 6= 0. Doing the change of variables and parameter(x, y, λ) 7→ ((4γ)−
1
3x, (4γ)−

1
3 y, (4γ)−

1
3λ),

equation (2.1) keeps the same form withF as in (2.2).
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SinceF ′(x) = x(a + bx + x2), CF has one or two local minimum point(s). If the local
minimum is unique, then it is the origin, and we havea ≥ 0. If b < 0, then doing the change of
variables and parameter(x, t, λ) 7→ (−x,−t,−λ), the form of the equation and the shape ofCF
do not change, but in the new variables the equation hasb > 0.

If CF has two local minimum points and the minimum values are different, then we put the
origin at the lower one. If the other minimum point is locatedright to the origin, then doing the
change of variables and parameter(x, t, λ) 7→ (−x,−t,−λ) we move it to the left. If the two
local minimum points have the same minimum value, we put the origin at the right one. Thus the
left local minimum and the unique local maximum appear atxm andxM respectively, with the
expressions given in (2.3). In this case, sincexm < xM < 0 anda ≥ 0, we certainly haveb > 0.

By usingF (x) = x2(a2 + b
3x+ 1

4x
2) ≥ 0 we havea ≥ 2

9b
2. The classification of shapes for

CF is easily obtained fromF ′(x) = x(a+ bx+ x2). Note that in case (C) we have the estimates
−2b

3 < xm < − b
2 < xM < − b

3 < 0. 2

Lemma 2.2. Under the assumptions of Lemma2.1 if system(2.1) has a limit cycle, thena > 0,
b > 0, and the value ofλ satisfies one of the following necessary conditions:

(i) λ ∈ (− b
3 , 0) in cases (A) and (B);

(ii) λ ∈ (xm, xM ) ∪ (− b
3 , 0) in case (C);

(iii) λ ∈ (−2b
3 ,− b

3) ∪ (− b
3 , 0) in case (D).

Proof. If system (2.1) has a limit cycle, it must surround the unique singular point Mλ =
(λ, F (λ)). We do the change of variablesz = x − λ,w = y − F (λ), which moves the origin
to Mλ. Denote the part ofCF for z ≥ 0 by F+

λ and reverse the left part (forz ≤ 0) to right
by symmetry with respect tow-axis, and denote it byF−

λ . It is well known that, see for instance
the Exercise 1 of Chapter 4 in [8], a necessary condition for the existence of a limit cycle is
F+
λ ∩ F−

λ \ {O} 6= ∅, see Figure 2.

x

y

z

w

λ

F−
λ

F+
λ

CF

O
O

Figure 2. ComparingF+
λ with F−

λ

LetF1(z) = F (z + λ), then it is easy to find thatF1(z)− F1(−z) = 0 is equivalent to

z

{(
b

3
+ λ

)
z2 + λ (λ2 + bλ+ a)

}
= 0, (2.4)

wherea ≥ 0 andb ≥ 0, see Lemma2.1. The solutionz = 0 corresponds to the intersection of
F+
λ andF−

λ at the origin. It is clear that ifb = 0, then (2.4) has no any positive solution forz, so
we haveb > 0 anda ≥ 2

9b
2 > 0.
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In cases (A) and (B), by Lemma2.1we haveb2 − 4a ≤ 0, if (2.4) has a positive solution inz
thenλ ∈ (− b

3 , 0).

In case (C) we have(λ2 + bλ+ a) = (λ − xm)(λ − xM ) andxm < xM < − b
3 < 0, if (2.4)

has a positive solution inz thenλ ∈ (xm, xM ) ∪ (− b
3 , 0).

Finally, a = 2
9b

2 in case (D), and(λ2 + bλ+ a) = (λ+ 2b
3 )(λ+ b

3), we can similarly find the
necessary conditionλ ∈ (−2b

3 ,− b
3) ∪ (− b

3 , 0). 2

From the proof of Lemma2.2we have the following result.

Corollary 2.3. For system(2.1), the setF+
λ ∩ F−

λ \ {O} consists of at most one point.

To study the properties of the curveCF , we define a functioñx = x̃(x) by F (x) = F (x̃) for
x̃ < 0 < x. Note thaty = F (x) has an inverse functionx = g(y) for x > 0. In cases (A) and (B)
the functionx̃(x) is single-valued. In case (C) it is single-valued forx ∈ (0, x̄)∪ (x̂,+∞), where
x̄ = g(F (xm)) andx̂ = g(F (xM )), and three-valued forx ∈ (x̄, x̂). Let

u(x) = x+ x̃(x), v(x) = x x̃(x) < 0, for x > 0. (2.5)

Lemma 2.4. In cases (A) - (C) witha > 0 andb > 0 we have−2b
3 < u(x) < 0 for x ∈ (0,+∞),

whereu(x) is defined for any branch of̃x in case (C).

Proof. By usingF (x̃(x)) = F (x) it is easy to find that

u(x) (3u(x)2 + 4bu(x) + 6a) = 2(3u(x) + 2b) v(x). (2.6)

Note thata > 0, b > 0, v(x) < 0, andu(x) → 0 asx→ 0 (in case (C) this is true for the nearest
branch ofx̃ to they-axis). Henceu(x) < 0 as0 < x ≪ 1. For the other branches of̃x in case
(C), |x̃| is bigger, hence we still haveu(x) < 0. On the other hand,

3u(x)2 + 4bu(x) + 6a = 3

(
u(x) +

2

3
b

)2

+ 6

(
a− 2

9
b2
)
> 0,

becausea > 2
9b

2 (see Lemma2.1). Hence from (2.6) we findu(x) < 0 and3u(x) + 2b > 0 for
all x > 0, becausev(x) < 0 for all x > 0. 2

3 Proof of Theorem1.1

By Lemmas2.1 and2.2 we only need to consider the uniqueness of limit cycles for system (2.1)
under the conditions described in these lemmas. More precisely we will prove the following result.

Theorem 3.1. If system(2.1) has a limit cycle, then it is unique and hyperbolic. Moreover, the
limit cycle is stable in cases (A) and (B), and in cases (C) and(D) with λ ∈ (− b

3 , 0); unstable in
case (C) withλ ∈ (xm, xM ) and in case (D) withλ ∈ (−2b

3 ,− b
3).

Any limit cycle of system (2.1) must surround the unique singular point(λ, F (λ)). For con-
venience we let̄x = x− λ andȳ = y − F (λ), then still use(x, y) instead of(x̄, ȳ), system (2.1)
becomes

ẋ = y − E(x),
ẏ = −x. (3.1)
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whereE(x) = F (x+ λ)− F (λ) = a1x+ a2x
2 + a3x

3 + 1
4x

4, and

a1 = λ(a+ bλ+ λ2), a2 =
1

2
(a+ 2bλ+ 3λ2), a3 =

1

3
(b+ 3λ). (3.2)

By using Lemmas2.1and2.2 it is easy to verify the following result.

Lemma 3.2. If system(3.1) has a limit cycle, then the following statements hold.

(i) a1 < 0 < a3 in cases (A), (B), and in cases (C) and (D) withλ ∈ (− b
3 , 0).

(ii) a1 > 0 > a3 in case (C) withλ ∈ (xm, xM ), and in case (D) withλ ∈ (−2b
3 ,− b

3 ).

Lemma 3.3. Supposea > 0, b > 0. If λ ∈ (− b
3 , 0), then d

dx

(
E′(x)
x

)
has exactly one zero point

x∗, located in(−∞, 0). Moreover in cases (C) and (D)

x∗ ∈ (xm − λ, xM − λ). (3.3)

In case (C) ifλ ∈ (xm, xM ), letG(x) = E(−x), then d
dx

(
G′(x)
x

)
has exactly one zero pointx∗,

located in(−∞, 0), and more precisely

x∗ ∈ (λ, λ− xM ). (3.4)

Proof. Calculation shows

d

dx

(
E′(x)
x

)
=

1

x2
[2x3 + (b+ 3λ)x2 − λ(λ2 + bλ+ a)]. (3.5)

It is easy to check that ifλ ∈ (− b
3 , 0) then b + 3λ > 0 and−λ(λ2 + bλ + a) > 0, hence

the above function has no real solution forx > 0. It is well-known that for a cubic equation
αx3 + βx2 + γ = 0, if ∆ = αγ(27α2γ + 4β3) > 0, then the equation has exactly one real
solution. For the numerator of (3.5) we haveα > 0, β > 0 andγ > 0, hence∆ > 0. So (3.5) has
exactly one zero point forx < 0. Since in cases (C) and (D)E′(x) = F ′(x+ λ) has two negative

zeros atxm − λ < xM − λ, the unique zero ofddx

(
E′(x)
x

)
must between them, implying (3.3).

We next consider the caseλ ∈ (xm, xM ). LetG(x) = E(−x), then

d

dx

(
G′(x)
x

)
=

1

x2
[2x3 − (b+ 3λ)x2 + λ(λ2 + bλ+ a)]. (3.6)

In this case we haveb+ 3λ < 0 andλ(λ2 + bλ+ a) > 0, hence the above equality is positive for
x > 0, and still has exactly one zero point forx < 0. (3.4) can be checked similarly. 2

Lemma 3.4. Supposea > 0, b > 0 andλ ∈ (− b
3 , 0). Let x̃ = x̃(x) be defined byE(x) = E(x̃)

for x̃ < −λ < x. Then in cases (A) - (C) the functionσ(x) = E′(x)
x − E′(x̃)

x̃ has exactly one zero
pointx1 > −λ, satisfying(x− x1)σ(x) > 0. Moreoverx̃(x1) > xm − λ in case (C).

Proof. It is convenient to useξ = x+ λ, and to prove thatσ(ξ) = F ′(ξ)
ξ−λ − F ′(ξ̃)

ξ̃−λ has exactly

one zero for̃ξ < 0 < ξ, whereF is given in (2.2), andξ̃ = ξ̃(ξ) is defined byF (ξ) = F (ξ̃). In

fact ξ andξ̃ here are thex andx̃ in Lemma2.4. It is easy to findσ(ξ) = − (ξ−ξ̃)f(ξ,ξ̃(ξ))
(ξ−λ)(ξ̃−λ) , where

f(ξ, ξ̃) = −ξξ̃(ξ + ξ̃ + b− λ) + λ(ξ2 + ξ̃2) + bλ(ξ + ξ̃) + λa
= −v(u+ b+ λ) + λ(u2 + bu+ a),

(3.7)
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u = ξ + ξ̃ andv = ξ ξ̃. By Lemma2.4, in cases (A) - (C),−2b
3 < u < 0 for ξ > 0. Solvingv

from (2.6) and substituting it in (3.7), we findσ(ξ) = g(u)
2(3u+2b) , where

g(u) = −3u4 + (3λ− 7b)u3 − 2(2b2 − 3bλ+ 3a)u2 + 2b(2bλ − 3a)u+ 4abλ. (3.8)

Note thatg(−2b
3 ) =

4b
27(b+3λ)(9a− 2b2) > 0 andg(0) = 4abλ < 0, we can use Sturm Theorem

to obtain thatg(u) has exactly one root foru ∈ (−2b
3 , 0), which implies the desired result. We

give the detailed computations in Appendix 1. Note thatσ(0) = aλ < 0 and in case (C) we have
σ(ξ) > 0 whenξ̃(ξ) = xm, hencẽx(x1) > xm − λ. 2

Suppose that system (3.1) has a limit cycleL, thenF+
λ ∩ F−

λ \ {O} 6= ∅. By Corollary2.3,
it contains a unique point. Lety = ϕ(x) for y ≥ E(x) andy = ψ(x) for y ≤ E(x) are the
expressions ofL, andL intersectsCE at pointsP andQ, wherexP < 0 < xQ, and intersects the
y-axis at pointsA andB, whereyA < 0 < yB.

We will study the sign of the following integral alongL for system (3.1).

IE(L) := −
∮

L+

E′(x) dt =
∮

L+

E′(x)
x

dy =

∮

L+

E′(x)
E(x)− y

dx, (3.9)

whereL+ means that the integral is taken alongL clockwise, given by the direction of the vector
field (3.1). The different forms ofIE(L), listed above, will be used in different places.

Since−E′(x) is the divergence of vector field (3.1), the following result is easily obtained
from Theorem 2.2 of [8] or Theorem 1.23 of [2] for instance.

Lemma 3.5. If IE(L) < 0 (or > 0), then the limit cycleL is stable (or unstable) and hyperbolic.

Lemma 3.6. Suppose thatE(x) < 0 < E(−x) for 0 < x ≪ 1, and there is ax0 > 0 such that
E(x0) = E(−x0) andE(x) < E(−x) for 0 < x < x0, then the following statements hold:

(i) ψ(−x) < ψ(x) < 0 < ϕ(−x) < ϕ(x) for 0 < x < x0.

(ii) xP < −x0 andxQ > x0.

(iii) yP = F (xP ) < yQ = F (xQ).

(iv) In the regionxM − λ ≤ x < +∞ system(3.1) has at most one limit cycleL, and
IE(L) < 0 if L exists.

Proof. Statement (i) follows easily from the fact thaty = ϕ(x) andy = ψ(x) satisfy the
differential equationdydx = x

E(x)−y and by using the Differential Inequality Theorem. Statements
(ii) and (iii) follow from [5], also can see the formula (4.47) of [8]. Statement (iv) follows from
Lemma3.3and the famous Uniqueness Theorem of Zhang, see Theorem 4.6 of [8]. 2

Definition 3.7. A piece of arc{(x, y) : y = E(x), 0 ≤ α ≤ β} ⊂ CE is called aU-arc, if
E(α) = E(β) andE(x) < E(β) for all x ∈ (α, β). Similarly, an arc{(x, y) : y = E(x), α ≤
β ≤ 0} ⊂ CE is called aΛ-arc, if E(α) = E(β) andE(x) > E(β) for all x ∈ (α, β).

Note that by Lemma2.2, if system (3.1) has a limit cycle andCE has two local minimum
points then these two minimum points are located in two sidesof the origin, hence aU -arc or a
Λ-arc, that we will treat, is simply a convex or concave curve with a unique local minimum or
local maximum.
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Lemma 3.8. Suppose that system(3.1) has a limit cycleL, and that in the bounded region byL
the curveCE contains aU -arc or aΛ-arc, for x ∈ [α, β], then

IE [α, β] := −
∫

{x∈[α,β]}∩L+

E′(x) dt < 0.

Proof. Suppose that the orbitL meets the curveCE at pointsP andQ respectively, then
y = ϕ(x) is monotonically increasing forx ∈ (xP , 0) and decreasing forx ∈ (0, xQ), and
y = ψ(x) is monotonically decreasing forx ∈ (xP , 0) and increasing forx ∈ (0, xQ).

x

y

O

A

B

P
Q

ϕ(x)

ψ(x)

xx̃
β

γ

CE

Figure 3. The curveCE has aU -arc.

We first consider theU -arc forx ∈ [α, β] (α = 0 in Figure 3). Note thatIE[α, β] = IϕE[α, β]+

IψE [α, β], whereIϕE andIψE are integrals taken alongy = ϕ(x) and alongy = ψ(x) respectively.
By formula (3.9) we have

IϕE [α, β] =

∫ γ

α

E′(s)
E(s)− ϕ(s)

ds+

∫ β

γ

E′(x)
E(x)− ϕ(x)

dx,

whereγ corresponds to the minimum point on theU -arc. As we did in the proof of Lemma2.4,
x̃(x) ∈ (α, γ) is the function defined byE(x̃) = E(x) for x ∈ (γ, β), then dx̃

dx = E′(x)
E′(x̃) . We

change variable in the first integral bys = x̃(x), then we find

IϕE [α, β] =

∫ β

γ

E′(x) (ϕ(x) − ϕ(x̃(x)))

(E(x)− ϕ(x))(E(x̃(x))− ϕ(x̃(x)))
dx. (3.10)

Since forx ∈ (γ, β) we haveE′(x) > 0, ϕ(x) < ϕ(x̃(x)), E(x) < ϕ(x) andE(x̃(x)) <

ϕ(x̃(x)), we obtainIϕE [α, β] < 0. Similarly, we getIψE [α, β] < 0. Note thatψ(x) > ψ(x̃(x)) for
x ∈ (γ, β), but the integral is taken fromβ to α for x.

The proof for aΛ-arc forx < 0 is completely similar. 2

Proof of Theorem 3.1

(I) cases (A) and (B).

We suppose that system (3.1) has a limit cycleL, expressed byy = ϕ(x) aboveCE and by
y = ψ(x) belowCE , andL intersectsCE atP andQ respectively (we will use these notations in

7



all cases). SinceE(x) < 0 < E(−x) for 0 < x < β, andCE has a unique minimum point, we
havex0 > β, whereE(x0) = E(−x0). By Lemma3.6, xP < −x0, xQ > x0 > β, andyQ > yP ,
see Figure 4.

x

y

O

A

B

P

Q

ϕ(x)

ψ(x)

-λ

Q∗C

ψ∗

ϕ∗

CE

β

D

GFβ

Figure 4. The cases (A) and (B).

We first prove
IE[0, xQ] < IE[β, xQ] < I∗E [β, xQ∗ ], (3.11)

whereQ∗ = (CE ∩ {y = yP}) \ {P}, and

I∗E [β, xQ∗ ] =

∫ xQ∗

β

[
E′(x)

E(x)− ϕ∗(x)
− E′(x)
E(x)− ψ∗(x)

]
dx,

wherey = ϕ∗(x) andy = ψ∗(x) are orbits of system (3.1) from pointQ∗, above and belowCE
respectively. It is obvious thatϕ∗(x) < ϕ(x) andψ∗(x) > ψ(x) for β ≤ x < xQ∗ .

Since{x ∈ [0, β]} ∩ CE is aU -arc, by Lemma3.8 we haveIE[0, β] < 0. On the other hand
IE [0, xQ] = IE[0, β] + IE [β, xQ], henceIE [0, xQ] < IE [β, xQ].

Denote the region forx ≥ β and bounded by the orbitsL andL∗ byG, and using the Green
formula we obtain

I∗E[β, xQ∗ ]− IE [β, xQ] =

∫∫

G

d

dx

(
E′(x)
x

)
dxdy +

E′(β)
β

(yB − yA + yD − yC). (3.12)

Note thatE′(β) > 0, and by Lemma3.3 we have d
dx

E′(x)
x > 0 in G, becausex ≥ β > 0 and

λ ∈ (− b
3 , 0). HenceI∗E [β, xQ∗ ]− IE[β, xQ] > 0, and (3.11) is proved.

We next prove
IE[xP , 0] + I∗E [β, xQ∗ ] < 0. (3.13)

For this purpose we use the functionx̃ = x̃(x), defined byE(x) = E(x̃) for x ∈ [β, xQ∗ ] and
x̃ ∈ [xP , 0], then

IϕE [xP , 0] + Iϕ
∗

E [β, xQ∗ ] =

∫ 0

xP

E′(s)
E(s)− ϕ(s)

ds +

∫ xQ∗

β

E′(x)
E(x)− ϕ∗(x)

dx.
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Changing variable bys = x̃(x) in first integral and notingE(x) = E(x̃) andx̃′(x) = E′(x)/E′(x̃),
we have

IϕE[xP , 0] + Iϕ
∗

E [β, xQ∗ ] =

∫ xQ∗

β

E′(x)(ϕ∗(x)− ϕ(x̃(x)))

(E(x)− ϕ∗(x))(E(x̃(x))− ϕ(x̃(x)))
dx.

We prove that
η(x) := ϕ(x̃(x))− ϕ∗(x) > 0, for x ∈ [β, xQ∗). (3.14)

It is easy to seeη(β) = ϕ(0) − ϕ∗(β) > 0 andη(xQ∗) = ϕ(xP ) − ϕ∗(xQ∗) = 0. We let
ω(x) = ϕ(x̃(x)), then

dω(x)

dx
=
dϕ

dx̃

dx̃

dx
=

x̃

E(x̃)− ϕ(x̃)

E′(x)
E′(x̃)

=
x

E(x)− ω(x)

E′(x)
x

/
E′(x̃)
x̃

.

Note thatE(x) = E(x̃) < ω(x), and E′(x)
x

/
E′(x̃)
x̃ < 1 for 0 < x− β ≪ 1, sincex̃(x) → 0− 0

asx→ β + 0, we have

dω(x)

dx
>

x

E(x)− ω(x)
, 0 < x− β ≪ 1.

On the other hand
dϕ∗(x)
dx

=
x

E(x)− ϕ∗(x)
, 0 ≤ β ≤ xQ∗.

Thusη(x) = ϕ(x̃(x))−ϕ∗(x) = ω(x)−ϕ∗(x) is increasing for0 < x−β ≪ 1. Butη(xQ∗) = 0,
implies that (3.14) holds, as it is shown in Figure 5 (i). The reason is as follows: if there is some
x ∈ (β, xx∗Q) such thatη(x) < 0, then E′(x)

x − E′(x̃)
x̃ would have at least two zeros, see Figure

5(̇ii), this contradicts Lemma3.4.

(i) (ii)

β βββ xQ∗xQ∗

xQ∗

xQ∗

y = η(x)y = η(x)y = η(x)

xWxW

(iii) (iv)

Figure 5. The different behavior of the functionη(x).

Similarly, we haveIψE [xP , 0] + Iψ
∗

E [β, xQ∗ ] < 0, hence (3.13) follows.

From (3.11) and (3.13) we haveIE [0, xQ] < I∗E [β, xQ∗ ] < −IE[xP , 0], implying

IE(L) = IE[xP , 0] + IE [0, xQ] < 0.

Therefore by Lemma3.5the limit cycleL, if exists, is hyperbolic and stable, and it must be unique,
because two stable limit cycles surrounding a unique singularity cannot co-exist.

(II) Case (C) with λ ∈ (− b
3 , 0).
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The proof is essentially the same as above with some modification. Note thatxZ = xM − λ,
whereZ is the local maximum point ofCE . If a limit cycleL does not cross the linex = xZ (i. e.
xP ≥ xZ ), then by Lemma3.6 (iv), IE(L) < 0. So we supposexP < xZ . If xP ∈ [xU , xZ),
whereU is the left local minimum point ofCE , then the proof is similar and even simpler. So we
supposexP < xU , and there are three possibilities depending onyU > 0, yU = 0 andyU < 0,
shown in Figure 6 (i), (ii) and (iii) respectively.

xx x

yy y

OO
O

PP P
QQ Q

ϕϕ ϕ

ψψ ψ

-λ-λ-λ

Q∗
Q∗ Q∗

Z
ZZ

ϕ∗ϕ∗
ϕ∗

CECE CE

β R
U

U

U

V

V

WW

W

(i) (ii) (iii)

Figure 6. The case (C) withλ ∈ (− b
3
, 0).

In any case the straight line{y = yU} cutsCE at pointsV andW for x > 0 (xW > xV ).
We takeQ∗ on CE as above. Note thatxQ > x0 ≥ xW , wherex0 > 0 with the property
E(x0) = E(−x0). In cases (i) and (ii) of Figure 6, we also havexQ ≥ x0 > β, hereβ is the only
positive zero ofE(x) = 0.

For case (ii) we havexV = 0 andxW = β. By using the same way as in the proof for cases
(A) and (B), we can prove

IE[xW , xQ] < I∗E[xW , xQ∗ ] < −IE [xP , xU ], (3.15)

i. e. IE [xP , xU ]+IE[xW , xQ] < 0. In fact, by Lemma3.4we haveE
′(x)
x > E′(x̃)

x̃ > 0 for x > xW
andx̃(x) < xU , hence it is enough to useη(xQ∗) = 0 to show thatη(x) = ϕ(x̃(x)) − ϕ∗(x) is
monotonically decreasing forx ∈ [xW , xQ∗) andη(x) > 0 for x ∈ (xW , xQ∗), see Figure 5 (iii).
On the other handIE [xU , xW ] < 0 is obviously true by Lemma3.8, because the part ofCE from
pointU to pointW consists of aΛ-arc and aU -arc.

For case (i) of Figure 6,̃x(x) ∈ (xV , 0) whenx ∈ (β, xW ) and x̃(x) ∈ (xP , xU ) when
x ∈ (xW , xQ∗). We first prove (3.15) by the same way as above, and find out thatη(xW + 0) =
ϕ(xU ) − ϕ∗(xW ) > 0. By Lemma3.8 we haveIE[xU , xV ] < 0, and by a similar proof of
(3.15) we haveIE[xV , 0] + IE [β, xW ] < 0, because in this caseη(β) = ϕ(0) − ϕ(β) > 0,
η′(β) = 0−ϕ′(β) > 0 andη(xW−0) = ϕ(xV )−ϕ∗(xW ) > ϕ(xU )−ϕ∗(xW ) = η(xW+0) > 0,
hence by using Lemma3.4 we obtainη(x) = ϕ(x̃(x)) − ϕ∗(x) > 0 for x ∈ (β, xW ), shown in
Figure 5 (iv).

Finally for case (iii) of Figure 6, we have (3.15) by the same way than in case (i), and
IE [xR, 0] + IE[xV , xW ] < 0 by Lemma3.8, whereR is the intersection point ofCE with x-
axis betweenU and the origin. It remains to proveIE[xU , xR] + IE[0, xV ] < 0. We can use the
same arguments than the proof of Lemma3.8, let x̃ = x̃(x) for x ∈ (0, xV ) andx̃ ∈ (xU , xR),
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defined byE(x) = E(x̃). Then we have a similar formula like the right hand side of (3.10), an
integral from0 to xV . SinceE′(x) < 0, we need to showϕ(x) − ϕ(x̃(x)) > 0 for x ∈ (0, xV ).
If we reverse the part ofCE for x < xZ to the right (symmetry with respect to the line{x = xZ})
then, by (2.4) with λ = xM , there is no intersection withCE for x > xZ . This implies that if we
reverse the part ofCE for x < 0 to the right (symmetry with respect to the line{x = 0}), then the
image arc ofCE from pointR to pointU is located right to the arc ofCE from pointO to pointV .
Thus we haveϕ(x) > ϕ(−x) > ϕ(x̃(x)). The first estimate is by Lemma3.6(i), and the second
by monotonicity of theϕ andx̃(x) < −x for x ∈ (0, xV ).

(III) Case (C) with λ ∈ (xm, xM ).

We will prove that if system (3.1) has a limit cycleL, thenIE(L) > 0. Thus by Lemma3.5
L is hyperbolic unstable and the limit cycle is unique. For convenience we do the transformation
(x, t) 7→ (−x,−t), then equation (3.1) becomes

ẋ = y −G(x),
ẏ = −x, (3.16)

whereG(x) = E(−x) = −a1x+ a2x
2 − a3x

3 + 1
4x

4, aj(x) is the same as in (3.2) for j = 1, 2
or 3. For system (3.16), we proveIG(L) < 0.

We still useP = (xP , yP ) ∈ CG andQ = (xQ, yQ) ∈ CG to denote the most left and most
right points of the limit cycleL, then by Lemma3.6, xP < −x0 < 0 < x0 < xQ andyP < yQ,
wherex0 satisfiesG(x0) = G(−x0). By Lemma3.3 and a similar result of Lemma3.6 (iv), if
xP ≥ xZ , whereZ is the local maximum point andxZ = λ− xM < 0, thenIG(L) < 0. Hence
we only consider the casexP < xZ .

xxx

yyy

OP
PP

Q

QQ

ϕ(x)ϕ(x)
ϕ(x)

ψ(x)
ψ(x)

ψ(x)

U
UU

V V
V

CG
CGCG ZZZ

T λλλ γγ

S
S

S

K
K

(i) (ii)
(iii)

Figure 7. The three possibilities for case (C) withλ ∈ (xm, xM ) andxP ∈ (xU , xZ).

Subcase III-1: xP ∈ [xU , xZ).

Note thatU is the left local minimum point ofCG andxU = λ. It is possiblexQ ≤ xV (Figure
7 (i)) or xQ > xV , whereV is the right local minimum point ofCG andxV = γ = λ− xm > 0.
The cases (ii) and (iii) of Figure 7 correspond toyQ < 0 andyQ ≥ 0 respectively. IfyP ≥ 0 in
case (iii), then the discussion is similar to case (ii).
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In case (iii) of Figure 7, we haveIG[xP , xS ] < 0, becauseG
′(x)
x dy < 0 along this part ofCG.

Similarly IG[xK , xQ] < 0. The rest part ofCG consists of aΛ-arc and aU -arc, hence by Lemma
3.8, IG[xS , xK ] < 0. Combining them together we haveIG(L) < 0.

We will prove IG[xP , xQ] < 0 in case (i) andIG[xP , xK ] < 0 in case (ii). Since the proofs
are similar, we give details for the former, and only explainthe difference for the later.

Observing case (i) of Figure 7,IG[xP , xS ] < 0, we need to proveIG[xS , xQ] < 0 for theΛ-
like-arcSZQ. We use the same method than for theΛ-like-arc in Figure 6 (iii). We need to prove
IG[xS , xZ ] + IG[xZ , xQ] < 0. Forx ∈ (xZ , xQ) we definex̃ = x̃(x) ∈ (xS , xZ) by G(x) =
G(x̃). SinceG′(x) < 0 for x ∈ (xZ , xQ), we need to proveη(x) = ϕ(x) − ϕ(x̃(x)) > 0 in
x ∈ (xZ , xQ). It is obvious thatϕ(x) > 0 for x ∈ (xZ , 0]. A sufficient condition ofϕ(x) > 0 for
x ∈ (0, xQ) is x0 ≥ γ, see Figure 8 (i), because in this case we havex < −x̃(x) for x ∈ (0, xQ),
henceϕ(x) > ϕ(−x) > ϕ(x̃(x)). The first estimate is by Lemma3.6(i), and the second estimate
is by the monotonicity ofϕ(x) for x < 0. We next prove that ifλ ∈ (xm,− b

2 ], thenx0 > γ. In
fact fromG(−x) = G(x) we find a unique positive solution

x0 =

√
3λ(λ2 + bλ+ a)

−(b+ 3λ)
, (3.17)

whereb+ 3λ < 0 andλ(λ2 + bλ+ a) > 0 for λ ∈ (xm, xM ), andx20 − γ2 = x20 − (λ− xm)
2 =

(−2(b+ 3λ))−1χ(λ, a, b), where

χ(λ, a, b) = (b+ 3λ)(b+ 2λ)
√
b2 − 4a+ 12λ3 + 14bλ2 + 5b2λ+ b(b2 − 2a).

By using the Fourier-Budan Criterion (explained in Appendix 1), it is not hard to findχ(λ, a, b) >
0 for λ ∈ (xm,− b

2 ], wherea > 0, b > 0 and 2
9b

2 < a < 1
4b

2.

For case (ii) of Figure 7, we need to proveIG[xS , xK ] < 0 for theΛ-arc SZK. Ifλ ∈ (xm,− b
2 ],

the proof is exactly the same as above.

xx

y
y

OO

P ′

−β

P

Q CG+

CG−

x0γ

CH

β

ϕ+ϕ−ϕ1

ψ−

ψ+

ψ1

CG

U
V

R

CG−

(i)
(ii)

Figure 8. The study forx0 ≥ γ andx0 < γ respectively.

It remains to consider the caseλ ∈ (− b
2 , xM ) and x0 < γ. In this case we will prove

IG[xP , xQ] < 0 directly by using some suitable transformations, borrowedfrom [6] due to Xi-
anwu Zeng.
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We denoteCG+ = {(x, y)| y = G(x), x > 0} andCG− = {(x, y)| y = G(−x), x > 0},
ϕ+(x) = ϕ(x) andψ+(x) = ψ(x) for x ∈ (0, xQ), andϕ−(x) = ϕ(−x) andψ−(x) = ψ(−x)
for x ∈ (0, xP ′), whereP ′ is the symmetry point ofP . (β, 0) is the only intersection point of
CG− with thex-axis forx ∈ (0, |λ|) and(x0, G(x0)) is the only intersection point ofCG+ and
CG− . We certainly haveβ < x0, and by assumptionx0 < γ, see Figure 8 (ii).

Let k =
yP ′
yQ

> 1 and letx̄(x) = k2(x−β)+β for x ∈ (β, xR), wherexR = 1
k2
(xP ′ −β)+β.

Then x̄(x) ∈ (β, xP ′) for x ∈ (β, xR). LetH(x) = 1
kG−(x̄(x)), whereG−(x) = G(−x) for

x > 0, and letϕ1(x) =
1
kϕ−(x̄(x)) andψ1(x) =

1
kψ−(x̄(x)). Note thatG′

−(x) = −G′(−x) and
by change of variablet = −s we have

IG[xP ,−β] =
∫ −β

xP

[
G′(t)

G(t)− ϕ(t)
− G′(t)
G(t)− ψ(t)

]
dt

=

∫ xP ′

β

[
− G′

−(s)
G−(s)− ϕ−(s)

+
G′

−(s)
G−(s)− ψ−(s)

]
ds.

(3.18)

Then changing variable bys = x̄(x), we obtain

IG[xP ,−β] =
∫ xR

β

[
− H ′(x)
H(x)− ϕ1(x)

+
H ′(x)

H(x)− ψ1(x)

]
dx. (3.19)

By definition we haveyR = H(xR) =
1
kG−(x̄(xR)) = 1

kyP ′ = yQ. It is easy to find that

G′
+(x)−G′

−(x) = G′(x)+G′(−x) = 2[−(b+3λ)x2−λ(λ2+bλ+a)] > 0, if x > x1, (3.20)

wherex1 =
√
−λ(λ2+bλ+a)

b+3λ < x0, see (3.17). HenceG′
−(x) < G′

+(x) < 0 for x ∈ (x0, x2),

wherex2 =max(xP ′ , xQ). This impliesH ′(x) < 0 for x ∈ (β, xR).

We letCH = {(x, y)| y = H(x), β ≤ x ≤ xR}, and prove thatCH ∩ CG+ consists of a
unique point, hencexR < xQ, sinceyR = yQ. In fact, if CH ∩ CG+ = ∅ for x ∈ (β, xR), then
xR > xQ andH(x) > G+(x) for x ∈ (β, xR). Note that the functiony = ϕ1(x) =

1
kϕ−(x̄(x))

satisfies the differential equation

dy

dx
=

x̄(x)

H(x)− y
=: f1(x, y), y > H(x), (3.21)

and the functiony = ϕ+(x) satisfies the differential equation

dy

dx
=

x

G+(x)− y
=: f+(x, y), y > G+(x). (3.22)

Hence for anyx ∈ (β, xQ) andy > H(x) > G+(x) we have

f1(x, y) <
x

H(x)− y
< f+(x, y) < 0,

becausēx(x) > x > 0. By the Differential Inequality Theorem we findϕ1(x) ≥ ϕ+(x) for
x ∈ (β, xQ). This impliesϕ1(β) ≥ ϕ+(β), contradicting the fact0 < ϕ1(β) = 1

kϕ−(β) <
ϕ−(β) < ϕ+(β) by Lemma3.6(i).
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ThereforeCH ∩ CG+ 6= ∅. Since0 > H(x) = 1
kG−(x̄(x)) > G−(x̄(x)), the intersection

CH ∩ CG+ happens forx > x0. In Appendix 2 we will prove the following property:

G′
+(x)−H ′(x) > 0 if G+(x) = H(x) andx ∈ (x0, xR). (3.23)

HenceCH ∩ CG+ consists of a unique point, andxR < xQ.

Thus we can definêx = x̂(x) ∈ (0, xQ) by H(x) = G+(x̂(x)) for x ∈ (β, xR). Let
ϕ2(x) = ϕ+(x̂(x)) andψ2(x) = ψ+(x̂(x)), then by a change of variables = x̂(x), noting
dx̂
dx = H′(x)

G′(x̂(x)) , we have

IG[0, xQ] =

∫ xQ

0

[
G′

+(s)

G+(s)− ϕ+(s)
− G′

+(s)

G+(s)− ψ+(s)

]
ds

=

∫ xR

β

[
H ′(x)

H(x)− ϕ2(x)
− H ′(x)
H(x)− ψ2(x)

]
dx.

(3.24)

From (3.19) and (3.24) we have thatIG[XP ,−β] + IG[0, xQ] equals to
∫ xR

β

[
H ′(x)(ϕ2(x)− ϕ1(x))

(H(x)− ϕ1(x))(H(x) − ϕ2(x))
+

H ′(x)(ψ1(x)− ψ2(x))

(H(x)− ψ1(x))(H(x) − ψ2(x))

]
dx. (3.25)

We prove that forx ∈ (β, xR)

ξ(x) := ϕ2(x)− ϕ1(x) > 0, η(x) := ψ2(x)− ψ1(x) < 0. (3.26)

Therefore, by (3.25) and (3.26), combining with the fact thatIG[−β, 0] < 0 (by Lemma3.8), we
haveIG[xP , xQ] < 0.

To prove (3.26), we first study the behavior ofξ(x) = ϕ+(x̂(x)) − 1
kϕ−(x̄(x)) andη(x) =

ψ+(x̂(x)) − 1
kψ−(x̄(x)) at the endpointsx = β andx = xR. It is obvious that fork =

yP ′
yQ

> 1

we have

ϕ2(β) = ϕ+(0) > ϕ−(β) >
1

k
ϕ−(β) = ϕ1(β) > 0,

ψ2(β) = ψ+(0) < ψ−(β) <
1

k
ψ−(β) = ψ1(β) < 0,

and

ξ′(β) = ϕ′
+(0)

k G′
−(β)

G′
+(0)

− k ϕ′
−(β) = 0− k ϕ′

−(β) > 0,

η′(β) = ψ′
+(0)

k G′
−(β)

G′
+(0)

− k ψ′
−(β) = 0− k ψ′

−(β) < 0.

Hence we obtain
ξ(β) > 0, ξ′(β) > 0; η(β) < 0, η′(β) < 0. (3.27)

On the other hand we have

ξ(xR) = ϕ+(xQ)−
1

k
ϕ−(xP ′) = yQ − 1

k
yP ′ = 0,

and similarlyη(xR) = 0. So we have

ξ(xR) = 0, η(xR) = 0. (3.28)
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We have shown that the functionsy = ϕ1(x) andy = ψ1(x) satisfy the differential equation
(3.21); it is easy to find that the functionsy = ϕ2(x) > H(x) andy = ψ2(x) < H(x) satisfy

dy

dx
=

x̂(x)

G+(x̂(x))− y

k G′
−(x̄(x))

G′
+(x̂(x))

=
x̄(x)

H(x)− y

k G′
−(x̄(x))
x̄(x)

(
G′

+(x̂(x))

x̂(x)

)−1

. (3.29)

In Appendix 2 we will prove that forx ∈ (β, xR)

G′
+(x̂(x))

x̂(x)
− k G′

−(x̄(x))
x̄(x)

= 0 has at most one zero, (3.30)

under conditionG+(x̂(x)) =
G−(x̄(x))

k (i. e. the definitionH(x) = G+(x̂(x))). Comparing two
differential equations (3.21) and (3.29) and using the fact (3.30), we obtain thatξ′(x) andη′(x)
have at most one zero inx ∈ (β, xR). Thus, by using the facts (3.27) and (3.28) we obtain (3.26),
the behavior ofξ(x) looks like Figure 5 (i), and the behavior ofη(x) looks like the symmetry of
ξ(x) with respect toy-axis.

Finally, for case (ii) of Figure 7, the proof ofIG[xP , xK ] < 0 is the same. Instead of (3.28)
we useξ(xR) > 0 andη(xR) < 0.

Subcase III-2: xP < xU = λ.

In this case we need to prove three facts: (a)xQ > xV = γ, (b) IG[λ, γ] < 0, and (c)
IG[xP , λ] + IG[γ, xQ] < 0.

We first reverse the left part ofCG, symmetric with respect to the line{x = xZ}, and denote
the image ofCG byCḠ, thenCḠ is entirely below the right part ofCG for x > xZ , see Figure 9
(i). To check this, we takeλ = xM in (2.4), thenz = 0 (equivalent tox = xZ here) is the only
zero. We also usēϕ andψ̄ as the images ofϕ andψ for x < xZ .

Note thatℓl := xZ − xU = |xM | = −xM andℓr := xV − xZ = xM − xm, henceℓl − ℓr =
xm − 2xM = 1

2(b− 3
√
b2 − 4a) > 0, since2

9b
2 < a < 1

4b
2. This impliesγ̄ = xŪ > γ, whereŪ

is the image ofU .

x x

y y

O

P ′

B∗

P P

Q Q

Ū

ϕ
ϕ

ψ ψ

ϕ̄

P ∗

U U
V V

ψ̄

ACG

CG

CḠ

Z Z

B

U∗

A∗
ϕ∗

ψ∗

λ λγ̄γ γ

R∗

Ω∗Ω

Ω′

R

(i) (ii)

Figure 9. The case (C) withλ ∈ (xm, xM ) andxP > λ.
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Now we compare the relative positions ofϕ with ϕ̄, and that ofψ with ψ̄, for x ≥ 0. Since
ψ̄|x=0 > ψ|x=0, and the functiony = ψ̄(x) satisfies the differential equation

dy

dx
=

x+ c

Ḡ(x)− y
, y < Ḡ(x),

whereḠ(x) = G(−(x+ c)), c = 2 |xZ | > 0; andy = ψ(x) < G(x) satisfies

dy

dx
=

x

G(x)− y
<

x+ c

G(−(x+ c))− y
,

becauseG(−(x + c)) < G(x) as we mentioned above. Hencēψ is entirely stay aboveψ. On
the other hand̄ϕ|x=0 < ϕ|x=0. If ϕ̄ crossesϕ at some point(x′, ϕ(x′)), then it would stay above
ϕ for all x > x′, becausey = ϕ̄(x) > Ḡ(x) andy = ϕ(x) > G(x) satisfy the above equation
respectively, but

0 >
x

G(x)− y
>

x+ c

G(−(x+ c))− y
.

In this case,̄ϕ would not meet̄ψ atP ′, leading to a contradiction.

Thus we obtain that the region bounded by{x = 0}, ϕ̄ and ψ̄ is entirely contained in the
region bounded by{x = 0}, ϕ andψ, hence fact (a) is true, i. e.xQ > γ, becausexQ > γ̄ and
γ̄ > γ.

To prove fact (b), i. e.IG[λ, γ] = IG[xU , xV ] < 0, we can use exactly the same way as we
proveIG[xP , xQ] < 0 for the case (i) of Figure 7, using pointsU andV instead of the points
P andQ respectively. Note thatyU < yV < 0 and the discussion of Appendix 2 is made for
x̄(x) ∈ (β, |λ|) andx̂(x) ∈ (0, γ).

Finally we prove fact (c), i. e.

IG[xP , λ] + IG[γ, xQ] < 0. (3.31)

Along the straight lines{x = λ} and{x = γ} we haveG′(x) = 0. If we shift the regionΩ,
bounded byy = ϕ(x), y = ψ(x) andx ≤ λ, to right for a distancec = |λ| − γ = xm − 2λ > 0,
and reverse it to the right hand side, symmetric with respectto they-axis, thenΩ maps toΩ∗, and
the line{x = λ} maps to the line{x = γ}. By the same discussion as above we obtain thatΩ∗

is entirely contained in the regionΩ′, bounded byy = ϕ(x), y = ψ(x) andx ≥ γ, see Figure 9
(ii). We remark here that it is not necessary that the image ofCG for x ∈ (xP , λ) is entirely below
CG for x ∈ (γ, xQ), but it is enough for our purpose that this is true at least forsome interval of
x ≥ γ.

We denote{(x, y) : y = ϕ(x) ∪ ψ(x), xP ≤ x ≤ λ} by {(x, y) : x = x(y), yB ≤ y ≤ yA}
and{(x, y) : y = ϕ∗(x)∪ψ∗(x), γ ≤ x ≤ xP ∗} by {(x, y) : x = x∗(y), yB∗ ≤ y ≤ yA∗}, where
yA = yA∗ andyB = yB∗ , see Figure 9 (ii). Thenx(y) = −(x∗(y) + c), and by using (3.9)

IG[xP , λ] =

∫ yA

yB

G′(x(y))
x(y)

dy =

∫ yA∗

yB∗

G′(−(x∗(y) + c))

−(x∗(y) + c)
dy.

Let I∗G[γ, xQ∗ ] = −IG[xP , λ] =
∫ yB∗
yA∗

G′(−(x∗(y)+c))
−(x∗(y)+c) dy, then to verify (3.31) is equivalent to

show
−(IG[γ, xQ]− I∗G[γ, xQ∗ ]) > 0. (3.32)
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Note thatG′(γ) = 0, andG′(−(γ+ c)) = G′(λ) = 0, by using Green formula we express the left
side of (3.32) as

∫∫

Ω∗

[
d

dx

(
G′(x)
x

)
− d

dx

(
G′(−(x+ c))

−(x+ c)

)]
dxdy +

∫∫

Ω′\Ω∗

d

dx

(
G′(x)
x

)
dxdy.

Computations show that the first integrand is equal to

−2(b+ 3λ+ c) + λ(λ2 + bλ+ a)

(
1

x2
+

1

(x+ c)2

)
> 0,

becausex ≥ γ > 0, b + 3λ + c = b + xm + λ < b + xm + xM = 0 andλ(λ2 + bλ + a) > 0
for λ ∈ (xm, xM ). And the second integrand is given in (3.6), which is also positive because
b+ 3λ < 0. Therefore (3.32), hence (3.31) is proved.

(IV) Case (D).

By Lemma2.1F (x) = 1
4x

2(x+ 2b
3 )

2. We do the change of variables and parameter(x, t, λ) 7→
(−(x + 2b

3 ),−t,−(λ + 2b
3 )), then the case (D) withλ ∈ (−2b

3 ,− b
3) becomes case (D) with

λ ∈ (− b
3 , 0) , and the proof of later case is similar to case (C) withλ ∈ (− b

3 , 0), see Figure 10.
Similarly to case (iii) in Figure 6 we can obtainIE[xV , xQ] < I∗E [xV , xQ∗ ] andIE [xU , xV ] < 0.

x

y

O

P

Q

ϕ

ψ

-λ

Q∗

Z

ψ∗

ϕ∗

CE

U V

Figure 10. The case (D) withλ ∈ (− b
3
, 0).

In this case by symmetry we haveI∗E[xV , xQ∗ ]+IE [xp, xU ] = 0. ThereforeIE(L) = IE [xp, xU ]+
IE [xU , xV ] + IE [xV , xQ] < 0.

The proof of Theorem3.1 is finished. 2

Remark 3.9. By using his results in [6], Xianwu Zeng proved in [7] that if system

ẋ = y − (b1x+ b2x
2 + b3x

3 + x4),
ẏ = −x, (3.33)

satisfiesb1 < 0 < b3 andb33 − 4b2b3 + 8b1 ≤ 0, then it has at most one limit cycle.
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Doing scaling(x, y) 7→ (4
1
3x, 4

1
3 y) we can change system(3.1) to the form(3.33) with b1 =

a1, b2 = 4
1
3a2 and b3 = 4

2
3 a3, hence the first condition is equivalent toa1 < 0 < a3 and the

second condition becomes8(2a33−2a2a3+a1) =
8
27b(2b

2−9a) ≤ 0. It is clear that the uniqueness
of limit cycle for cases (A), (B), and cases (C) and (D) withλ ∈ (− b

3 , 0) can be directly obtained
by Zheng’s result. But the case (C) withλ ∈ (xm, xM ) does not satisfy the conditions, see Lemma
3.2.

Appendix 1

We prove that the polynomialg(u) in (3.8) has exactly one real root foru ∈ (u1, 0), where
u1 = −2b

3 andb > 0. For a real series{c0, c1, ..., cn} we denote byN{c0, c1, ..., cn} the number
of change of signs in this series (skip zero(s) if it appears in this series). To find the number of real
roots off(x) for x ∈ (a, b), the following two criteria are well known.

Criterion A (Fourier-Budan) If

N{f(a), f ′(a), f ′′(a), ..., f (n)(a)} = p,

N{f(b), f ′(b), f ′′(b), ..., f (n)(b)} = q,

thenp ≥ q, and the number of real roots (counting the multiplicity) off(x) for x ∈ (a, b) is equal
to eitherp − q or p − q − r, wherer is a positive even integer. In particular, ifp = q (resp.
p = q + 1), thenf(x) has no (resp. has unique) real root in(a, b).

Criterion B (Sturm) Assume thatf(x) has no multiple root in(a, b), and we construct the
series{f0(x), f1(x), f2(x), ..., fs(x)} as follows: f0(x) = f(x), f1(x) = f ′(x). Divide f0(x)
byf1(x) and take the remainder with negative sign asf2(x); then dividef1(x) by f2(x) and take
the remainder with negative sign asf3(x),..., the last remainder with negative sign (a non-zero
number) isfs(x). If

N{f0(a), f1(a), f2(a), ..., fs(a)} = p,

N{f0(b), f1(b), f2(b), ..., fs(b)} = q,

thenp ≥ q and the number of real roots off(x) for x ∈ (a, b) is qual top− q.

We first use Criterion B to prove thatg(u) has no multiple root foru ∈ (u1, 0). Eliminationa
from g(u) = 0 andg′(u) = 0 we find(3u+ 2b)h(u, λ, b) = 0, where

h(u, λ, b) = 2b(3u + 2b)λ2 − u(3u2 + 12bu + 8b2)λ+ 6u2(u+ b)2.

By Lemma2.4 we have3u + 2b > 0. Let us showh(u, λ, b) 6= 0 for u ∈ (u1, 0), λ ∈ (− b
3 , 0)

andb > 0. This contradiction gives the desired result. In fact,h(u, 0, b) = 6u2(u + b)2 > 0,
h(u,− b

3 , b) =
1
9(3u+2b)(18u3+27bu2+12b2u+2b3) > 0. Here18u3+27bu2+12b2u+2b3 > 0

for u ∈ (u1, 0) andb > 0 can be checked easily by using Criterion B. Then eliminatingu from
h(u, λ, b) = 0 and ∂

∂λh(u, λ, b) = 0 we obtain−9λ4 + 306 bλ3 + 264 b2λ2 + 72 b3λ+ 8 b4 = 0,
which is impossible forb > 0 andλ ∈ (− b

3 , 0) by using Criterion B again. Hence we may use
special values of(u, b) to check the sign ofh(u, λ, b), and it is easy to find thath(−2, λ, 6) > 0
for λ ∈ (−2, 0).
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Now we have proved thatg(u) has no multiple root foru ∈ (u1, 0). Sinceg(u1) = 4b
27 (b +

3λ)(9a − 2b2) > 0 andg(0) = 4abλ < 0, it is enough to find the number of real roots forg(u)
by choosing special values ofb > 0, 2

9b
2 < a < 1

4b
2 andλ ∈ (− b

3 , 0). We can verify by Criterion
B that if we choose(a, b, λ) = (8.6, 6,−1) theng(u) has exactly one zerou ≈ −0.638407 in
(−4, 0). Thereforeg(u) has exactly one root foru ∈ (u1, 0).

Appendix 2

We first prove (3.23), i. e.

G′
+(x)−H ′(x) = G′(x) + kG′(−x̄(x)) > 0, for x ∈ (x0, xR).

Note thatk > 1 and

kG′(−x̄(x)) > G′(−x̄(x)) > 0, G′(x) < 0, for x ∈ (x0, xR),

hence it is enough to prove

G′(x) +G′(−x̄(x)) ≥ 0, for x ∈ (x0, xR). (3.34)

Sincex̄(x) = k2(x− β) + β we writex̄(x) = x+ c, wherec = c(x) increases withx > x0 > β.
SincexR ≤ xQ ≤ γ and x̄(xR) = xP ′ ≤ |λ|, we havec ∈ (0, cm), wherecm = |λ| − γ =
xm − 2λ > 0. It is easy to find thatG′(x) +G′(−(x+ c)) has the expression

f(x, c) = −[3c+ 2(b+ 3λ)](x2 + cx)− (c2 + 2cλ+ 2λ2)b− (c+ 2λ)(c2 + cλ+ a+ λ2).

We will prove thatf(x, c) ≥ 0 for x ∈ [x0, γ] and c ∈ [0, cm] with 2
9b

2 < a < 1
4b

2 and
λ ∈ (− b

2 , xM ).

If c = c2 := −2
3(b+ 3λ), thenf(x, c2) = 2

27b(9a − 2b2) > 0. If c 6= c2, then we can rewrite
f(x, c) as

f(x, c) = −3(c− c2)
(
(x+

c

2
)2 − g(c)

)
, (3.35)

where

g(c) = −(c+ 2λ)(c2 + 2bc+ 4cλ+ 4a+ 4bλ+ 4λ2)

12(c − c2)
.

Sincec + 2λ < 0 for c ∈ (0, cm) and the second factor in the above numerator, as a quadratic
polynomial inc, has a negative root and a positive rootc1 =

√
b2 − 4a− (b+ 2λ) < c2 < cm, it

is clear that
f(x, c) > 0, for all x > 0, if c ∈ [c1, c2].

We next prove that

f(x, c) > 0, for x ∈ (x0, γ), if c ∈ (0, c1) ∪ (c2, cm).

Whenc ∈ (0, c1) ∪ (c2, cm), we haveg(c) > 0 and

f(x, c) = −3(c− c1)
(
x+

c

2
+

√
g(c)

)
(x− x(c)),
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wherex(c) =
√
g(c) − c

2 is the only possible positive root off . We will prove that

x′(c) < 0, for c ∈ (0, c1) ∪ (c2, cm). (3.36)

This implies the desired result. In fact, ifc ∈ (0, c1), thenx(c) < x(0) =
√

λ(λ2+bλ+a)
−(b+3λ) < x0

(see (3.17)), hencef(x, c) > 0 for x ∈ (x0,+∞); if c increases fromc2 thenx(c) decreases from
+∞, hencef(x, c) > 0 for x ∈ (0, x(c)). By (3.36) we havex(c) > x(cm) for c ∈ (c2, cm), and
a computation givesx(cm) = γ, this would finish the proof.

It remains to prove (3.36). It is easy to see that

x′(c) =
g′(c)

2
√
g(c)

− 1

2
. (3.37)

We will prove that forµ = (a, b, λ) ∈ K =
{
2
9b

2 < a < 1
4b

2, b > 0,− b
2 < λ < xM

}
we have

x′(0) < 0, x′(c1) < 0, x′(c2) < 0, x′(cm) < 0, (3.38)

and it is not hard to check that if we takeµ0 = (a0, b0, λ0) = (8.6, 6,−2.4) ∈ K thenx′(c) < 0
for c ∈ [0, c1]∪ [c2, cm]. Thus, if there areµ1 ∈ K andc̄ ∈ (0, c1)∪ (c2, cm), such thatx′(c̄) ≥ 0
for µ = µ1, then by continuity we would find aµ2 ∈ K and ĉ ∈ (0, c1) ∪ (c2, cm), satisfying
x′(ĉ) = x′′(ĉ) = 0 for µ = µ2. Eliminatingc from x′(c) = 0 andx′′(c) = 0 we obtain

a6b10(b2 − 4a)3(b2 − 3a)3(9a− 2b2)10 = 0,

which is impossible forµ ∈ K. This contradiction proves (3.36).

At last we need to show (3.38). Since

x′(0)(2
√
g(0)) := r(λ) = − s(λ)

2(b+ 2λ)2
−
√
λ(λ2 + bλ+ a)

−(b+ 3λ)
,

wheres(λ) = 6λ3 + 6bλ2 + 2b2λ+ ab. If s(λ) ≥ 0, we immediately havex′(0) < 0. So we use
the same continuity argument to showx′(0) < 0 in cases(λ) < 0. Computation gives

(i) r(− b
2) = −

√
b2−4a(b−

√
b2−4a)

2b < 0.

(ii) r(xM) = −
√
b2−4a(b2−3a−b

√
b2−4a)

2(b+3xM )2
< 0, since(b2−3a)2−b2(b2−4a) = a(9a−2b2) > 0.

(iii) r(λ) < 0 for λ ∈ [− b
2 , xM ] when(a, b) = (8.6, 6).

(iv) Eliminating
√

λ(λ2+bλ+a)
−(b+3λ) from r(λ) = 0 andr′(λ) = 0 we have

s(λ)(36λ3 + 36bλ2 + 12b2λ+ 2b3 − 3ab) = 0,

which is impossible, becauses(λ) < 0 as we supposed and36λ3+36bλ2+12b2λ+2b3−3ab =
6s(λ) + b(2b2 − 9a) < 0. Thus we havex′(0) < 0.

To provex′(cj) < 0 for j = 1, 2,m it is enough to showg′(cj) < 0, see (3.37), and we have

g′(c1) = −2
√
b2 − 4a

(b2 − 3a)− b
√
b2 − 4a

(b− 3
√
b2 − 4a)2

< 0.
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The numerator ofg′(c2) is−4
9b(9a− 2b2) < 0, hencelimc→c2+0 g

′(c) = −∞. And

g′(cm) = −b(5a− b2)− (b2 − 3a)
√
b2 − 4a

(b− 3
√
b2 − 4a)2

< 0,

because(b(5a−b2))2−(b2−3a)2(b2−4a) = 4a2(9a−2b2) > 0. The proof of (3.23) is finished.

We next prove (3.30), i. e.
G′(x̂(x))
x̂(x)

+
kG′(−x̄(x))

x̄(x)
(3.39)

has at most one zero inx ∈ (β, xR) for k > 1. If x̄(x) ≤ x̂(x), then by Lemma3.3and (3.20) we
have

G′(x̂(x))
x̂(x)

+
kG′(−x̄(x))

x̄(x)
≥ 1

x̄(x)
(G′(x̄(x)) +G′(−x̄(x)) > 0,

where−x̄(x) ∈ (λ,−β). Hence we supposēx(x) > x̂(x) and letx̄(x) = x̂(x) + c. Note that
x̂(xR) = xQ andx̄(xR) = xP ′ , hencec ∈ (0, cm), and (3.39) becomes

A(ξ, c) :=
G′(ξ)
ξ

+
kG′(−(ξ + c))

ξ + c
= (1− k)ξ4 + α3ξ

3 + α2ξ
2 + α1ξ + α0, (3.40)

where

α3 = −(3k − 1)c− (1 + k)(b+ 3λ),
α2 = −3kc2 − (2k + 1)(b+ 3λ)c− (k − 1)(a+ 2bλ+ 3λ2),
α1 = −kc3 − k(b+ 3λ)c2 − (k − 1)(a+ 2bλ+ 3λ2)c− (1 + k)λ(λ2 + bλ+ a),
α0 = −cλ(λ2 + bλ+ a).

We need to prove thatA(ξ, c) = 0 has at most one zero inξ ∈ (0, γ) for c ∈ (0, cm), k > 1 and
(a, b, λ) ∈ K, wherecm andK are the same as above. Note thatA(0, c) < 0 andA(+∞, c) < 0,
if α3 < 0 then by the Fourier-Budan Criterion (see Appendix 1)A(ξ, c) has at most two zeros for
ξ ∈ (0,+∞); if α3 ≥ 0, i. e. 0 < c ≤ − (k+1)(b+3λ)

3k−1 , then

α2 ≥ −(3k + 1)(k − 1)

3k − 1
c(b+ 3λ)− (k − 1)(a+ 2bλ+ 3λ2) > 0,

becausek > 1, b + 3λ < 0 anda + 2bλ + 3λ2 = (λ2 + bλ + a) + λ(b + 2λ) < 0. Thus by
the Fourier-Budan CriterionA(ξ, c) still has at most two zeros forξ ∈ (0,+∞). We will prove
thatA(γ, c) > 0 for c ∈ (0, cm) and(a, b, λ) ∈ K, this immediately implies thatA(ξ, c) = 0 has
exactly one simple zero inξ ∈ (0, γ) for c ∈ (0, cm). From (3.40) we have

A(γ, c) =
k

2
(b+ 2λ+ c) (β2c

2 + β1c+ β0), (3.41)

where

β2 = −(b+ 2λ+
√
b2 − 4a),

β1 = −(3b+ 7λ)
√
b2 − 4a− 3b2 − 7bλ− 8λ2 + 6a,

β0 = −(2b2 + 8bλ+ 10λ2 − 2a)
√
b2 − 4a− 2b3 + 8(2a− b2)λ− 10bλ2 − 8λ3 + 6ab.
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Sinceβ2 < 0 and we will proveβ0 > 0, henceβ2c2 + β1c + β0 = 0 has a unique positive
zero point, and direct computation shows this zero point is exactly cm, henceA(γ, c) > 0 for
c ∈ (0, cm) and(a, b, λ) ∈ K.

To checkβ0 > 0, we note that

β0|λ=− b
2
= 1

2(b
2 − 4a)(b −

√
b2 − 4a) > 0,

β0|λ=xM = 2(b2 − 4a)(b − 3
√
b2 − 4a) > 0,

β′0(λ)|λ=− b
2
= 2b

√
b2 − 4a− 4(b2 − 4a).

Since4b2(b2 − 4a)− 16(b2 − 4a)2 = 4(b2 − 4a)(16a− 3b2) > 0, we haveβ′0(λ)|λ=− b
2
> 0. It is

obviousβ′′′0 (λ) = −48 < 0, hence the number of change of signs ofβ0 atλ = − b
2 is 1, no matter

the sign ofβ′′0 (− b
2). On the other hand,β0 has even number of zeros forλ ∈ (− b

2 , xM ), implying
β0 > 0 for λ ∈ (− b

2 , xM ). The proof of (3.30) is finished.
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[2] F. DUMORTIER, J. LLIBRE AND J.C. ARTÉS, Qualitative theory of planar differential sys-
tems, UniversiText, Springer–Verlag, New York, 2006.

[3] F. DUMORTIER, D. PANAZZOLO AND R. ROUSSARIE, More limit cycles than expected in
Liénard equations, Proc. Amer. Math. Soc.,135 (2007), 1895–1904.

[4] C. L INS, W. DE MELO AND C. C. PUGH, On Liénard’s equation, Lecture Notes in Math.,
597(1977), 335–357.

[5] G. RYCHKOV, A complete investigation of limit cycles of the equation(b10x + y)dy =∑2
i+j≥1 aijx

iyjdx, Deffirential Equations (Russian),6 (1970), No. 12, 2193–2199.

[6] X IANWU ZENG, On the uniqueness of limit cycle of Linard’s equation, Sci. Sinica Ser. A ,
Chinese Version: 1982, No. 1, 14–20; English Version:25 (1982), No. 6, 583–592.

[7] X IANWU ZENG, Remarks on the uniqueness of limit cycle, Kexue Tongbao, Chinese Version,
27 (1982), No. 19, 1156–1158; English Version:28 (1983), No. 4, 452–455.

[8] ZHIFEN ZHANG, TONGREN DING, WENZAO HUANG AND ZHENXI DONG, Qualitative
Theory of Differential Equations., Science Publisher (in Chinese), 1985; Transl. Math.
Monographs, Vol.101Amer. Math. Soc., Providence RI, 1992.

22


