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Abstract. We provide sufficient conditions for the existence of periodic so-
lutions of the fourth-order differential equation

....
x + (1 + p2)ẍ+ p2x = εF (x, ẋ, ẍ,

...
x ),

where p is a rational different from 0, ε is small and F is a nonlinear function.

1. Introduction and statement of the main results

The objective of this paper is to study the periodic solutions of the fourth-order
differential equation

(1)
....
x + (1 + p2)ẍ+ p2x = εF (x, ẋ, ẍ,

...
x ),

where p is a rational different from 0, ε is a small real parameter, and F is a
nonlinear function. The dot denotes derivative with respect to an independent
variable t.

Equations (1) appear in many places. For instance, these equations are contained
in the differential equations (2) studied by Champneys [8], who analyzes these
equations looking mainly for homoclinic orbits.

When F (u, u̇, ü,
...
u ) = ±u2 equation (1) can come from the description of the

travelling–wave solutions of the Korteweg–de Vries equation with an additional
fifth-order dispersive term. Extended fifth–order Korteweg–de Vries equations have
been considered in [6, 9, 10, 16, 17, 23]. This equation has been used to describe
chains of coupled nonlinear oscillators [25] and most notably gravity–capillary shal-
low water waves [4, 14, 30]. For other derivation of (1) see [12, 13].

Another nonlinearity is F (u, u̇, ü,
...
u ) = ±u3, then equation (1) is called the

Extended Fischer–Kolmogorov equation or the Swift-Hohenberg equation see [5, 15],
and in other places, see for instance the book [26] and [2, 7].

In all these previous quoted references and for the corresponding differential
equations (1) there studied, there are no proofs showing the existence of periodic
orbits. Here for the differential equations (1) we provide two analytical algorithms
for studying their periodic orbits, see Theorems 1 and 4. Moreover, we shall illus-
trate the use of these algorithms in Corollaries 2 and 5.

In general to obtain analytically periodic solutions is a very difficult task, usually
impossible. Here with the averaging theory we reduce this difficult problem for the
differential equations (1) to find the zeros of a nonlinear system of three equations
with three unknowns. We must say that the averaging theory for finding periodic
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solutions in general does not provide all the periodic solutions of the system. For
more information about the averaging theory see section 2 and the references quoted
there.

The coefficients 1 + p2 and p2 in the differential equation (1) are quite special,
but equation (1) with coefficients p and q instead of 1 + p2 and p2 already has
been studied in the references [19, 21]. But in those references is not studied the
cases in which the unperturbed differential system has a double pair of imaginary
eigenvalues, as it is the case for our unperturbed differential equation (1) which has
eigenvalues ±i and ±pi. Additionally since p is rational this implies that the set of
periodic orbits of the unperturbed differential equation (1) has dimension 4. This
is the case that we want to study in this paper.

We recall that a simple zero r∗0 of a real function F(r0) is defined by F(r∗0) = 0
and (dF/dr0)(r

∗
0) 6= 0.

Our first main result on the periodic solutions of this fourth-order differential
equation (1) are the following.

Theorem 1. Let p = p1/p2 be a rational different from −1, 0, 1 with p1 and p2
coprime. For every (r∗0 , Z

∗
0 , V

∗
0 ) solution of the system

(2) F1(r0, Z0, V0) = 0, F2(r0, Z0, V0) = 0, F3(r0, Z0, V0) = 0,

satisfying

(3) det

(
∂(F1, F2, F3)

∂(r0, Z0, V0)

∣∣∣∣
(r0,Z0,V0)=(r∗0 ,Z

∗
0 ,V

∗
0 )

)
6= 0,

where

F1 (r0, Z0, V0) =

∫ 2π

p

0

cos θF (A,B, C,D)dθ,

F2 (r0, Z0, V0) = −
∫ 2π

p

0

p2V0 sin θ + r0 sin(pθ)

pr0
F (A,B, C,D)dθ,

F3 (r0, Z0, V0) =

∫ 2π

p

0

p2Z0 sin θ − r0 cos(pθ)

pr0
F (A,B, C,D )dθ,

with

A =
r0 sin θ + V0 sin(pθ)− Z0 cos(pθ)

p2 − 1
,

B =
r0 cos θ + pV0 cos(pθ) + pZ0 sin(pθ)

p2 − 1
,

C =
p2(Z0 cos(pθ)− V0 sin(pθ))− r0 sin θ

p2 − 1
,

D =
p3(V0 cos(pθ) + Z0 sin(pθ)) + r0 cos θ

1− p2
,

the differential equation (1) has a periodic solution x(t, ε) tending to the solution

(4) x(t) =
r∗0 sin t+ V ∗

0 sin(pt)− Z∗
0 cos(pt)

p2 − 1
,



LIMIT CYCLES OF FOURTH–ORDER AUTONOMOUS DIFFERENTIAL EQUATIONS 3

of the equation
....
x + (1 + p2)ẍ+ p2x = 0,

when ε → 0. Note that the period of x(t) is the maximum of 2π and 2πp2.

Theorem 1 is proved in section 3.

We shall provide two applications of Theorem 1. The first one is given in the
following corollary.

Corollary 2. If F (x, ẋ, ẍ,
...
x ) = αẋ−βẋ3 with β 6= 0, then the differential equation

(1) with p = 2 has periodic solutions x(t, ε) tending when ε → 0 to the periodic
solutions x(t) of period 2π of the equation

....
x + 5ẍ+ 4x = 0 given by (4) with the

values (r∗0 , Z
∗
0 , V

∗
0 ) for which the determinant (3) is nonzero, where r∗0 is a positive

root of the polynomial h11(r0)h12(r0)h13(r0) given by

h11(r0) = (−480128 + 33075π2)βr20 + 1208064α,

h12(r0) = (−246290604621824+ 73505518387200π2− 7346142720000π4+
246140015625π6)β4r80 − 180(−30786325577728+ 8900719411200π2−
855187200000π4+ 27348890625π6)αβ3r60 + 32400(−962072674304+
281705971712π2− 27027302400π4 + 850854375π6)α2β2r40−
1512000(−34359738368+ 10377658368π2− 1003544640π4+
31255875π6)α3βr20 + 3292047360000π2(−8 + 3π)(8 + 3π)α4,

h13(r0) = (7(−256 + 105π)(256 + 105π) · (524288 + 33075π2)2β6r120 −
108(524288+ 33075π2) · (164014063616− 8795852800π2+
310629375π4)αβ5r100 + 2592(51272426226450432+ 42303540428800π2−
106125626880000π4+ 2148407296875π6)α2β4r80−
155520(3705079307698176− 16934442106880π2− 6389957700000π4+
85693190625π6)α3β3r60 + 518400(1540553229467648−
18794559504384π2− 2087128814400π4+ 29536801875π6)α4β2r40−
217728000(−137438953472+ 11055808512π2 − 1108054080π4+
31255875π6)α5βr20 + 474054819840000π2(−16 + 3π)(16 + 3π)α6),

and for every one of these r∗0 we must obtain the solutions (Z∗
0 , V

∗
0 ) of the system

−105πβr30 − 1344Z0βr
2
0 + 1260παr0 − 840πV 2

0 βr0 − 840πZ2
0βr0+

6720Z0α− 2048Z3
0β − 2816V 2

0 Z0β = 0,

56βr40 + 105πZ0βr
3
0 − 840αr20 + 576V 2

0 βr
2
0 + 768Z2

0βr
2
0 − 630πZ0αr0+

210πZ3
0βr0 + 210πV 2

0 Z0βr0 + 3360V 2
0 α− 1152V 4

0 β − 1024V 2
0 Z

2
0β = 0.

In particular if α = β = 1 then the differential equation (1) with p = 2 has six
periodic solutions corresponding to the values of (r∗0 , Z

∗
0 , V

∗
0 ) given by

(0.1471021308,−1.5590893313, 0.8704857802),
(0.1471021308,−1.5590893313,−0.8704857802),
(1.7006853293,−2.3247555702, 0),
(2.2708080828, 0.8053695810, 0),
(3.8007389635,−2.9941595054, 0),
(3.9910593631,−1.5239474038, 0).

The stability of these periodic solutions is studied at the end of the proof of this
corollary.
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The second application of Theorem 1 is on a generalization of the Korteweg-de
Vries equation, because instead of taking F (u, u̇, ü,

...
u ) = ±u2 we take F (u, u̇, ü,

...
u ) =

au+ bu̇+ cü+ d
...
u + eu2.

Corollary 3. If F (u, u̇, ü,
...
u ) = au + bu̇ + cü + d

...
u + eu2, then the differential

equation (1) with p = 2 has periodic solutions x(t, ε) tending when ε → 0 to the
periodic solutions x(t) of period 2π of the equation

....
x + 5ẍ + 4x = 0 given by (4)

with (r∗0 , Z
∗
0 , V

∗
0 ) solutions of the nonlinear system

F1(r0, Z0, V0) =
1

270π
(15eπV0r0 + 45bπr0 − 45dπr0 + 120aV0 − 480cV0+

240bZ0 − 960dZ0 − 16eV0Z0) = 0,

F2(r0, Z0, V0) = − 1

540πr0
(128eV 3

0 − 480bV 2
0 + 1920dV 2

0 + 224er20V0+

112eZ2
0V0 + 225aπr0V0 − 360cπr0V0 + 240aZ0V0−

960cZ0V0 + 60eπr0Z0V0 + 120br20 − 120dr20 + 90bπr0Z0−
360dπr0Z0) = 0,

F3(r0, Z0, V0) =
1

1080πr0
(15eπr30 + 120ar20 − 120cr20 + 432eZ0r

2
0 + 120eπZ2

0r0−

180bπV0r0 + 720dπV0r0 + 450aπZ0r0 − 720cπZ0r0 + 224eZ3
0+

480aZ2
0 − 1920cZ2

0 + 256eV 2
0 Z0 − 960bV0Z0 + 3840dV0Z0) = 0,

for which the determinant (3) is nonzero. In particular, if we take a = 1, b = −1,
c = 2, d = −2 and e = 1, we have a periodic solution corresponding to the values

(r∗0 , Z
∗
0 , V

∗
0 ) = (8.69721625612798..,−0.57977009742156.., 0.607127989348911..),

whose determinant (3) is equal to 0.1379945424519633.. 6= 0. This periodic solution
has a 2–dimensional stable invariant manifold and 1–dimensional unstable invariant
manifold.

Corollaries 2 and 3 are proved in section 5.

We remark that the results of Theorem 1 when the rational |p| > 1 have been
also obtained using a different result from averaging theory in [19], but the results
of Theorem 1 are new when |p| < 1.

In the next result we shall study the fourth-order differential equation (1) with
p = ±1, and we will allow that the equation be non autonomous.

Theorem 4. Assume that in the differential equation (1) we have p = ±1 and F ad-
ditionally depends on t, i.e F (t, x, x′, x′′, x′′′). If (Z∗

0 , V
∗
0 ) is such that f1(Z

∗
0 , V

∗
0 ) =

f2(Z
∗
0 , V

∗
0 ) = 0 and

det

(
∂(f1, f2)

∂(Z0, V0)

∣∣∣∣
(Z0,V0)=(Z∗

0 ,V
∗
0 )

)
6= 0,

where

f1(Z0, V0) = −
∫ 2π

0

F (t, a, b, c, d) sin t dt,

f2(Z0, V0) = −
∫ 2π

0

F (t, a, b, c, d) cos t dt,
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with

(5)

a = −1

2
(Z0 cos t+ V0 sin t) ,

b =
1

2
(V0 cos t+ Z0 sin t) ,

c =
1

2
(Z0 cos t− V0 sin t) ,

d = −1

2
(V0 cos t+ Z0 sin t) ,

then for ε ∈ [−ε0, ε0] with ε0 sufficiently small, there is a 2π-periodic solution x(t, ε)
of equation (1) tending to the solution x0(t) of equation (1) with ε = 0 given by

x(t, ε) → 1

2
(V ∗

0 sin t− Z∗
0 cos t) as ε → 0.

Theorem 4 is proved in section 6. Again its proof is based in the averaging theory
for computing periodic orbits. The averaging results used in the proofs of Theorems
1 and 4 are different. An application of Theorem 4 is given to the equation

(6)
....
x + 2ẍ+ x = ε(b sin t+ sinx) ,

More precisely we have the next result.

Corollary 5. If F (t, x, ẋ, ẍ,
...
x ) = b sin t + sinx, then for every positive integer m

there exists an ε0 > 0 such that for all ε ∈ (0, ε0) the differential equation (1) has
at least m periodic solutions.

Corollary 5 is proved in section 7.

2. Basic results on averaging theory

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T –periodic solutions from differ-
ential systems of the form

(7) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn and
F2 : R×Ω× (−ε0, ε0) → Rn are C2 functions, T –periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

(8) ẋ = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of the system (8) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along a periodic solution x(t, z, 0) as

(9) ẏ = DxF0(t,x(t, z, 0))y.

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (9).

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for each
z ∈ Cl(V ), x(t, z, 0) is T –periodic, where x(t, z, 0) denotes the solution of the
unperturbed system (8) with x(0, z, 0) = z. The set Cl(V ) is isochronous for the
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system (7); i.e. it is a set formed only by periodic orbits, all of them having the
same period. Then, an answer to the bifurcation problem of T –periodic solutions
from the periodic solutions x(t, z, 0) contained in Cl(V ) is given in the following
result.

Theorem 6. [Perturbations of an isochronous set] We assume that there
exists an open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ),
the solution x(t, z) is T–periodic, then we consider the function F : Cl(V ) → Rn

(10) F(z) =

∫ T

0

M−1
z (t, z)F1(t,x(t, z))dt.

If there exists a ∈ V with F(a) = 0 and det ((dF/dz) (a)) 6= 0, then there exists a
T–periodic solution ϕ(t, ε) of system (7) such that ϕ(0, ε) → a as ε → 0.

For an easy proof of Theorem 6 see Corollary 1 of [3]. In fact the result of
Theorem 6 is a classical result due to Malkin [22] and Roseau [27]

We denote by ξ⊥: Rk × Rn−k → Rn−k the projection of Rn onto its last n− k
coordinates; i.e. ξ⊥(x1, ..., xn) = (xk+1, ..., xn).

We assume that there exists a k-dimensional submanifold Z of Ω filled with T-
periodic orbits of (8). Then an answer to the problem of bifurcation of T-periodic
solutions from the periodic solutions contained in Z for system (8) is giving in the
following result proved in [20].

Theorem 7. Assume n = 2m. Let V be an open and bounded subset of Rm, and
let β: Cl(V ) → Rm be a C2 function. We assume that

(a) Z = {zα = (α, β(α)), α ∈ Cl(V )} ⊂ Ω and for each zα ∈ Z the solution
x(t, zα) of (8) is T-periodic;

(b) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (9) such that the
matrix M−1

zα (0)- M−1
zα (T ) has at the upper right corner a m×m matrix △α

with det(△α) 6= 0 and at the lower right corner the m×m zero matrix.

We consider the function F : Cl(V ) → Rm

(11) F (α) = ξ⊥
(

1

T

∫ T

0

M−1
zα (t)F1(t, x(t, zα))dt

)
.

If there exists a ∈ V with F (a) = 0 and det

((
dF

dα

)
(a)

)
6= 0, then there is a

T − periodic solution ϕ(t, ε) → zα as ε → 0.

Theorem 7 was proved recently in [20], it extends the original results of Malkin
and Roseau to another set of assumptions.

3. Proof of Theorem 1

Introducing the variables (x, y, z, v) = (x, ẋ, ẍ,
...
x ) we write the fourth–order

differential equation (1) as the following first–order differential system

(12)

ẋ = y,
ẏ = z,
ż = v,
v̇ = −p2x− (1 + p2)z + εF (x, y, z, v).
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defined in an open subset Ω of R4. Of course as before the dot denotes derivative
with respect to the independent variable t. System (12) with ε = 0 will be called
the unperturbed system, otherwise we have the perturbed system. The unperturbed
system has a unique singular point at the origin with eigenvalues ±i, and± ip. We
shall write system (12) in such a way that the linear part at the origin will be
in its real Jordan normal form. Then doing the change of variables (x, y, z, v) →
(X,Y, Z, V ) given by

(13)




X
Y
Z
V


 =




0 p2 0 1
p2 0 1 0
1 0 1 0
0 −1/p 0 −1/p







x
y
z
v


 ,

the differential system (12) becomes

(14)

Ẋ = −Y + εG(X,Y, Z, V ),

Ẏ = X,

Ż = −pV,

V̇ = pZ − ε

p
G(X,Y, Z, V ),

where G(X,Y, Z, V ) = F (A,B,C,D) with

A =
Y − Z

p2 − 1
, B =

pV +X

p2 − 1
, C =

P 2Z − Y

p2 − 1
, D =

p3V +X

1− p2
.

Note that the linear part of the differential system (14) at the origin is in its real
normal Jordan form and that the change of variables (11) is defined when p is
different from −1, 0, 1, because the determinant of the matrix of the change is
(p2 − 1)2/p.

We pass from the cartesian variables (X,Y, Z, V ) to the cylindrical ones (r, θ, Z, V )
of R4, where X = r cos θ and Y = r sin θ. In these new variables the differential
system (14) can be written as

(15)

ṙ = ε cos θH(r, θ, Z, V ),

θ̇ = 1− ε
sin θ

r
H(r, θ, Z, V ),

Ż = −pV,

V̇ = pZ − ε

p
H(r, θ, Z, V ),

where H(r, θ, Z, V ) = F (a, b, c, d) with

a =
r sin θ − Z

p2 − 1
, b =

pV + r cos θ

p2 − 1
, c =

p2Z − r sin θ

p2 − 1
, d =

p3V + r cos θ

1− p2
.
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We change the independent variable from t to θ, and denoting the derivative
with respect to θ by a prime the differential system (15) becomes

(16)

r′ = ε cos θH +O(ε2),

Z ′ = −pV − ε
pV sin θ

r
H +O(ε2),

V ′ = pZ + ε
p2Z sin θ − r

pr
H +O(ε2),

where H = H(r, θ, Z, V ).

We shall apply Theorem 6 to the differential system (16). We note that system
(16) can be written as system (7) taking

x =




r
Z
V


 , t = θ, F0(θ,x) =




0

−pV

pZ


 ,

and

F1(θ,x) =




cos θH

−pV sin θ

r
H

p2Z sin θ − r

pr
H




.

We shall study the periodic solutions of system (8) in our case, i.e. the periodic
solutions of system (16) with ε = 0. These periodic solutions are




r(θ)
Z(θ)
V (θ)


 =




r0
Z0 cos(pθ)− V0sin(pθ)
V0 cos(pθ) + Z0 sin(pθ)


 ,

for (r0, Z0, V0) with r0 > 0; This set of periodic orbits has dimension three, all
having the same period 2π/p. To look for the periodic solutions of our equation (1)

we must calculate the zeros α = (r0, Z0, V0) of the system F(α) = 0, where F(α)
is given (10). The fundamental matrix M(θ) of the differential system (16) with
ε = 0 along any periodic solution is

M(θ) = Mzα(θ) =




1 0 0

0 cos(pθ) − sin(pθ)

0 sin(pθ) cos(pθ)


 .

Now computing the function F(α) given in (10) we got that the system F(α) = 0
can be written as

(17)




F1 (r, Z, V )
F2 (r, Z, V )
F3 (r, R, V )


 =




0
0
0
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where

F1 (r, Z, V ) =

∫ 2π

p

0

cos θF (A,B, C,D)dθ,

F2 (r, Z, V ) = −
∫ 2π

p

0

p2V0 sin θ + r0 sin(pθ)

pr0
F (A,B, C,D)dθ,

F3 (r, Z, V ) =

∫ 2π

p

0

p2Z0 sin θ − r0 cos(pθ)

pr0
F (A,B, C,D)dθ,

with A,B, CandD as in the statement of Theorem (1).
The zeros (r∗, R∗, V ∗) of system (17) with respect to the variables r, Z and V

provide periodic orbits of system (17) with ε 6= 0 sufficiently small if they are simple
, i.e. if the determinant (3) is nonzero. Going back through the change of variable,
for every simple zero (r∗, Z∗, V ∗) of system (17), we obtain a 2πp1 periodic solution
x(t) of the differential equation (1) for ε 6= 0 sufficiently small such that x(t) tends
to the periodic solution

x(t) =
r∗0 sin t+ V ∗

0 sin(pt)− Z∗
0 cos(pt)

p2 − 1
,

of equation
....
x + (1 + p2)ẍ+ p2x = 0,

when ε → 0. This complete the proof of Theorem 1.

4. The resultant of polynomials

Let the roots of the polynomial P (x) with leading coefficient one be denoted by
by ai, i = 1, 2, ..., n and those of the polynomial Q(x) with leading coefficient one be
denoted by bj , j=1,2,...,m. The resultant of P and Q, Res[P,Q], is the expression
formed by the product of all the differences ai − bj , i = 1, 2, ..., n, j = 1, 2, ...,m.
In order to see how to compute Res[P,Q], see for instance [18] and [24]. The
main property of the resultant is that if P and Q have a common solution, then
necessarily Res[P,Q]=0.

Consider now two polynomials P (X,Y ) and Q(X,Y ). These polynomials can
be considered as polynomials in X with polynomial coefficients in Y. Then the
resultant with respect to X, Res[P,Q,X ], is a polynomial in the variable Y with
the following property. If P (X,Y ) and Q(X,Y ) have a common solution (X0, Y0)
then Res[P,Q,X ](Y0) = 0, and similarly for the variable X . In particular, if the
polynomials depending on one variable,

p(X) = Res[P,Q, Y ],

q(Y ) = Res[P,Q,X ],

have finitely many solutions (i.e. they are not the zero polynomial), then the zero
polynomial system

P (X,Y ) = 0, Q(X,Y ) = 0,

has finitely many solutions.
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Finally consider three polynomials P (X,Y, Z), Q(X,Y, Z) and R(X,Y, Z). First
these polynomials can be considered as polynomials in X with polynomial coeffi-
cients in Y and Z. Then the resultants with respect to X, pq(Y, Z) = Res[P,Q,X ]
and pr(Y, Z) = Res[P,R,X ], are polynomials in the variables Y and Zwith the
following property. If P (X,Y, Z), Q(X,Y, Z) and R(X,Y, Z) have a common so-
lution (X0, Y0, Z0), then pq(Y0, Z0) = 0 and pr(Y0, Z0) = 0. Now the resultant
p(Z) = Res[pq, pr, Y ] is a polynomial in Z such that p(Z0)=0. In a similar way we
can construct polynomials q(Y ) and r(X) such that q(Y0) = 0 and r(X0) = 0. If
every of the polynomials p(Z), q(Y ) and r(X) are non-zero, then the polynomial
system

P (X,Y, Z) = 0, Q(X,Y, Z) = 0, R(X,Y, Z) = 0,

has finitely many solutions.

5. Proof of Corollaries 2 and 3

All the computations of this section has been checked with the help of the alge-
braic manipulators mathematica and maple.

Proof of Corollary 2. If F (x, ẋ, ẍ,
...
x
...
x ) = αẋ − βẋ3, then the system (2) of the

statement of Theorem 1 is

F1(r0, Z0, V0) =
f1(r0, Z0, V0)

7560π
= 0,

F2(r0, Z0, V0) =
f2(r0, Z0, V0)

3780πr0
= 0,

F3(r0, Z0, V0) =
f3(r0, Z0, V0)

3780πr0
= 0,

where

f1(r0, Z0, V0) = −105πβr30 − 1344Z0βr
2
0 + 1260παr0 − 840πV 2

0 βr0−
840πZ2

0βr0 + 6720Z0α− 2048Z3
0β − 2816V 2

0 Z0β,

f2(r0, Z0, V0) = 56βr40 + 105πZ0βr
3
0 − 840αr20 + 576V 2

0 βr
2
0 + 768Z2

0βr
2
0−

630πZ0αr0 + 210πZ3
0βr0 + 210πV 2

0 Z0βr0 + 3360V 2
0 α−

1152V 4
0 β − 1024V 2

0 Z
2
0β,

f3(r0, Z0, V0) = V0

(
105πβr30 + 480Z0βr

2
0 − 630παr0 + 210πV 2

0 βr0+
210πZ2

0βr0 − 3360Z0α+ 1024Z3
0β + 1152V 2

0 Z0β
)
.

To solve this system we use the method of the resultant explained in section 4.
First we compute the following two resultants

g1(r0, Z0) = Res[f1, f2, V0] = 256β2(g11(r0, Z0))
2,

g2(r0, Z0) = Res[f1, f3, V0]] = −4β2g21(r0, Z0)(g22(r0, Z0))
2,
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where

g11(r0, Z0) = −1499400π2β2r60 + 3472875π3Z0β
2r50 − 55050240πZ0β

2r50+
13759200π2Z2

0β
2r40 − 238551040Z2

0β
2r40 + 1587600π2αβr40−

19998720πZ3
0β

2r30 − 13891500π3Z0αβr
3
0 + 128862720πZ0αβr

3
0+

107956800π2α2r20 + 2822400π2Z4
0β

2r20 + 18874368Z4
0β

2r20−
129124800π2Z2

0αβr
2
0 + 770703360Z2

0αβr
2
0 + 711244800πZ0α

2r0+
42147840πZ5

0β
2r0 − 325785600πZ3

0αβr0 + 722534400Z2
0α

2+
67108864Z6

0β
2 − 440401920Z4

0αβ,

g21(r0, Z0) = 105πβr30 + 1344Z0βr
2
0 − 1260παr0 + 840πZ2

0βr0 − 6720Z0α+ 2048Z3
0β,

g22(r0, Z0) = 33075π2βr40 + 147840πZ0βr
3
0 − 132300π2αr20 − 98304Z2

0βr
2
0−

866880πZ0αr0 + 26880πZ3
0βr0 − 860160Z2

0α+ 262144Z4
0β.

Now we compute the resultant

h1(r0) = Res[g11, g21g22, Z0] = Aπ6r140 β12(h11(r0))
4h12(r0)h13(r0),

where A is a negative integer and the polynomials h11(r0), h12(r0) and h13(r0) are
defined in the statement of the corollary. Now, by Theorem 1, it follows the proof
of the corollary for α and β arbitrary.

In what follows we shall prove the rest of the corollary when α = β = 1. Let
h1(r0) = h11(r0)h12(r0)h13(r0). We have computed using the algebraic manipulator
mathematica the 10 positive real roots r0 of the polynomial h1(r0) of degree 22,
obtaining

r10 = 0.1471021308, r20 = 1.6388943848, r30 = 1.7006853293,
r40 = 2.2233102811, r50 = 2.2708080828, r60 = 2.6693890712,
r70 = 2.8036318630, r80 = 3.8007389635, r90 = 3.9910593631,
r100 = 5.5058622914.

From the properties of the resultant if system (2) has a solution (r∗0 , Z
∗
0 , V

∗
0 ),

then r∗0 must be one of the previous ten roots. So now we solve the system

f1(r
k
0 , Z0, V0) = 0, f2(r

k
0 , Z0, V0) = 0, f3(r

k
0 , Z0, V0) = 0,

for k = 1, . . . , 10. The unique of such systems having solutions are for k =
1, 3, 5, 8, 9, the first has two solutions and the others only one. These solutions
(r∗0 , Z

∗
0 , V

∗
0 ) are

s1 = (0.1471021308,−1.5590893313, 0.8704857802),
s2 = (0.1471021308,−1.5590893313,−0.8704857802),
s3 = (1.7006853293,−2.3247555702, 0),
s4 = (2.2708080828, 0.8053695810, 0),
s5 = (3.8007389635,−2.9941595054, 0),
s6 = (3.9910593631,−1.5239474038, 0).

For these six solutions of system (2) we have that every determinant

det

(
∂(F1, F2, F3)

∂(r0, Z0, V0)

∣∣∣∣
(r0,Z0,V0)=(r∗0 ,Z

∗
0 ,V

∗
0 )

)
6= 0,

is not zero. Therefore, from Theorem 1 Corollary 2 is proved.
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In the case of the periodic orbits of Corollary 2 if the eigenvalues of the Jacobian
matrix

(18)

(
∂(F1, F2, F3)

∂(r0, Z0, V0)

∣∣∣∣
(r0,Z0,V0)=(r∗0 ,Z

∗
0 ,V

∗
0 )

)

have non-zero real part, then the kind of stability of the fixed point of the Poincaré
return map corresponding to the periodic orbit associated to the initial conditions
(r∗0 , Z

∗
0 , V

∗
0 ) is the same as the stability of the equilibrium point (r∗0 , Z

∗
0 , V

∗
0 ) of the

averaged system

ṙ = f1(r, Z, V ), Ż = f2(r, Z, V ), V̇ = f3(r, Z, V ).

For more details see for instance [11, 22, 27]. More precisely, the eigenvalues of the
matrix (18) in the points sk are

−0.230966 0.083853 1.31027,
−1.25208 −0.118096+ 0.0795022i −0.118096− 0.0795022i,
0.0239955 −0.0654383+ 0.241454i −0.0654383− 0.241454i,
−0.331964 −0.016883 0.0216052,
−0.048336 −0.0475268+ 0.149255i −0.0475268− 0.149255i,
−0.0926494 0.0129701+ 0.160721i 0.0129701− 0.160721i,

for k = 1, . . . , 6 respectively. Therefore, the Poincaré return map associated to
the periodic orbit corresponding to the solution s1 or s6 has a stable manifold of
dimension 1 and an unstable one of dimension 2; the one corresponding to the
solution s3 or s4 has a stable manifold of dimension 2 and an unstable one of
dimension 1; and the one corresponding to the solution s2 or s5 has a stable manifold
of dimension 3 (so this periodic orbit is a local atractor). This completes the proof
of the corollary. �

Proof of Corollary 3. If F (u, u̇, ü,
...
u ) = au + bu̇ + cü + d

...
u + eu2, then the system

(2) of the statement of Theorem 1 becomes

(19) F1(r0, Z0, V0) = 0, F2(r0, Z0, V0) = 0, F3(r0, Z0, V0) = 0,

where the functions Fk for k = 1, 2, 3 are given in the statement of Corollary 3.
We will compute the explicit solutions of this system for the values a = 1, b = −1,
c = 2, d = −2 and e = 1. To solve this system for these values we use the method of
the resultant explained in section 4. First we compute the following two resultants

g1(r0, Z0) = Res[f1, f2, V0], g2(r0, Z0) = Res[f1, f3, V0].

After we calculate the resultant

h(r0) = Res[g1, g2, Z0],
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and we obtain

h(r0) = −A

r30
(9πr0 − 490)6(1130234765625π11r60 − 13783764330000π9r60−

60381440409600π7r60 − 129029610405888π5r60 − 249593166036992π3r60−
200111116255232πr60 − 301709389275000π10r50+
3664818815616000π8r50 + 2825329036492800π6r50−
13354791988101120π4r50 − 58485745416929280π2r50+
8488229766430720r50 + 629450345671875π11r40+
57047220004320000π9r40 − 1059288983182080000π7r40+
4383568900915200000π5r40 − 5994037617308467200π3r40+
2574524515300147200πr40 − 100511542618200000π10r30−
4451720423270400000π8r30 + 71341344366501888000π6r30−
206696066303655936000π4r30 + 234734116254253056000π2r30+
12150737358290944000r30 + 20158184726391600000π9r20−
117206575334392320000π7r20 − 259007665408450560000π5r20−
1896854203284848640000π3r20 + 1016965008489185280000πr20−
590545792140595200000π8r0 + 598111246178611200000π6r0+
22142776638740889600000π4r0 + 1103169498749337600000π2r0+
20618861617368000000000π7− 157135609541836800000000π5+
110167062714777600000000π3),

where A is a positive constant. This polynomial only provides the following two
positive real roots for r0:

8.69721625612798.. and 17.33020491445082..

Now we must substitute these values of r0 into the system (19) and obtain the
solutions for the variables (Z0, V0). Only the first of these two roots provides
solutions for (Z0, V0), which are

Z0 = −0.57977009742156.., V0 = 0.607127989348911..

Since the determinant (3) on this solution is nonzero, by Theorem 1 we obtain a
periodic solution for the corresponding differential equation.

The eigenvalues of the Jacobian matrix which appears in (3) are

1.426999265250410..,−1.035682690159468..,−0.0933708781987750..

So the periodic solution that we find has a stable invariant manifold of dimension
2 and an unstable invariant manifold of dimension 1. �

6. Proof of Theorem 4

We want to study the periodic orbits of the class of fourth-order differential
equation

(20)
....
x + 2ẍ+ x = εF (t, x, ẋ, ẍ,

...
x ),

This is the case of equation (1) when p = ±1. Note that now we are including the
possibility that the differential equation be non-autonomous.
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Introducing the variables (x, y, z, v) = (x, ẋ, ẍ,
...
x ) we write the fourth-order dif-

ferential equation (20) as the following first-order differential system

(21)

ẋ = y,
ẏ = z,
ż = v,
v̇ = −x− 2z + εF (t, x, y, z, v).

defined in an open subset Ω of R4. Of course as before the dot denotes derivative
with respect to the independent variable t. System (21) with ε = 0 will be called
the unperturbed system, otherwise we have the perturbed system. The unperturbed
system has a unique singular point at the origin with eigenvalues i, i,−i,−i.We shall
write system (21) in such a way that the linear part at the origin will be in its real
Jordan normal form. Then doing the change of variables (x, y, z, v) → (X,Y, Z, V )
given by

(22)




X
Y
Z
V


 =




0 1 0 1
1 0 1 0
0 0 2 0
0 1 0 −1







x
y
z
v


 ,

the differential system (21) becomes

(23)

Ẋ = −Y + εG(t,X, Y, Z, V ),

Ẏ = X,

Ż = X − V,

V̇ = Y + Z − εG(t,X, Y, Z, V ),

where G(t,X, Y, Z, V ) = F (t, A,B,C,D) with

A = Y − Z

2
, B =

X + V

2
, C =

Z

2
, D =

X − V

2
.

Note that the linear part of the differential system (23) at the origin is in its real
normal Jordan form. We shall apply Theorem 7 to the differential system (23). We
note that this system (23) can be written as system (7) taking

x =




X
Y
Z
V


 , F0(t,x) =




−Y
X

X − V
Y + Z


 ,

and

F1(t,x) =




G (t,X, Y, Z, V )
0
0

−G (t,X, Y, Z, V )


 .

We shall study the periodic solutions of system (8) in our case, i.e. the periodic
solutions of the unperturbed system (23). Clearly these periodic solutions are

(24) x(t) =




X(t)
Y (t)
Z(t)
V (t)


 =




0
0

Z0 cos t− V0 sin t
V0 cos t+ Z0 sin t


 .
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These periodic solutions are circles on the plane X = Y = 0 of the unperturbed
system (23). All theses periodic orbits have period 2π in the variable t. These
periodic orbits filled a plane minus the origin. We shall describe the different
elements which appear in the statement of Theorem 7 in the particular case of the
differential system (23). Thus we have that k = 2 and n = 4. We take the open
bounded subset V of R2 as V = {(Z0, V0) : Z

2
0 + V 2

0 < r2}, with r > 0 fixed. Here
α = (Z0, V0), and β : V → R2 defined by β(Z0, V0) = (0, 0). The set Z is

Z = {zα = (Z0, V0, 0, 0) : (Z0, V0) ∈ V }.
So from now in order to apply Theorem 7 we need to write system (23) as follows,

(25)

Ż = X − V,

V̇ = Y + Z − εG(t,X, Y, Z, V ),

Ẋ = −Y + εG(t,X, Y, Z, V ),

Ẏ = X,

Computing the fundamental matrix Mzα(t) of the unperturbed differential system
(25) associated to the 2π-periodic solution




Z(t)
V (t)
X(t)
Y (t)


 =




Z0 cos t− V0 sin t
V0 cos t+ Z0 sin t

0
0


 ,

such that Mzα(0) be the identity of R4, we get

M(t) = Mzα(t) =




cos t − sin t t cos t −t sin t
sin t cos t t sin t t cos t
0 0 cos t − sin t
0 0 sin t cos t


 .

Note that the matrix Mzα(t) does not depend of the particular orbit periodic x(t).
The inverse of the matrix M(t), is given by

M−1(t) =




cos t sin t −t cos t −t sin t
− sin t cos t t sin t −t cos t

0 0 cos t sin t
0 0 − sin t cos t


 .

Therefore the matrix

M−1(0)−M−1 (2π) =




0 0 −2π 0
0 0 0 −2π
0 0 0 0
0 0 0 0


 ,

satisfies the conditions of Theorem 7. So we can apply it to system (25). Now
ξ⊥ (Z, V,X, Y ) = (Z, V ). We calculate the function F(α)= F(Z0, V0), where F(α)
is defined in (11). We find that

F(α) =




− 1

2π

∫ 2π

0

F (t, a, b, c, d) sin tdt

− 1

2π

∫ 2π

0

F (t, a, b, c, d) cos tdt


 ,
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where a, b, c and d are given in (5). Then, by Theorem 7 we have that for every
simple zero (Z∗

0 , V
∗
0 ) ∈ V of the function F(α) we have a periodic solution of system

(25) such that



Z(t)
V (t)
X(t)
Y (t)


 =




Z0 cos t− V0 sin t
V0 cos t+ Z0 sin t

0
0


 , as ε → 0.

Going back through the changes of coordinates we get a periodic solution (x, y, z, v)(t)
of system (21) such that

x(t, ε) → 1

2
(V ∗

0 sin t− Z∗
0 cos t) as ε → 0.

Of course,it is easy to check that the previous expression provides a periodic solution
of the linear differential equation

....
x + 2ẍ+ x = 0. Hence the theorem is proved.

7. Proof of Corollary 5

Proof of Corollary 5. If F (t, x, ẋ, ẍ,
...
x ) = sinx+ b sin t, We show that

F(r0) = J1

(r0
2

)
,

where J1 (z) is the Bessel function of first kind. This function has infinitely many
simple zeros when r0 → ∞, see for more details [1]. In this case the differential
system has as many periodic orbits as we want taking ε sufficiently small. Hence
the corollary is proved. �
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[3] A. Buică, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differ-
ential systems with a small parameter, Comm. on Pure and Appl. Anal. 6 (2007), 103–111.

[4] B. Buffoni, M. Groves and J.F. Toland, A plethora of capillary–gravity waves with near–
critical Bond and Froude numbers, Philos. Trans. Roy. Soc. London Ser. A 354 (1996),
575–607.

[5] A.V. Buryak and N.N. Akhmediev, Stability criterion for stationary bound states of solitons
with radiationless oscillating tails, Phys. Rev. E 51 (1995), 3572–3578.

[6] J.G.B. Byatt–Smith, On the change of amplitude of interacting solitary waves, J. Fluid
Mech. 182 (1987), 467–483.

[7] P.C. Carrião, L.F.O. Faria and O:H. Miyagaki, Periodic solutions for extended Fisher–
Kolmogorov and Swift–Hohenberg equations by truncature techniques, Nonlinear Anal. 67
(2007), 3076–3083.

[8] A.R. Champneys, Homoclinic orbits in reversible systems and their applications in mechan-
ics, fluids and optics, Physica D 112 (1998), 158–186.

[9] A.R. Champneys and M.D. Groves, A global investigation of solitary wave solutions to a
two-parameter model for water waves, J. Fluid Mech. 342 (1997), 199–229.



LIMIT CYCLES OF FOURTH–ORDER AUTONOMOUS DIFFERENTIAL EQUATIONS 17

[10] W. Craig and M.D. Groves, Hamiltonian long–wave approximations to the water–wave
problem, Wave Motion 19 (1994), 367–389.

[11] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurca-
tions of vectors fields, Springer, 1983.

[12] G.W. Hunt, H.M. Bolt and J.M.T. Thompson, Structural localisation phenomena and the
dynamical phase–space analogy, Proc. Roy. Soc. London A 425 (1989), 245–267.

[13] G.W. Hunt and M.K. Wadee, Comparative Lagrangian formulations for localised buckling,
Proc. Roy Soc. London A 434 (1991), 485–502.

[14] J.K. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to a model
equation for water–waves, Physica D 32 (1988), 253–268.
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