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In this paper we consider a class of planar continuous piecewise linear vector fields with three
zones. Using the Poincaré map we show that these systems admit always a unique limit cycle,
which is hyperbolic.

1. Introduction

Due to the encouraging increase in their ap-
plications, control theory [Lefschetz, 1965] and
[Narendra et al., 1973], design of electric circuits
[Chua et al., 1990], neurobiology [FitzHugh, 1961]
and [Nagumo et al., 1962] piecewise linear differen-
tial systems were studied early from the point of
view of qualitative theory of ordinary differential
equations [Andronov et al., 1966]. Nowadays, a lot
of papers are being devoted to these differential sys-
tems.

On the other hand, starting from linear theory,
in order to capture nonlinear phenomena, a natu-
ral step is to consider piecewise linear systems. As
local linearizations are widely used to study local
behavior, global linearizations (achieved quite nat-
urally by working with models which are piecewise
linear) can help to understand the richness of com-
plex phenomena observed in the nonlinear world.

The study of piecewise linear systems can be
a difficult task that is not within the scope of tra-
ditional nonlinear systems analysis techniques. In
particular, a sound bifurcation theory is lacking for
such systems due to their nonsmooth character.

In this paper we study the existence of limit
cycles for the class of continuous piecewise linear
differential systems

x′ = X(x), (1)

where x = (x, y) ∈ R2, and X is a continuous piece-
wise linear vector field. We will consider the fol-
lowing situation, that we will name the three-zone
case. We have two parallel straight lines L− and
L+ symmetric with respect to the origin dividing
the phase plane in three closed regions: R−, Ro

and R+ with (0, 0) ∈ Ro and the regions R− and
R+ have as boundary the straight lines L− and L+

respectively. We will denote by X− the vector field
X restrict to R−, byXo the vector fieldX restricted
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to Ro and by X+ the vector field X restrict to R+.
We suppose that the restriction of the vector field
to each one of these zones are linear systems with
constant coefficients that are glued continuously at
the common boundary.

In short, system (1) can be written as

x′ =





A−x+B− x ∈ R−,
Aox+Bo x ∈ Ro,
A+x+B+ x ∈ R+,

(2)

where Ai ∈ M2(R), i ∈ {−, o,+}, Bi ∈ R2, i ∈
{−, o,+} and x′ =

dx

dt
with t the time.

We say that the vector field X has a real equi-
librium x∗ in Ri with i ∈ {−, o,+} if x∗ is an equi-
librium of Xi and x∗ ∈ Ri. In opposite we will say
that X has a virtual equilibrium x∗ in Ri if x

∗ ∈ Rc
i

where Rc
i denotes the complementary of Ri in R2.

We suppose the following assumptions:

(H1) Xo has a real equilibrium in the interior of the
region Ro of focus type.

(H2) The others equilibria (real or virtual) of X−
andX+ are a center and a focus with different
stability with respect to the focus of Xo.

We note that if the two equilibria of X− and
X+ are both centers, or a center and a focus having
this focus the same stability than the focus of Xo,
then the vector field X has no limit cycles, for more
details see Proposition 2.4.

As usual a limit cycle of (2) is a periodic or-
bit of (2) isolated in the set of all periodic orbits
of (2). A limit cycle is hyperbolic if the integral
of the divergent of the system along it is differ-
ent from zero, for more details see for instance
[Dumortier et al., 2006].

Our main result is the following.

Theorem 1.1. Assume that system (2) satisfies
assumptions (H1) and (H2). Then system (2) has
a unique limit cycle, which is hyperbolic .

More information about the limit cycle of The-
orem 1.1 is given in Propositions 4.1 and 4.2, where
it is characterized when the limit cycle visit two or
three zones.

We observe that Theorem 1.1 is in some
situations an extension of Proposition 15 of
[Freire et al., 1998]. This proposition shows that a

piecewise linear differential system with two zones
can have at most one limit cycle. More precisely
we have that the limit cycle stated in Proposition
15(e) is persistent in the present scenario where we
have three zones having a center in R− or in R+.

2. Normal Form

The aim of this section is to write system (2) in
a convenient normal form where the number of pa-
rameters are reduced, and consequently the compu-
tations of the Poincaré return map will be easier.

Lemma 2.1. Under the assumptions (H1) and
(H2) there exists a linear change of coordinates that
writes system (2) into the form

ẋ = X(x),

with L− = L−1 = {x = −1}, L+ = L1 = {x =
1}, R− = {(x, y) ∈ R2; x ≤ −1}, Ro = {(x, y) ∈
R2; −1 ≤ x ≤ 1}, R+ = {(x, y) ∈ R2; x ≥ 1} and

X(x) =





A−x+B− x ∈ R−,
Aox+Bo x ∈ Ro,
A+x+B+ x ∈ R+,

(3)

where A− =

(
a11 −1

1− b2 + d2 a1

)
, B− =

(
a11
d2

)
, Ao =

(
0 −1
1 a1

)
, Bo =

(
0
b2

)
, A+ =

(
c11 −1

1 + b2 − f2 a1

)
and B+ =

(
−c11
f2

)
. The

dot denotes derivative with respect to a new time s.

Proof. Under the hypotheses, by means of a rota-
tion and a homothecy in the x direction we can
write the system in such a way that L− = L−1,
L+ = L1. Now doing the change of coordinates
given by u = x, v = k1x + k2y + k3 and the time
rescaling t = k4s with

k1 = − b11√
b11b22 − b12b21

, k2 = − b12√
b11b22 − b12b21

,

k3 = − e1√
b11b22 − b12b21

, k4 =
1√

b11b22 − b12b21
,

where bij , i, j = 1, 2 are the initial entries of
the matrix Ao and Bo = (e1, e2). Note that

Xo in these coordinates becomes Xo

(
u
v

)
=
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(

0 −1
1 a1

)(
u
v

)
+

(
0
b2

)
, and it has equilib-

rium in x∗o = (−b2, 0) where |b2| < 1.
We observe that the straight lines L− and

L+ are invariant under the change of coordinate
(x, y, t) → (u, v, s).

The expressions of the vector fields X− and X+

follows by the continuity in L− and L+ respectively.

For our purpose we will define a first return
map that involves all the vector fields X−, Xo and
X+ in a suitable transversal section. In the case
considered in this paper this section will be a seg-
ment of the line L− and the next remark and lemma
state conditions for the existence of a such map.

Remark 2.2. In [Llibre et al., 2004] and
[Llibre et al., 2009] Theorem 4.3.10 we see that a
necessary and sufficient condition for the existence
of Poincaré maps from the straight lines L± to
the straight lines L± is that there exists a unique
contact point of the flow of the linear system with
these lines. By contact point we mean a point of
the line where the vector field is tangent to it.

Lemma 2.3. In the coordinates given by Lemma
2.1 there is a unique contact point of system (3)
with L− and a unique contact point of (3) with L+.
These points are respectively p− = (−1, 0) and p+ =
(1, 0). Moreover the equilibria of X− and X+ are
virtual.

Proof. The proof of the first part of this lemma
follows easily by direct computations. For
the second part note that the eigenvalues of
A− are given by the expression [(a11 + a1) ±√

(a11 + a1)2 − 4(a11a1 + 1− b2 + d2) ]/2 and the
eigenvalues of A+ are given by the expression [(c11+
a1) ±

√
(c11 + a1)2 − 4(c11c1 + 1 + b2 − f2) ]/2. So

in order that the equilibrium points of X− and X+

be of center or focus type we must have a11a1+1−
b2 + d2 > 0 and c11c1 + 1 + b2 − f2 > 0.

Now the equilibrium of X− is given by

x∗− =

(
− a1a11 + d2
a1a11 + 1− b2 + d2

,− −a11 + a11b2
a1a11 + 1− b2 + d2

)

with |b2| < 1 and from the fact that
a11a1 + 1 − b2 + d2 > 0 we can see by direct
computation that

− a1a11 + d2
a1a11 + 1− b2 + d2

> −1. This implies that x∗−

is a virtual equilibrium of the system. The same
argument is valid for the equilibrium x∗+ of X+.

In the rest of the paper for i ∈ {−, o,+} we
denote ti the trace of matrix Ai, and by di as been
the determinant of the matrix Ai.

Denote by Int(Γ) the open region limited by
the closed Jordan curve Γ.

The next result is an immediate consequence of
the Green’s Formula (see for instance Proposition
3 of [Llibre et al., 1996]).

Proposition 2.4. If system (3) has a simple in-
variant closed curve Γ then

∫∫

Int−(Γ)
t−dxdy +

∫∫

Into(Γ)
todxdy+

∫∫

Int+(Γ)
t+dxdy = t−S− + toSo + t+S+ = 0,

where Inti(Γ) = Int(Γ) ∩ Ri and Si =
area(Inti(Γ)) with i ∈ {−, o,+}.

Observe that if we have a focus in Ro and a
center in R− or R+ then a necessary condition for
the existence of such Γ is that Γ visit at least the
two zones having a focus and that the stability of
both foci is different.

3. Poincaré Return Map

We have that system (3) has a unique real equi-
librium in Ro and, by Lemma 2.3, the two other
equilibria are virtual.

In order to study the existence of limit cycles
for system (3) we will define a Poincaré return map
defined on L−. This Poincaré return map will be de-
fined as the composition of four different Poincaré
maps. In what follows we study the qualitative be-
havior of each one of these maps separately in or-
der to understand the global behavior of the general
Poincaré return map.

The next lemma will be useful in the study
of the Poincaré return map associated to system
(3). The proof of this lemma can be found in
[Llibre et al., 2009] Lemma 4.4.10 but in order to
have a complete understood of the results we will
reproduce the proof here.
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Lemma 3.1. Consider the function ϕ : R2 → R
given by ϕ(x, y) = 1−exy(cos x−y sinx). The qual-
itative behavior of ϕ(x, yo) in (−∞, 2π) is repre-
sented in Figure 1 when yo > 0, and Figure 2 when
yo < 0.

Proof. Since ∂ϕ
∂x = (1+y2)exy sinx the critical value

of ϕ are xk = kπ, where k ∈ Z. From ∂2ϕ
∂x2 = (1 +

y2)exy(cos x + y sinx) and assuming that yo > 0 it
follows that ϕ has a local minimum at xk for k even
or has a local maximum at xk for k odd.

On the other hand when p ∈ Z and p < 0 we
have ϕ(x2p, yo) = 1− e2pπyo > 0, and consequently
ϕ(x, yo) > 0 when x < 0. Moreover ϕ(0, yo) = 0,
ϕ(π, yo) = 1+ eπyo > 0 and ϕ(2π, yo) = 1− e2πyo <
0. Therefore there exists a unique zero τ in (0, 2π)
which proves the lemma for yo > 0. The case yo < 0
follows by applying that ϕ(−x, y) = ϕ(x,−y).

x

π 2π

Fig. 1. Function ϕ(x, yo) for yo > 0.

x

π 2π

Fig. 2. Function ϕ(x, yo) for yo < 0.

Let p− be the contact point of ẋ = A−x+ B−
with L−. Note that p− divides L− into two seg-
ments LO

− and LI
− where in LO

− the vector field
points toward the region R− while in LI

− the vector
field points toward the region Ro. In fact we have
LO
− = {(−1, y); y ≥ 0} and LI

− = {(−1, y); y ≤ 0}.

We can define a Poincaré map Π− : LO
− → LI

−
by Π−(p) = q as been the first return map in for-
ward time of the flow of ẋ = A−x+B− to L−, that
is, if ϕ−(s, p) is the solution of ẋ = A−x + B−
such that ϕ−(0, p) = p and p ∈ LO

−, then q =
ϕ−(s, p), s ≥ 0 such that q ∈ LI

−. Observe that
Π−(p−) = p−.

We can see the mapping Π− in a different way
as follows. Given, p ∈ LO

− and q ∈ LI
− there exist

unique a ≥ 0 and b ≥ 0 such that p = p− − aṗ−
where ṗ− = X−(p−) = (0, b2−1), and q = p−+bṗ−.
So the mapping Π− induces a mapping π− given by
π−(a) = b.

Note that to study the qualitative behavior of
Π− is equivalent to study the qualitative behavior
of π−. From now on we will consider the map π−
instead of Π−.

From Proposition 4.3.7 in [Llibre et al., 2009]
the mapping π− previously defined is invariant un-
der change of coordinates and translation for which
the equilibrium x∗− remains virtual. So for comput-
ing the mapping π− we can suppose that the virtual
equilibrium is at the origin and that the matrix A−
is given in its real Jordan normal form.

Note that we can define in the same way a map
π+ associated to the a Poincaré map Π+ in L+ con-
sidering the flow defined by ẋ = A+x+B+ and the
contact point p+.

Proposition 3.2. Consider the vector field Xi in
Ri with i ∈ {−,+}, with a virtual center or focus
equilibrium and such that ti ≥ 0. Let πi be the map
associated to the Poincaré map Πi : Li → Li defined
by the flow of the linear system ẋ = Aix+Bi.

(a) If ti > 0 then the maps πi satisfy that πi :
[0,∞) → [0,∞), πi(0) = 0, lim

a→∞
πi(a) = +∞

and πi(a) > a in (0,∞).

(a.1) If a ∈ (0,∞) then (πi)
′(a) =

a

πi(a)
e2γiτi .

Moreover (πi)
′(a) > 1 and lim

a→0
(πi)

′(a) =

1.

(a.2) If a ∈ (0,∞) then (πi)
′′(a) > 0.

(a.3) The straight line b = eγiπa − ti(1 +
eγiπ)/di in the plane (a, b) is an asymp-
tote of the graph of πi when a tends

to +∞ where γi = ti/
√

4di − t2i . So

lim
a→∞

(π1)
′(a) = eγiπ.
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(b) It ti = 0 then πi is the identity in [0,∞).

Proof. We will prove the result for i = −. The case
i = + follows in the same way.

Let p− be the contact point of the flow with L−
and p and q as described above. As q is in the orbit
of p in the forward time we have that q = ϕ(s, p)
with s ≥ 0. Moreover for computing the map π−
we can suppose that the virtual equilibrium is at
the origin and that matrix A− is in its real Jordan
normal form.

Let p∗− be the contact point p− in the coordi-
nates in which A− is in its real Jordan normal form
and the virtual equilibrium of X− is at the origin.
We denote by ṗ∗− = X−(p∗−). So we can write

q = ϕ(s, p) = eA−sp.

As p = p∗− − aṗ∗− and q = p∗− + π−(a)ṗ∗− we obtain

p∗− + π−(a)ṗ
∗
− = eA−s(p∗− − aṗ∗−).

Now using the fact that ṗ∗− = A−p∗1 we have

(Id+ π−(a)A−)p
∗
− = eA−s(Id− aA−)p

∗
−, (4)

where a ≥ 0, π−(a) ≥ 0, s ≥ 0 and the matrix A−

is given by A− =

(
α− −β−
β− α−

)
with α− =

t−
2
.

Since p∗− 6= (0, 0) we obtain from equation (4) that
b = π−(a) is defined by the system

1 + bα−= eα−s(cos(β−s) + a[β− sin(β−s)− α− cos(β−s)]),

bβ−= eα−s(sin(β−s)− a[α− sin(β−s) + β− cos(β−s)]),
(5)

and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0.
Note that s = 0, a = 0 and b = 0 is a solution

of system (5). So we have π−(0) = 0. Moreover if
a = ao, b = bo and s = so is a solution of (5), then
so is the flight time between the points p = p∗−−aṗ∗−
and q = p∗− + bṗ∗−. Thus β−s is the angle between
p and q and consequently β−s ∈ [0, π).

Define τ− = β−s and γ− = α−/β−. Solving
system (5) with respect to τ− ∈ (0, π) we obtain
the following parametric equations for π−(a) = b,

a(τ−) =
β−e−γ−τ−

d1 sin τ−
ϕ(τ−, γ−) and

b(τ−) =
β−eγ−τ−

d1 sin τ−
ϕ(τ−,−γ−),

(6)

where ϕ is the function described in Lemma 3.1.
Now since lim

τ−→π
a(τ−) = ∞ and lim

τ−→π
b(τ−) =

∞ it follows that the domain of definition of π− is
[0,∞) and lim

a→∞
π−(a) = ∞.

Moreover when τ− ∈ (0, π) we have

b(τ−)− a(τ−) =
2β−

d1 sin τ−
(sinh(γ−τ−)− γ− sin τ−).

Since sinh(γ−τ−) > γ− sin τ− when τ− ∈ (0, π), we
conclude from the expression above that b(τ−) >
a(τ−) if τ− ∈ (0, π). Therefore π−(a) > a in (0,∞).
So statement (a) is proved.

Derivating (6) with respect to τ− it follows that

da

dτ−
=

β−
d1 sin

2 τ−
ϕ(τ−,−γ−) and

db

dτ−
=

β−
d1 sin

2 τ−
ϕ(τ−, γ−).

Thus (π−)′(a) =
ϕ(τ−, γ−)
ϕ(τ−,−γ−)

=
a

b
e2γ−τ− and

lim
a→0

(π−)′(a) = 1. Therefore substatement (a.1) is

proved.
Now we observe that

(π−)′′(a) =
d

dτ−

(
db

da

)
1
da
dτ−

=

2d1(1 + γ2−) sin
3 τ−

β−ϕ(τ−,−γ−)3
(sinh(γ−τ−)− γ− sin τ−) > 0.

Therefore substatement (a.2) follows
From expression (6) it follows that

lim
a→∞

π−(a)
a

= lim
τ−→π

b(τ−)
a(τ−)

= lim
τ−→π

e2γ−τ− ϕ(τ−,−γ−)
ϕ(τ−, γ−)

= eγ−π.

Hence applying the L’Hôptal’s rule we obtain sub-
statement (a.3).

Since t− = 0 implies γ− = 0 it follows from (6)
that π−(a) = a in (0,∞). As π−(0) = 0 we get that
π− is the identity. This proves statement (b).

Proposition 3.3. Consider the vector field Xi in
Ri with i ∈ {−,+} and with a virtual center or
focus equilibrium and such that ti < 0. Let πi be the
map associated to the Poincaré map Πi : Li → Li

defined by the flow of the linear system ẋ = Aix +
Bi.
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(a) The maps πi satisfy that πi : [0,∞) → [0,∞),
πi(0) = 0, lim

a→∞
πi(a) = +∞ and πi(a) < a in

(0,∞).

(b) If a ∈ (0,∞) then (πi)
′(a) =

a

πi(a)
e2γiτi .

Moreover 0 < (πi)
′(a) < 1 and lim

a→0
(πi)

′(a) =

1.

(c) If a ∈ (0,∞) then (πi)
′′(a) < 0.

(d) The straight line b = eγiπa − ti(1 + e−γiπ)/di
in the plane (a, b) is an asymptote of the
graph of πi when a tends to +∞ where γi =

ti/
√

4di − t2i . So lim
a→∞

(π1)
′(a) = eγiπ.

Proof. The proof follows in a similar way to the
proof of Proposition 3.2.

Let p− and p+ be the contact point of ẋ =
Aox + Bo with L− and L+ respectively. We can
define a Poincaré map Πo : D∗

o ⊂ L− → L+ by
Πo(q) = r being the map from points in Do to
points in L+ defined by the flow of ẋ = Aox + Bo

in forward time, where D∗
o is a subset of L− where

the mapping Πo is well defined. So if ϕo(s, q) is the
solution of ẋ = Aox + Bo such that ϕo(0, q) = q
with q ∈ Do, then r = ϕo(s, q), s > 0 with r ∈ L+.

As before we can see the mapping Πo in a dif-
ferent way. Given, q ∈ D∗

o and r ∈ L+ there exist
unique b ≥ 0 and c ≥ 0 such that q = p−+ bṗ− and
r = p+ − cṗ+, where ṗ+ = X+(p+) = (0, b2 + 1).
So the mapping Πo induces a mapping πo given by
πo(b) = c. To study the qualitative behavior of Πo

is equivalent to study the qualitative behavior of
πo. As before we will consider the map πo instead
of Πo.

In the same way we can define a first return
map Π̄o : D̄

∗
o ⊂ L+ → L− and the respective π̄o.

The next propositions state the qualitative be-
havior of these maps.

Proposition 3.4. Consider the vector field Xo in
Ro with to > 0. Let πo be the map associated to the
Poincaré map Πo : D∗

o ⊂ L− → L+ defined by the
flow of the linear system ẋ = Aox + Bo from the
straight line L− to the straight line L+.

(a) If 0 < b2 < 1 then the map πo satisfies
that πo : [b∗,∞) → [c∗,∞), b∗, c∗ ≥ 0 with
πo(b

∗) = c∗ and lim
b→∞

πo(b) = +∞. Moreover

b∗ = 0 if and only if eγoπ ≥ 1 + b2
1− b2

and c∗ = 0

if and only if eγoπ ≤ 1 + b2
1− b2

.

(a.1) If b ∈ (b∗,∞) then π′
o(b) =(

1− b2
1 + b2

)2

e2γoτo
b

πo(b)
, with τo → 0 when

b → ∞ and lim
b→∞

π′
o(b) =

(
1− b2
1 + b2

)2

.

(b) If −1 < b2 ≤ 0 then b ∈ (0,∞) and πo
satisfies πo : [0,∞) → [c∗,∞), c∗ > 0 with
πo(0) = c∗ and lim

b→∞
πo(b) = +∞.

(b.1) π′
o(b) satisfy the same conditions described in

(a.1).

Proof. The solution of ẋ = Aox + Bo that pass
through q = p− + bṗ− is (x(τo), y(τo)) given by



eγoτo

(
(b2 − 1) cos τo +

2(1− b2)(2b+ a1)

βo
sin τo

)
− b2

−eγoτo

2

(
2b(1− b1) cos τo +

(1− b2)(4ba1 + 8)

βo
sin τo

)


,

(7)

where αo =
to
2
, βo =

√
4− a21
2

, τo = βos and γo =
αo

βo
.

In order that the mapping πo be defined in 0

and πo(0) = 0, we must have eγoπ =
1 + b2
1− b2

. More-

over if eγoπ >
1 + b2
1− b2

, then πo is also defined in 0 and

πo(0) = c∗ > 0. On the other hand if eγoπ <
1 + b2
1− b2

then πo is defined in the interval [b∗,∞), where
b∗ > 0 and πo(b

∗) = 0.
In the domain of definition of πo we obtain from

expression (7) the parametric solution of c = πo(b)
given by

b(τo) = −αo +
βoe

−γoτo

sin τo

(
1 + b2
1− b2

+ eγoτo cos τo

)

and

c(τo) = αo +
βoe

γoτo

sin τo

(
1− b2
1 + b2

+ e−γoτo cos τo

)
.

Using the same arguments than in Proposition 3.2
we can prove the statements (a) and (a.1).

Statement (b) can be obtained in the same way.
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Proposition 3.5. Consider the vector field Xo in
Ro with to < 0. Let πo be the map associated to the
Poincaré map Πo : D∗

o ⊂ L− → L+ defined by the
flow of the linear system ẋ = Aox + Bo from the
straight line L− to the straight line L+.

(a) If −1 < b2 < 0 then πo satisfies that πo :
[b∗,∞) → [c∗,∞), b∗, c∗ ≥ 0 with πo(b

∗) = c∗

and lim
b→∞

πo(b) = +∞. Moreover b∗ = 0 if and

only if eγoπ ≥ 1 + b2
1− b2

and c∗ = 0 if and only

if eγoπ ≤ 1 + b2
1− b2

.

(a.1) If b ∈ (b∗,∞) then π′
o(b) =(

1− b2
1 + b2

)2

e2γoτo
b

πo(b)
with τo → 0

when b → ∞ and lim
b→0

π′
o(b) = ∞ and

lim
b→∞

π′
o(b) =

(
1− b2
1 + b2

)2

.

(b) If 0 ≤ b2 < 1 then πo satisfies πo :
[b∗,∞) → [0,∞), b∗ > 0 with πo(b

∗) = 0 and
lim
b→∞

πo(b) = +∞.

(b.1) π′
o(b) satisfies the same conditions described

in (a.1).

Proof. The proof follows using the same ideas of
the previous proposition and will be omitted.

Proposition 3.6. Consider the vector field Xo in
Ro with to > 0. Let π̄o be the map associated to the
Poincaré map Π̄o : D̄∗

o ⊂ L+ → L− defined by the
flow of Xo from straight line L+ to the straight line
L−.

(a) If −1 < b2 < 0 then π̄o satisfies that π̄o :
[d∗,∞) → [a∗,∞), d∗, a∗ ≥ 0 with π̄o(d

∗) =
a∗ and lim

d→∞
π̄o(d) = +∞. Moreover d∗ = 0 if

and only if eγoπ ≥ 1− b2
1 + b2

and a∗ = 0 if and

only if eγoπ ≤ 1− b2
1 + b2

.

(a.1) If d ∈ (d∗,∞) then π̄′
o(d) =(

1 + b2
1− b2

)2

e2γo τ̄o
d

π̄o(d)
with τ̄o → 0

when d → ∞ and lim
d→0

π̄′
o(d) = ∞ and

lim
d→∞

π̄′
o(d) =

(
1 + b2
1− b2

)2

.

(b) If 0 ≤ b2 < 1 then d ∈ (0,∞) and π̄o satisfies
π̄o : [0,∞) → [a∗,∞), a∗ > 0 with π̄o(0) = a∗

and lim
d→∞

π̄o(d) = +∞.

(b.1) π̄′
o(d) satisfy the same conditions described in

(a.1).

Proposition 3.7. Consider the vector field Xo in
Ro with to < 0. Let π̄o be the map associated to the
Poincaré map Π̄o : D̄∗

o ⊂ L+ → L− defined by the
flow of Xo from the straight line L+ to the straight
line L−.

(a) If 0 ≤ b2 < 1 then π̄o satisfies that π̄o :
[d∗,∞) → [a∗,∞), d∗, a∗ ≥ 0 with π̄o(d

∗) =
a∗ and lim

d→∞
π̄o(a) = +∞. Moreover d∗ = 0 if

and only if eγoπ ≥ 1− b2
1 + b2

and a∗ = 0 if and

only if eγoπ ≤ 1− b2
1 + b2

.

(a.1) If d ∈ (d∗,∞) then π̄′
o(d) =(

1 + b2
1− b2

)2

e2γo τ̄o
b

πo(b)
with τo → 0

when d → ∞ and lim
d→0

π̄′
o(d) = ∞ and

lim
d→∞

π̄′
o(d) =

(
1 + b2
1− b2

)2

.

(b) If −1 < b2 < 0 then d ∈ (0,∞) and π̄o
satisfies π̄o : [0,∞) → [a∗,∞), a∗ > 0 with
π̄o(0) = a∗ and lim

d→∞
π̄o(d) = +∞.

(b.1) π̄′
o(d) satisfy the same conditions described in

(a.1).

4. Limit Cycles having a Focus in Ro

In what follows without loss of generality we will
suppose that the center of hypothesis (H2) is in
R−.

Proposition 4.1. Assume that system (3) satisfies
assumptions (H1) and (H2). Suppose that the real
equilibrium point in Ro is between L− and Lo where
Lo is a line parallel to L+ through the origin. Then
there exists a unique limit cycle of (3), which is
hyperbolic. Moreover this limit cycle visits the three
regions R−, Ro and R+. It is a repeller if to < 0,
and an attractor if to > 0.
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Proof. Suppose that we have a center in X−, and a
focus in Xo and in X+. By the hypotheses we have
0 ≤ b2 < 1.

Using the previous notation we have γi =
αi

βi
, i ∈ {−, o,+}. So γ− = 0 and γo, γ+ 6= 0. The

domain of the first return map Π defined by

Π = π̄o ◦ π+ ◦ πo ◦ π−

is an interval of R+ that depends on the domain of
the mapping πo and π̄o stated in Propositions 3.4,
3.5, 3.6 and 3.7.

Suppose that γo > 0 and γ+ < 0. In this case
D̄o(π̄o) = [0,∞) and Do(πo) = [b∗,∞) where b∗ ≥ 0
and πo(b

∗) = 0 (see figure 3). This implies that
D(Π) = [a∗,∞) where a∗ = b∗. Moreover we have
Π : [a∗,∞) → [a∗∗,∞) with a∗∗ > a∗ and Π(a∗) =
a∗∗.

−b2−b2−b2

A∗∗A∗∗A∗∗
A∗

Π(a∗) = a∗∗ Π(0) = a∗∗ Π(0) = a∗∗

Fig. 3. The flow of the three zones vector field with
the real equilibrium between L− and Lo where A

∗ =
p− − a∗X−(p−) and A∗∗ = p− − a∗∗X−(p−).

Define the displacement function

h(a) = Π(a)− a.

Note that finding a fixed point of Π is equiva-
lent to find zeroes of the function h.

In a∗ we have h(a∗) = Π(a∗)− a∗ > 0. Suppos-
ing that h admits a zero and that as is the small-
est zero we must have h′(as) ≤ 0, or equivalently
Π′(as) ≤ 1. But from the definition of Π we can
write

Π′(a) = π̄′
o(d)π

′
+(c)π

′
o(b)π

′
−(a)

where b = π−(a) = a, c = πo(b) and d = π̄o(c).

From Propositions 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7
it follows that

Π′(a) =
(
1 + b2
1− b2

)2
d

π̄o(d)
e2γoτ̄o c

π+(c)
e2γ+τ+

(
1− b2
1 + b2

)2
b

πo(b)
e2γoτo

=
a

Π(a)
e2(γo(τo+τ̄o)+γ+τ+),

(8)

with τ+ ∈ (0, π) increasing with a, and τ̄o + τo ∈
(0, 2π−τ∗) decreasing with a. So γo(τo+τ̄o)+γ+τ+ is
a decreasing function in a and γo(τo+ τ̄o)+γ+τ+ →
γ+π < 0 when a → ∞. Hence from (8) and from
the fact that Π′(as) ≤ 1 we must have

γo(τos + τ̄os) + γ+τ+s ≤ 0.

Now supposing that Π admits a second fixed point
ar from the monotonicity of the function γo(τo +
τ̄o) + γ+τ+ we must have

γo(τos+τ̄os)+γ+τ+s=0 and γo(τor+τ̄or)+γ+τ+r<0.

As as and ar are fixed point of Π this implies from
(8) that Π′(as) = 1 and Π′(ar) < 1. So in this case,
for a ∈ (as, ar) we obtain Π(a) > a. Now from (8)
it follows that Π′(a) < 1 for a ∈ (as, ar) and from
the Mean Value Theorem we have

Π(a)−Π(as) = Π′(ā)(a− as) < a− as

that implies that Π(a) < a. This is a contradiction
and so we have at most a fixed point as for Π and

γo(τos + τ̄os) + γ+τ+s < 0. (9)

On the other hand since

h′(a) = Π′(a)− 1 and lim
a→∞

h′(a) = e2γ+π − 1 < 0,

it follows by the Mean Value Theorem that
lim
a→∞

h(a) = −∞, and this shows that h admits a

zero. Moreover this zero is equivalent to a fixed
point of the first return map Π and this fixed point
is a hyperbolic attractor because from (9) we have
Π′(as) < 1.

Now suppose that γo < 0 and γ+ > 0. In this
case we can use the same idea of the previous case
and define a first return map Π : [a∗,∞) → [a∗∗,∞)
where Π(a∗) = a∗∗ and a∗∗ < a∗. But now we obtain
a unique limit cycle that is a hyperbolic repeller.

Now from Proposition 15 of [Freire et al., 1998]
it is not possible to have a limit cycle that visit only
the regions Ro and R+ otherwise we would have two
hyperbolic attractor limit cycle containing the same
equilibrium point what is not possible.

This finish the prove of the theorem.
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Proposition 4.2. Assume that system (3) satisfies
assumptions (H1) and (H2). Suppose that the real
equilibrium point in Ro is between Lo and L+. Then
there exists a unique limit cycle of (3), which is
hyperbolic. This limit cycle visits the three regions
R−, Ro and R+ if D(Π) = [0,∞) and Π(0) > 0 and
visits only the regions Ro and R+ otherwise.

Proof. Suppose that γo > 0 and γ+ < 0. We have
−1 < b2 < 0. In this case the real focus of Xo is a
repeller and the virtual focus of X+ is an attractor.

If eγoπ ≥ 1− b2
1 + b2

, then D̄o(π̄o) = [0,∞) and

Do(πo) = [0,∞) (see figure 4). This implies that
D(Π) = [0,∞) and by the fact that the real focus
is a repeller it is not difficult to see that Π(0) =
a∗∗ > 0. In this scenario a similar analysis as the
one done in the proof of Proposition 4.1 shows that
there exists a unique limit cycle that visits the three
regions, and which is hyperbolic.

A∗∗

A∗∗

−b2−b2−b2

Π(0) = a∗∗ > 0 Π(0) = a∗∗ > 0 Π(a∗) = 0

eγ+π ≥ 1−b2
1+b2

eγ+π < 1−b2
1+b2

Fig. 4. The flow of the three zones vector field
with the real equilibrium between Lo and L+ where
A∗∗ = p− − a∗∗X−(p−).

On the other hand, if eγoπ <
1− b2
1 + b2

, then

D(π̄o) = [d∗,∞) with d∗ > 0, D(πo) = [0,∞) with
πo(0) = c∗ > 0. Here three cases are possible.
Case 1: π+(c

∗) < d∗. In this case D(Π) = [a∗,∞)
where a∗ > 0 is such that (π+ ◦ πo) (a∗) = d∗ and
so Π(a∗) = 0 < a∗ (see figure 5 (1)). From this
figure as the real equilibrium point is repeller it
follows that there is a stable limit cycle that vis-
its the regions Ro and R+. We observe that for
this limit cycle we can use the Proposition 15 of
[Freire et al., 1998] and conclude that it is hyper-
bolic. We can also define a restricted Poincaré re-
turn map Πr near this hyperbolic stable limit cycle
and we obtain Π′

r(ā) = e2(γoτ
r
o+γ+τr+) < 1 where ā is

the point associated to the limit cycle, for more de-

tails see equation (31) of [Freire et al., 1998]. This
implies that γoτ

r
o + γ+τ

r
+ < 0. Now in the points

of the domain of definition of the Poincaré return
map Π it is easy to see that τo + τ̄o < τ ro and
τ+ > τ r+, and as γo > 0 and γ+ < 0 we obtain
γo(τo+τ̄o)+γ+τ+ < 0. Now if Π admits a fixed point
and as is the smallest fixed point it follows from
the fact that Π(a∗) = 0 < a∗ that we must have
Π(as) = as and Π′(as) ≥ 1. But from equation (8)
we conclude that Π′(as) = e2(γo(τos+τ̄os)+γ+τ+s) < 1,
because γo(τos+τ̄os)+γ+τ+s < 0. This contradiction
implies that a such fixed point as does not exist.

Case 2: π+(c
∗) = d∗ In this case we have a limit

cycle tangent to L− because Π(0) = 0 (see figure
5 (2)). From Proposition 15 of [Freire et al., 1998]
this limit cycle is hyperbolic attractor. This implies
that Π′(0) < 1. Now as the previous case we cannot
have a fixed point for Π because again if as is the
smallest fixed point of Π we must have Π′(as) ≥ 1
and this is a contradiction as in case 1. So in this
case only one limit cycle exists, it is hyperbolic and
it visits only the regions Ro and R+.

Case 3: π+(c
∗) > d∗ In this case D(Π) = [0,∞)

and Π(0) = a∗∗ > 0 (see figure 5(3)) and a similar
argument as the one given in the proof of Proposi-
tion 4.1 shows that there exists a unique limit cycle,
which is hyperbolic and it visits the three regions.

(1) Π(a∗) = 0 (2) Π(0) = a∗∗(3) Π(0) = 0

D∗D∗

C∗
C∗

A∗∗
A∗

−b2−b2

Fig. 5. Three possible cases for the flow of the
three zones vector field when the real equilibrium
is between Lo and L+ and eγ+π < 1−b2

1+b2
. A∗ =

p− − a∗X−(p−), C∗ = p+ − c∗X+(p+), D∗ =
p+ + d∗X+(p+) and A∗∗ = p− − a∗∗X−(p−).

The situation when γo < 0 and γ+ > 0 can be
analyzed in the same way that in the previous case
and the details are omitted.

Proof of Theorem 1.1. The proof of Theorem 1.1
follows directly from the proof of Propositions 4.1
and 4.2.
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We note that the existence of the hyperbolic
limit cycle of Theorem 1.1 does not depend on the
sign of γo+γ+ as the result given in Proposition 15
of [Freire et al., 1998].
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