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MINIMAL PERIODS OF HOLOMORPHIC MAPS

ON COMPLEX TORI

JAUME LLIBRE AND FENG RONG

Abstract. We study the set of minimal periods of holomorphic self–
maps of one and two dimensional complex tori. In particular we char-
acterize when the set of minimal periods of such maps is finite. In fact
we have an algorithm for doing this characterization for holomorphic
self–maps of an arbitrary dimensional complex tori.

1. Introduction and statement of the main results

One of the classical invariants in the study of dynamical properties of a
map f is the set of minimal periods Per(f). This set in general is not stable,
i.e. it changes if we perturb the map. In particular it is not preserved by
a homotopy of the map. It is difficult to analyze the set Per(f) using tools
from algebraic topology. To avoid this difficulty many authors studied the
set of homotopy minimal periods, i.e. minimal periods which are preserved
by any homotopy (see for instance [1], [10], [7], and [8, Chapt. VI] for an
exposition of known results).

On the other hand it is known that holomorphic maps of compact complex
manifolds have many periodic points and large sets of minimal periods (see
[3], [5] and [12]). Therefore a natural question is: which minimal periods of
a holomorphic map f are preserved by a holomorphic homotopy of f , and
which of them are preserved by any continuous deformation of f?

In this paper we consider this question for holomorphic self–maps of
one– and two–dimensional complex tori, i.e. topologically two– and four–
dimensional real tori. The answer is complete when the set of these minimal
periods is finite. The same question for holomorphic self–maps of the one–
dimensional complex torus was partially studied in [12]. Before recalling
some of the known results for holomorphic self–maps of complex tori and
stating our results, we need to introduce some notation.

Let X be a complex, closed manifold. We define the following sets:
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Map(X;X) or simply Map(X) denotes the set of all continuous self maps
of X.

Hol(X;X) or shortlyHol(X) denotes the set of all holomorphic self–maps
of X.

[X,X] denotes the set of all homotopy classes of self–maps of X, i.e.
[X,X] = Map(X)/ ∼, where ∼ is the homotopy equivalence relation.

[X,X]H denotes the set of all homotopy holomorphic classes of holomor-
phic self–maps of X.

For f, g ∈ Hol(X) we set f ≈ g if there exists a continuous one–parameter
family ht ∈ Hol(X) for all t ∈ [0, 1] such that h0 = f and h1 = g.

[X,X]H = Hol(X)/ ≈ denotes the set of all homotopy holomorphic
classes of holomorphic self–maps of X.

Let f ∈ Hol(X). We define

(1) HPer(f) =
⋂

g∼f
Per(g),

the set of the homotopy minimal periods (shortly homotopy periods) of f .

We define

(2) HPerH(f) =
⋂

g∼f
g∈Hol(X)

Per(g),

the set of homotopy holomorphic minimal periods (shortly homotopy holo-
morphic periods) of f . We note that here the homotopy is through contin-
uous maps. Of course from the definitions it follows that

HPer(f) ⊂ HPerH(f),

because the intersection is over a smaller family in the definition of HPerH(f).

We remark that in general we have

(3) HPer(f)  HPerH(f).

For explicit examples see [12].

We define

(4) HPerH(f) =
⋂

g≈f
g∈Hol(X)

Per(g),

the set of holomorphic homotopic minimal periods (shortly holomorphic ho-
motopy periods) of f . We note that here the homotopy is through holomor-
phic maps. Again from the definitions it follows that

HPerH(f) ⊂ HPerH(f).

Indeed f ≈ g implies that f ∼ g. Consequently for a given f ∈ Hol(X) the
intersection in this last definition is over a smaller family than in the previous
definition, where the second equality only has meaning if g ∈ Hol(X).
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In this paper we shall restrict our space X to be the r–dimensional torus
X = Tr of complex dimension r. Let f : Tr → Tr be a holomorphic
map. We denote by Af the matrix of the induced homology homomorphism
f∗ : H1(Tr)→ H1(Tr) on the first homological group of Tr, which is a 2r×2r
integer matrix.

Our first result is for any holomorphic map on Tr with r a positive integer.

Proposition 1. Let f : Tr → Tr be a holomorphic map, and [Af ] be the
holomorphic map on Tr induced by the integer matrix Af of f . Then

Per(f) = HPerH(f) = HPerH(f) = HPer(f) = HPer([Af ]).

Proposition 1 for r = 1 was proved in Theorem 4 and Proposition 5 of
[12]. Here it will be proved in section 3 for r ≥ 1 using similar arguments
to the ones of [12].

It is well known (see e.g. [4, Proposition 1.2.3]) that the 2r × 2r integer
matrix Af has r pairs of conjugate eigenvalues αj ± iβj with 1 ≤ j ≤ r and
αj , βj ∈ R. As usual R denotes the set of real numbers, and N denotes the
set of positive integers.

Theorem 2. Let f : T1 → T1 be a holomorphic map, and let λ and λ̄ be
the eigenvalues of Af . Then Per(f) is equal to

(E) ∅ if and only if λ = 1;

(F1) {1} if and only if either λ = 0, or λ = −1, or λ = ei2π/3;
(F2) {1, 2} if and only if λ = i;

(F3) {1, 2, 3} if and only if λ = eiπ/3;
(G1) N \ {2, 3} if and only if λ = −1 + i;

(G2) N \ {3} if and only if λ = −1
2 + i

√
7
2 ;

(G3) N \ {4} if and only if λ = i
√

2;

(G4) N \ {2} if and only if λ = −2, or λ = −3
2 + i

√
3
2 ;

(G5) N otherwise.

Theorem 2 is proved in section 2. It improves Theorem 4 of [12] which
was not complete.

From Theorem 2 and Proposition 1 we immediately get the following
Li–Yorke or S̆arkovskii type result, see [11], [13] and [2].

Corollary 3. Let f : T1 → T1 be a holomorphic map. If f has a periodic
point of period n ≥ 4 then Per(f) is infinite. More precisely Per(f) ⊇
N \ {2, 3, 4}.

As usual C denotes the set of complex numbers, and Z denotes the set of
integer numbers. We can even partially classify the complex structures of
the one–dimensional complex tori that appears in Theorem 2.

Proposition 4. Let f : T1 → T1 be a holomorphic map, and let λ and λ̄
be the eigenvalues of Af . Suppose Imλ 6= 0 and write λ = α + iβ, with
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α, β ∈ R and β > 0. If T1 = C/Λ with Λ = Z+ τZ, where τ belongs to the
fundamental domain, then we have

(a) if β = 1 then τ = i;
(b) if β =

√
2 then τ = i

√
2;

(c) if β =
√
3
2 then τ = −1

2 + i
√
3
2 ;

(d) if β =
√
7
2 then τ = −1

2 + i
√
7
2 .

Proposition 4 is proved in section 2. We next extend Theorem 2 and
Corollary 3 to holomorphic self–maps of T2.

Theorem 5. Let f : T2 → T2 be a holomorphic map, and let λ1, λ̄1, λ2 and
λ̄2 be the eigenvalues of Af . Then Per(f) is equal to

(E) ∅ if and only if 1 ∈ {λ1, λ2};
(F1) {1} if and only if {λ1, λ2} is either {0}, or {−1}, or {−1, 0}, or

{0, ei2π/3}, or {ei4π/5, ei2π/5}, or {−1, eiπ/2}, or {−1, ei2π/3};
(F2) {1, 2} if and only if {λ1, λ2} is either {0, eiπ/2}, or {eiπ/2}, or {ei2π/3,

eiπ/2};
(F3) {1, 3} if and only if {λ1, λ2} = {−1, eiπ/3};
(F4) {1, 2, 3} if and only if {λ1, λ2} is either {0, eiπ/3}, or {eiπ/2, eiπ/3},

or {eiπ/3, ei2π/3};
(F5) {1, 2, 4} if and only if {λ1, λ2} = {eiπ/4, ei3π/4};
(F6) {1, 2, 5} if and only if {λ1, λ2} = {eiπ/5, ei3π/5};
(F7) {1, 2, 3, 6} if and only if {λ1, λ2} = {eiπ/6, ei5π/6};
(G) infinite otherwise.

Theorem 5 is proved in section 3. From Theorem 5 and Proposition 1 we
immediately get the following Li–Yorke or S̆arkovskii type result.

Corollary 6. Let f : T2 → T2 be a holomorphic map. If f has a periodic
point of period n ≥ 7 then Per(f) is infinite.

At the end of section 3, we describe how to extend Theorem 5 and Corol-
lary 6 to holomorphic self–maps of Tr for r ≥ 3.

2. Holomorphic maps on the one–dimensional complex tori

Let f : T1 → T1 be a holomorphic map, and let λ and λ̄ be the eigenvalues
of Af . Let χ(λ) = λ2 − aλ+ b be the characteristic polynomial of Af , with
a, b ∈ Z. Set λ = α+ iβ. Then we have a = 2α and b = α2 + β2.

We first recall the following result from [1] (cf. [7]), which we have refor-
mulated for our purposes.

Theorem 7. Let f : T1 → T1 be a continuous map and let χ(λ) = λ2−aλ+b
be the characteristic polynomial of Af . Then HPer(f) is equal to

(E) ∅ if and only if 1− a+ b = 0;
(F1) {1} if and only if (a, b) is either (0, 0), or (−1, 0), or (−1, 1), or

(−2, 1);
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(F2) {1, 2} if and only if (a, b) = (0, 1);
(F3) {1, 2, 3} if and only if (a, b) = (1, 1);
(G1) N \ {2, 3} if and only if (a, b) = (−2, 2);
(G2) N \ {3} if and only if (a, b) = (−1, 2);
(G3) N \ {4} if and only if (a, b) = (0, 2);
(G4) N \ {2} if and only if 2 + a+ b = 0, or a+ b = 0 and (a, b) /∈ {(0, 0),

(−1, 1), (−2, 2)};
(G5) N \ 2N if and only if 1 + a + b = 0 and (a, b) /∈ {(0,−1), (−1, 0),

(−2, 1)};
(G6) N otherwise.

We now apply Theorem 7 to the holomorphic maps of T1 for proving
Theorem 2.

Proof of Theorem 2. Since by Proposition 1 Per(f) = HPer(f), we shall
compute HPer(f) using Theorem 7. So we check the cases in Theorem 7 for
a = 2α and b = α2 + β2.

If 1−a+b = 0 then (1−α)2+β2 = 0. Thus (α, β) = (1, 0), which belongs
to case (E).

If b = 0, then (α, β) = (0, 0), which belongs to case (F1).

If (a, b) = (−2, 1) then (α, β) = (−1, 0), which belongs to case (F1).

If (a, b) = (−1, 1) then (α, β) = (−1
2 ,±

√
3
2 ), which belongs to case (F1).

If (a, b) = (0, 1) then (α, β) = (0,±1), which belongs to case (F2).

If (a, b) = (1, 1) then (α, β) = (12 ,±
√
3
2 ), which belongs to case (F3).

If (a, b) = (−2, 2) then (α, β) = (−1,±1), which belongs to case (G1).

If (a, b) = (−1, 2) then (α, β) = (−1
2 ,±

√
7
2 ), which belongs to case (G2).

If (a, b) = (0, 2) then (α, β) = (0,
√

2), which belongs to case (G3).

If 2 + a+ b = 0 then (α+ 1)2 + β2 + 1 = 0, which is impossible.

If a+b = 0 then (α+1)2+β2 = 1. Thus α ∈ {−2,−3
2 ,−1,−1

2 , 0} because
−2 ≤ α ≤ 0 and 2α ∈ Z. For (a, b) /∈ {(0, 0), (−1, 1), (−2, 2)}, we then have

either (α, β) = (−2, 0) or (α, β) = (−3
2 ,±

√
3
2 ), both belong to case (G4).

If 1+a+b = 0 then (α+1)2+β2 = 0. Thus (α, β) = (−1, 0), which shows
that the case (G5) of Theorem 7 cannot occur for a holomorphic map. �

Before proving Proposition 4 we recall some basic facts about the complex
structures of one–dimensional complex tori.

Let H denote the upper half–plane of C. Then the fundamental domain
for the action of the modular group Γ on H is given by

D =

{
z ∈ H : |z| > 1, |Rez| < 1

2

}⋃{
z ∈ H : |z| ≥ 1,Rez = −1

2

}

⋃{
z ∈ H : |z| = 1,−1

2
< Rez ≤ 0

}
.
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For an one–dimensional torus T1 = C/Λ, the lattice Λ can be chosen to
be Λ = Z+ τZ with τ in the fundamental domain.

Proof of Proposition 4. Let Π = (1, τ) = (1, u+ iv) be the period matrix of
T1. We write

M =

(
Π
Π

)
=

(
1 u+ iv
1 u− iv

)
, M−1 =

i

2v

(
u− iv −u− iv
−1 1

)

.

We then have

Af = M−1
(
α+ iβ 0

0 α− iβ

)
M =

1

v

(
vα− uβ −(u2 + v2)β

β uβ + vα

)

.

Since Af is an integral matrix and β 6= 0, we have

β

v
∈ Z, 2u

β

v
∈ Z and (u2 + v2)

β

v
∈ Z.

If β = 1 then 1
v ∈ Z implies v = 1 because v > 1

2 . Thus β
v = 1 and 2u ∈ Z

implies u = 0 or u = −1
2 . But we also have u2 + v2 ∈ Z, so u = 0. This

gives (a).

If β =
√

2 then
√
2
v ∈ Z implies v =

√
2 because v >

√
2
2 . Thus β

v = 1 and

2u ∈ Z implies u = 0 or u = −1
2 . But we also have u2 + v2 ∈ Z, so u = 0.

This gives (b).

If β =
√
3
2 then

√
3

2v ∈ Z implies v =
√
3
2 because v >

√
3
4 . Thus β

v = 1 and

2u ∈ Z implies u = −1
2 , which also satisfies u2 + v2 ∈ Z. This gives (c).

If β =
√
7
2 then

√
7

2v ∈ Z implies v =
√
7
2 because v >

√
7
4 . Thus β

v = 1 and

2u ∈ Z implies u = 0 or u = −1
2 . But we also have u2 + v2 ∈ Z, so u = −1

2 .
This gives (d). �

3. Holomorphic maps on the higher–dimensional complex tori

Nielsen fixed point theory [9] turns out to be a powerful tool in the study
of the set of periods of a map.

As usual the Nielsen number of a map f will be denoted by N(f). For a
continuous map f : Tr → Tr, it is well known that N(f) = | det(I −Af )| =
|χ(1)|, where χ is the characteristic polynomial of Af . Note that if f is
holomorphic then we have N(f) = χ(1) because χ(1) > 0.

We need the following result from [10].

Theorem 8. Let f : Tr → Tr be a continuous map. Then m /∈ HPer(f) if

and only if either N(fm) = 0 or N(fm) = N(fm/p) for some prime factor
p of m.

Proof of Proposition 1. We always have HPer(f) = HPer([Af ]) because f ∼
[Af ]. Therefore it suffices to show that Per(f) = HPer(f). Since we always
have Per(f) ⊃ HPer(f), we only need to show Per(f) ⊂ HPer(f).
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Assume n ∈ Per(f) and let x ∈ Tr be a point with a minimal period of

n. Then x ∈ Fix(fn), but x /∈ Fix(fn/p), where p is a prime factor of n.

Since Fix(fn/p) ⊂ Fix(fn), we then have #Fix(fn) > #Fix(fn/p). Since f
is a holomorphic torus map, we have N(fm) = #Fix(fm), m ≥ 1 (see [5] or
[8, Theorem 4.3.14]). Thus by Theorem 8, we have n ∈ HPer(f). �

The following result was proved in [1], see also [10].

Theorem 9. Let f : Tr → Tr be a continuous map. Then HPer(f) is of
one of the following three (mutually exclusive) types:

(E) HPer(f) is empty if and only if 1 is an eigenvalue of Af ;
(F) HPer(f) in nonempty but finite if and only if all the eigenvalues of

Af are either zero or roots of unity not equal to 1;
(G) HPer(f) is infinite.

Now let f : T2 → T2 be a holomorphic map, and let λ1, λ̄1, λ2 and λ̄2 be
the eigenvalues of Af . Let χ(λ) = λ4−aλ3+bλ2−cλ+d be the characteristic
polynomial of Af , with a, b, c, d ∈ Z. Set λ1 = α1 + iβ1 and λ2 = α2 + iβ2.
Then we have

a = 2(α1 + α2),

b = α2
1 + β21 + α2

2 + β22 + 4α1α2,

c = 2(α1(α
2
2 + β22) + α2(α

2
1 + β21)),

d = (α2
1 + β21)(α2

2 + β22).

We also have

N(f) = χ(1) = (1− 2α1 + α2
1 + β21)(1− 2α2 + α2

2 + β22).

Using Theorems 8 and 9 we shall prove Theorem 5.

Proof of Theorem 5. By Proposition 1, it suffices to consider HPer(f). By
Theorem 9, we need to show that if Af has either zero or roots of unity as
eigenvalues then it is given by one of the listed eighteen cases.

Case (E) is just case (E) from Theorem 9.

Next assume λ1 = 0. If λ2 = 0 then N(fm) = 1 for all m ≥ 1, thus
HPer(f) = {1} by Theorem 8. This belongs to case (F1).

If λ2 6= 0 then α2
2 + β22 = 1. From a, b, c, d ∈ Z we get 2α2 ∈ Z. Therefore

α2 ∈ {−1,−1
2 , 0,

1
2 , 1}.

If α2 = −1 then β2 = 0 and N(fm) is periodic as {4, 0, · · · }. Thus
HPer(f) = {1}, which belongs to case (F1).

If α2 = −1
2 then β2 = ±

√
3
2 and N(fm) = 3 for all m ≥ 1. Thus

HPer(f) = {1}, which belongs to case (F1).

If α2 = 0 then β2 = ±1 and N(fm) is periodic as {2, 4, · · · }. Thus
HPer(f) = {1, 2}, which belongs to case (F2).

If α2 = 1
2 then β2 = ±

√
3
2 and N(fm) is periodic as {1, 3, 4, 3, 1, 0, · · · }.

Thus HPer(f) = {1, 2, 3}, which belongs to case (F4).
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If α2 = 1 then β2 = 0 which belongs to case (E).

Now assume λ1 6= 0 and λ2 6= 0. Then α2
1 + β21 = α2

2 + β22 = 1. From
a, b, c, d ∈ Z we get 2(α1 + α2) ∈ Z and 4α1α2 ∈ Z. Set p = 2(α1 + α2)

and q = 4α1α2. Then α1,2 =
p±
√
p2−4q
4 . Since α1,2 ∈ R and |α1,2| ≤ 1, we

have p ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4} while p2−(4−p)2
4 ≤ q ≤ p2

4 for p ≥ 0

and p2−(4+p)2
4 ≤ q ≤ p2

4 for p < 0.

If p = 4 then q = 4. This gives (α1, β1) = (α2, β2) = (1, 0), which belongs
to case (E).

If p = 3 then q = 2. This gives (α1, β1) = (1, 0) and (α2, β2) = (12 ,±
√
3
2 ),

which belongs to case (E).

If p = 2 then q ∈ {1, 0}. If q = 0 then (α1, β1) = (1, 0) and (α2, β2) =
(0,±1), which belongs to case (E).

If q = 1 then (α1, β1) = (2+
√
3

4 ,±
√

9−4
√
3

4 ), (α2, β2) = (2−
√
3

4 ,±
√

9+4
√
3

4 )

and one readily checks that α′1 = Reλ21 = −1+4
√
3

8 and α′2 = Reλ22 = −1−4
√
3

8 .

This implies TrA2 = 2(α′1 + α′2) = −1
2 /∈ Z, which is impossible.

If p = 1 then q ∈ {0,−1,−2}. If q = −2 then (α1, β1) = (1, 0) and

(α2, β2) = (−1
2 ,±

√
3
2 ), which belongs to case (E).

If q = 0 then (α1, β1) = (12 ,±
√
3
2 ) and (α2, β2) = (0,±1). We get N(fm) is

periodic as {2, 12, 8, 12, 2, 0, · · · }. Thus HPer(f) = {1, 2, 3}, which belongs
to case (F4).

If q = −1 then (α1, β1) = (1+
√
5

4 ,±
√

10−2
√
5

4 ) and (α2, β2) = (1−
√
5

4 ,

±
√

10+2
√
5

4 ). We get N(fm) is periodic as {1, 5, 1, 5, 16, 5, 1, 5, 1, 0, · · · }.
Thus HPer(f) = {1, 2, 5}, which belongs to case (F6).

If p = 0 then q ∈ {0,−1,−2,−3,−4}. If q = −4 then (α1, β1) = (1, 0)
and (α2, β2) = (−1, 0), which belongs to case (E).

If q = 0 then (α1, β1) = (0,±1) and (α2, β2) = (0,±1). We get N(fm) is
periodic as {4, 16, · · · }. Thus HPer(f) = {1, 2}, which belongs to case (F2).

If q = −1 then (α1, β1) = (12 ,±
√
3
2 ) and (α2, β2) = (−1

2 , ±
√
3
2 ). We get

N(fm) is periodic as {3, 9, 12, 9, 3, 0, · · · }. Thus HPer(f) = {1, 2, 3}, which
belongs to case (F4).

If q = −2 then (α1, β1) = (
√
2
2 ,±

√
2
2 ) and (α2, β2) = (−

√
2
2 ,±

√
2
2 ). We get

N(fm) is periodic as {2, 4, 2, 16, 2, 4, 2, 0, · · · }. Thus HPer(f) = {1, 2, 4},
which belongs to case (F5).

If q = −3 then (α1, β1) = (
√
3
2 ,±1

2) and (α2, β2) = (−
√
3
2 ,±1

2). We get
N(fm) is periodic as {1, 3, 4, 3, 1, 16, 1, 3, 4, 3, 1, 0, · · · }. Thus HPer(f) =
{1, 2, 3, 6}, which belongs to case (F7).

If p = −1 then q ∈ {0,−1,−2}.
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If q = −1 then (α1, β1) = (−1−
√
5

4 ,±
√

10−2
√
5

4 ) and (α2, β2) = (−1+
√
5

4 ,

±
√

10+2
√
5

4 ). We get N(fm) is periodic as {5, 5, 5, 5, 0, · · · }. Thus HPer(f) =
{1}, which belongs to case (F1).

If q = 0 then (α1, β1) = (−1
2 ,±

√
3
2 ) and (α2, β2) = (0,±1). We get

N(fm) is periodic as {6, 12, · · · }. Thus HPer(f) = {1, 2}, which belongs to
case (F2).

If q = −2 then (α1, β1) = (−1, 0) and (α2, β2) = (12 ,±
√
3
2 ). We get N(fm)

is periodic as {4, 0, 16, 0, 4, 0, · · · }. Thus HPer(f) = {1, 3}, which belongs to
case (F3).

If p = −2 then q ∈ {1, 0}.

If q = 1 then (α1, β1) = (−2−
√
3

4 ,±
√

9−4
√
3

4 ), (α2, β2) = (−2+
√
3

4 ,±
√

9+4
√
3

4 )
and a similar argument as above shows that this is impossible.

If q = 0 then (α1, β1) = (−1, 0) and (α2, β2) = (0,±1). We get N(fm) is
periodic as {8, 0, · · · }. Thus HPer(f) = {1}, which belongs to case (F1).

If p = −3 then q = 2. This gives (α1, β1) = (−1, 0) and (α2, β2) = (−1
2 ,

±
√
3
2 ). We get N(fm) is periodic as {12, 0, · · · }. Thus HPer(f) = {1}, which

belongs to case (F1).

If p = −4 then q = 4. This gives (α1, β1) = (α2, β2) = (−1, 0). We get
N(fm) is periodic as {16, 0, · · · }. Thus HPer(f) = {1}, which belongs to
case (F1). �

It is evident from the above proof that similar arguments will also give us
classifications of when the set of minimal periods of holomorphic self–maps
of r–dimensional complex tori is finite, for any r ≥ 3. We briefly outline
the algorithm below. Note however that the computation involved will get
more complicated.

Let f : Tr → Tr be a holomorphic map and let λj , λ̄j , 1 ≤ j ≤ r, be the
eigenvalues of Af . Set λj = αj + iβj . Then the characteristic polynomial of
Af , with integral coefficients, is given by χ(λ) =

∏r
j=1(λ− λj)(λ− λ̄j) and

the Nielsen number of f is given by N(f) = χ(1) =
∏r
j=1(1−2αj +α2

j +β2j ).

By Proposition 1, we have Per(f) = HPer(f). We can then use Theorems
8 and 9 to classify when HPer(f), thus Per(f), is finite.

By Theorem 9 case (E), we have Per(f) = ∅ if and only if λj = 1 for some
j. By Theorem 9 case (F), we then assume that all λj are either zero or
roots of unity not equal to 1.

If some λj is zero, say λr = 0, then χ(λ) = λ2
∏r−1
j=1(λ − λj)(λ − λ̄j).

Note that χ̃(λ) =
∏r−1
j=1(λ − λj)(λ − λ̄j) is still a polynomial with integral

coefficients. Thus the classification for this case is given by the (r − 1)–
dimensional classification.
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We can then assume that α2
j +β2j = 1 and αj 6= 1 for all j. Note that this

automatically implies that all λj are roots of unity (see e.g. [6, §34, Lemma
(a)]), and thus N(fm) is periodic. The classification for this case is then
given by studying the constrains posted by the integral coefficients of χ(λ),
such as TrAf = 2

∑r
j=1 αj ∈ Z.

The above consideration gives us finitely many cases when Per(f) is finite.

Thus we have the following Li–Yorke or S̆arkovskii type result.

Proposition 10. Let f : Tr → Tr be a holomorphic map. There exists a
finite integer l(r) such that if f has a periodic point of period n ≥ l(r) then
Per(f) is infinite.

From Corollaries 3 and 6 we know that l(1) = 4 and l(2) = 7. And by
the discussion above, it is clear that l(r) is non-decreasing. It is natural to
conjecture that l(r) is actually increasing and it will be interesting to see
whether one can express l(r) in terms of r.
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[2] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy
in Dimension One, (Second Edition), Advanced Series in Nonlinear Dynamics, Vol.
5, World Scientific, Singapore, 2000.

[3] A. Beardon, Iteration of Rational Functions, Graduate Texts in Math., Vol. 132,
Springer–Verlag, New York, 1991.

[4] C. Birkenhake and H. Lange, Complex Abelian Varieties, (Second Edition),
Springer–Verlag, Berlin Heidelberg, 2004.

[5] N. Fagella and J. Llibre, Periodic points of holomorphic maps via Lefschetz num-
bers, Trans. Amer. Math. Soc. 352 (2000), 4711–4730.

[6] E. Hecke, Lectures on the Theory of Algebraic Numbers, Graduate Texts in Math.,
Vol. 77, Springer–Verlag, New York, 1981.

[7] J. Jezierski and W. Marzantowicz, Homotopy minimal periods for maps of three
dimensional nilmanifolds, Pacific J. Math. 209 (2003), 85–101.

[8] J. Jezierski and W. Marzantowicz, Homotopy Methods in Topological Fixed and
Periodic Points Theory, Topological Fixed Point Theory and Its Applications 3,
Springer, Dordrecht, 2006.

[9] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math.
Soc., Providence, R.I., 1983.

[10] B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin.
Dyn. Syst. 4 (1998), 301–320.

[11] T.Y. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975),
985–992.

[12] J. Llibre and W. Marzantowicz, Homotopy minimal periods of holomorphic maps
on surfaces, Funct. Approx. Comment. Math. 40 (2009), 309–326.

[13] A.N. S̆arkovskii, Co–existence of the cycles of a continuous map of the line into
itself, (in Russian), Ukrain. Math. Zh. 16(1) (1964), 61–71.
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