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Abstract. Let n be an even integer. We study the bifurcation of limit
cycles from the periodic orbits of the n–dimensional linear center given
by the differential system

ẋ1 = −x2, ẋ2 = x1, . . . , ẋn−1 = −xn, ẋn = xn−1,

perturbed inside a class of piecewise linear differential systems. Our
main result shows that at most (4n − 6)n/2−1 limit cycles can bifurcate
up to first–order expansion of the displacement function with respect to
a small parameter. For proving this result we use the averaging theory
in a form where the differentiability of the system is not needed.

1. Introduction and statement of the main result

Piecewise linear differential systems appear in a natural way in control
theory, and in the study of electrical circuits. These systems can present
complicated dynamical phenomena such as those exhibited by general non-
linear differential systems. One of the main ingredients in the qualitative
description of the dynamical behavior of a differential system is the number
and the distribution of its limit cycles.

The goal of this paper is to study, in Rn for all n even, the existence of
limit cycles of the control systems of the form

(1) ẋ = A0x+ εF (x),

with |ε| ̸= 0 a sufficiently small real parameter, where A0 is equal to

A0 =




0 −1 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 0 0 −1 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 −1
0 0 0 0 . . . 1 0
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and F : Rn −→ Rn is given by

F (x) = Ax+ φ(kTx)b,

with A ∈ Mn(R), k, b ∈ Rn\{0} and φ : R −→ R is the piecewise linear
function

(2) φ(x1) =





−1 if x1 ∈ (−∞,−1),
x1 if x1 ∈ [−1, 1],
1 if x1 ∈ (1,∞),

where x = (x1, . . . , xn)T . The independent variable is denoted by t, vectors
of Rn are column vectors, and kT denotes a transposed vector.

For ε = 0 system (1) becomes

(3) ẋ1 = −x2, ẋ2 = x1, . . . , ẋn−1 = −xn, ẋn = xn−1.

We note that the origin of (3) is a global isochronous center, i.e. all its
orbits different from the origin are periodic with the same period 2π. A
limit cycle of a differential system is an isolated periodic orbit in the set of
all periodic orbits of the system. The Poincaré map (or equivalently, the
displacement map) is a suitable tool for studying limit cycles of autonomous
systems (detailed explanations can be found in [6] or [8]; see also section 3).
We recall that a limit cycle of a system corresponds to an isolated zero of
the displacement function.

We must mention that there are many papes studying the bifurcation of
limit cycles from the periodic orbits of a center, but almost all of them per-
turb a 2–dimensional center, see for instance the book [7] and the references
quoted there. Of course, there are papers dedicated to perturb centers of
dimension > 2, but not too much. Later on we shall comment some of those
papers.

The limit cycles of system (1) for ε ̸= 0 sufficiently small that we shall
study will be the ones bifurcating from the periodic orbits of th n–dimensional
center (3) (i.e. of system (1) with ε = 0). As we shall see later on this study
has been made for n = 2, 4. Here we shall do it for n ≥ 6 even. Our main
result can be stated as follows.

Theorem 1. For all n ≥ 6 even at most (4n−6)n/2−1 limit cycles of system
(1) with ε ̸= 0 sufficiently small can bifurcate from the periodic orbits of the
n–dimensional center (3), up to first–order expansion of the displacement
function of system (1) with respect to the small parameter ε.

Theorem 1 will be proved in section 5.
In section 2 we shall present the scheme of the proof of Theorem 1, mainly

based in four lemmas.
We emphasize that the bifurcation from ε = 0 to ε ̸= 0 in Theorem 1

takes place for ε > 0 and for ε < 0 sufficiently small, i.e. on both sides of
the value ε = 0. We remark that in a Hopf bifurcation the limit cycle only
appears on one side of the bifurcation value of the parameter, but in our
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case in which the limit cycles bifurcate from periodic orbits of the period
annulus of a center they appear in both sides of ε = 0.

The proof of Theorem 1 is based on the first–order averaging method.
We will present this method in section 3, in the form obtained in [1]. The
advantage of this result is that the smoothness assumptions for the vector
field of the differential system are minimal. In particular, it can be applied
to piecewise linear differential systems, which are not C2 (not even C1), as
it is required in its classical version, see for instance, Theorem 11.5 of [14].
This non–differential application of the averaging method to control systems
was used for the first time in [2]. This method has been used frequently for
computing periodic orbits; see for instance [4, 11]. From the paper [3] we
can study the stability of the limit cycles of Theorem 1; for more details see
remark 16.

Reference [9] can be seen for a theoretical discussion about suitable trans-
formations of high dimensional differential systems which are small pertur-
bations of a center, into the standard form for averaging. The general idea is
to relate this change of variables with the first integrals of the unperturbed
center.

We would like to add some comments related to our approach to the
problem of counting the limit cycles of piecewise linear differential systems.
We have chosen here to study bifurcation with respect to a small parame-
ter from the periodic orbits of a center, up to first-order expansion of the
displacement map. For some values of the coefficients, this order is suffi-
cient for finding the exact number of limit cycles. But in some cases the
first-order expansion of the displacement map can be identically zero, then
a higher order averaging theory is needed. The study can be done by using
second-, third-, . . . order averaging theory. A key point in these studies is
the relation between the averaging theory and the displacement map due to
the fact that the displacement map of a piecewise linear differential system
is analytic in a neighborhood of a limit cycle.

2. Scheme of the proof of Theorem 1

First in Lemma 2 we shall reduce the n parameters of the vector b in the
definition of the function F (x) to one.

Lemma 2. By a linear change of variables system (1) can be transformed
into the system

(4) ẋ = A0x+ εAx+ εφ(x1)b,

where A ∈ Mn(R) is an arbitrary matrix and b = (b1, . . . , bn) = el for some
l = 1, 3, . . . , n− 1, where el is the l–th vector of the canonical basis of Rn.

The proof of Theorem 1 uses the averaging theory. One of the main
difficulties for applying this theory is to write the differential system that we
want to study in the normal form of the averaging theory. For our differential
system (1) Lemma 3 provides the change of variables which writes system
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(1) in the normal form of the averaging theory. The change of variables of
Lemma 3 is defined using the first integrals of system (1) with ε = 0.

Lemma 3. Changing the variables (x1, x2, . . . , xn) to (θ, r, θ1, r1, . . . , θ(n/2−1),
r(n/2−1)) by using

x1 = r cos θ, x2 = r sin θ,

x3 = r1 cos(θ + θ1), x4 = r1 sin(θ + θ1),

...

xn−1 = r(n/2−1) cos(θ + θ(n/2−1)), xn = r(n/2−1) sin(θ + θ(n/2−1)),

system (4) is transformed into a system of the form

(5)

dr

dθ
= εH1(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) +O(ε2),

dr1
dθ

= εH2(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) +O(ε2),

dθ1
dθ

= εH3(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) +O(ε2),

...
dr(n/2−1)

dθ
= εHn−2(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) +O(ε2),

dθ(n/2−1)

dθ
= εHn−1(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) +O(ε2).

where
H1 = cos θF1 + sin θF2,

Hj = cos(θ + θ j
2
)Fj+1 + sin(θ + θ j

2
)Fj+2,

Hj+1 = −1

r
cos θF2 +

1

r
sin θF1 +

1

r j
2

cos(θ + θ j
2
)Fj+2 − 1

r j
2

sin(θ + θ j
2
)Fj+1,

for j = 2, 4, . . . , n− 2, and for i = 1, 2, . . . , n we have that Fi = (ai1 cos θ +

ai2 sin θ)r+

n
2
+1∑

l=3

(
ai(2l−3) cos(θ+θl−2)+ai(2l−2) sin(θ+θl−2)

)
rl−2+φ(r cos θ)bi.

We take ε0 sufficiently small, m arbitrarily large and

Dm =

{
(r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) ∈

( 1

m
,m

)
×

[
S1 ×

( 1

m
,m

)]n
2

−1
}
.

Then the vector field of system (5) is well defined and continuous on S1 ×
Dm×(−ε0, ε0). Moreover the system is 2π-periodic with respect to variable θ
and locally Lipschitz with respect to variables (r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)).

We will apply the averaging theory stated in Theorem 6 (see Section 3)
to system (5). Our next step is to find the corresponding averaged function
(8). We will denote it by h : Dm → Rn−1, h = (h1, . . . , hn−1)

T .
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Lemma 4. The components of the averaged function h are given by

h1 = c1r +

n
2
+1∑

l=3

(
c1,(2l−4) cos θl−2 + c1,(2l−3) sin θl−2

)
rl−2 + b1I1(r),

(6)
hj = (cj cos θ j

2
+ c(j+1) sin θ j

2
)r +

n
2
+1∑

l=3

(
cj,(2l−4) cos(θ j

2
− θl−2) + cj,(2l−3) sin(θ j

2
− θl−2)

)
rl−2 +

bj+1 cos θ j
2
I1(r),

hj+1 = c+

n
2
+1∑

l=3

(
c1,(2l−3) cos θl−2 − c1,(2l−4) sin θl−2

)rl−2

r
+

(
c(j+1) cos θ j

2
− cj sin θ j

2

) r

r j
2

+

n
2
+1∑

l=3

(
cj,(2l−3) cos(θ j

2
− θl−2) − cj,(2l−4) sin(θ j

2
− θl−2)

)rl−2

r j
2

−

bj+1

r j
2

sin θ j
2
I1(r),

for j = 2, 4, . . . , n− 2, where the coefficients c′s are given by

c = (a12 − a21)π, c1 = (a11 + a22)π,

cj = (a(j+1)1 + a(j+2)2)π, c(j+1) = (a(j+2)1 − a(j+1)2)π,

c1,(2l−4) = (a1(2l−3) + a2(2l−2))π, c1,(2l−3) = (a1(2l−2) − a2(2l−3))π,

cj,(2l−4) = (a(j+1)(2l−3) + a(j+2)(2l−2))π,

cj,(2l−3) = (a(j+2)(2l−3) − a(j+1)(2l−2))π,

for l = 3, . . . , n/2+1, and the coefficients ars are the elements of the matrix
A of Lemma 2.

Lemmas 2, 3 and 4 are proved in Section 4.

Let f : D −→ Rn be a C1 function, with f(a) = 0, where D is an open
subset of Rn and a ∈ D. The point a is a simple zero of f if the Jacobian
Jf (a) of f at a is not zero.

The following result is a key point for proving Theorem 1.

Lemma 5. From each periodic orbit of the differential system (3), with
n ≥ 2 even, which corresponds to a simple zero in Dm of the function
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h = (h1, . . . , hn−1) given in (6), a branch of limit cycles bifurcates for the
differential system (4).

In [10] the authors studied the bifurcation of limit cycles from a two-
dimensional center inside Rn. In this case they proved that the maximum
number of limit cycles that can bifurcate from the periodic orbits of the
linear differential center is 1, up to first-order expansion of the displacement
function of the perturbed system with respect to the small parameter ε.

The main result of [2] states that for n = 4 at most three limit cycles of
the piecewise linear differential system (1) bifurcate from the periodic orbits
of system (3), up to first-order expansion of the displacement function of
(1) with respect to the small parameter ε. Moreover, this upper bound is
reached.

In [5] we study the bifurcation of limit cycles from the periodic orbits of
a 2−dimensional and 4−dimensional linear center in Rn perturbed inside a
class of discontinuous piecewise linear differential systems.

Now for n ≥ 6 it is very difficult to obtain the exact number of limit
cycles of system (1) that bifurcate from the periodic orbits of system (3).
Thus the study of the zeros of the averaged function h = (h1, . . . , hn−1) for
n ≥ 6 becomes very difficult with respect to the cases n = 2, 4. So for n ≥ 6
we can only provide the upper bound given in Theorem 1 for the number of
limit cycles that can bifurcate from the periodic orbits of system (3).

The proof of Lemma 5 and Theorem 1 will be the subject of sections 4
and 5 respectively.

3. First-Order Averaging Method

The aim of this section is to present the first-order averaging method
as obtained in [1]. Differentiability of the vector field is not needed. The
specific conditions for the existence of a simple isolated zero of the averaged
function are given in terms of the Brouwer degree. In fact, the Brouwer
degree theory is the key point in the proof of this theorem. We remind here
that continuity of some finite dimensional function is a sufficient condition
for the existence of its Brouwer degree (see [12] for precise definitions).

Theorem 6. We consider the following differential system

(7) ẋ(t) = εH(t, x) + ε2R(t, x, ε),

where H : R × D −→ Rn, R : R × D × (−εf , εf ) −→ Rn are continuous
functions, T-periodic in the first variable, and D is an open subset of Rn.
We define h : D −→ Rn as

(8) h(z) =

∫ T

0
H(s, z)ds,

and assume that:

(i) H and R are locally Lipschitz with respect to x;
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(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a such
that h(z) ̸= 0 for all z ∈ V \{a} and dB(h, V, 0) ̸= 0 (here dB(h, V, 0)
denote the Brouwer degree of h at 0).

Then, for |ε| > 0 sufficiently small, there exists an isolated T-periodic solu-
tion ψ(., ε) of system (7) such that ψ(0, ε) → a as ε → 0.

Here we will need some facts from the proof of Theorem 6. Hypothesis
(i) assures the existence and uniqueness of the solution of each initial value
problem on the interval [0, T ]. Hence, for each z ∈ D, it is possible to
denote by x(., z, ε) the solution of (7) with the initial value x(0, z, ε) = z.
We consider also the displacement function ζ : D× (−εf , εf ) −→ Rn defined
by

ζ(z, ε) =

∫ T

0
[εH(t, x(t, z, ε)) + ε2R(t, x(t, z, ε), ε)]dt.

From the proof of Theorem 6 we extract the following facts.

Remark 7. For every z ∈ D the following relation holds

x(T, z, ε) − x(0, z, ε) = ζ(z, ε).

The function ζ can be written in the form

ζ(z, ε) = εh(z) + ε2O(1),

where h is given by (8) and the symbol O(1) denotes a bounded function on
every compact subset of D × (−εf , εf ). Moreover, for |ε| sufficiently small,
z = ψ(0, ε) is an isolated zero of ζ(., ε).

Note that from Remark 7 it follows that a zero z of the displacement
function ζ(z, ε) at time T provides initial conditions for a periodic orbit
of the system of period T . We also remark that h(z) is the displacement
function up to terms of order ε. Consequently the zeros of h(z), when h(z)
is not identically zero, also provides periodic orbits of period T .

For a given systems there is the possibility that the function ζ is not
globally differentiable, but the function h is C1 as we shall see in Section 5.
In fact, only differentiability in some neighborhood of a fixed isolated zero of
h could be enough. When this is the case, one can use the following remark
in order to verify the hypothesis (ii) of Theorem 6.

Remark 8. Let h : D −→ Rn be a C1 function, with h(a) = 0, where D
is an open subset of Rn and a ∈ D. Whenever a is a simple zero of h then
there exists a neighborhood V of a such that h(z) ̸= 0 for all z ∈ V \{a} and
dB(h, V, a) ∈ {−1, 1}.

4. Proof of Lemma 5

In this section we prove Lemmas 2, 3 and 4 and we give some preliminary
results necessary for the proof of Lemma 5 and Theorem 1.
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Proof of Lemma 2. Since the linear change of variables x = Jy, with J an
invertible matrix, transforms system (1) into

ẏ = J−1A0Jy + εJ−1AJy + εφ(kTJy)J−1b,

we have to find J such that

(9) J−1A0J = A1,

(10) kT = eT1 J
−1,

(11) J−1b = b.

We denote by zij , for i, j = 1, . . . , n the elements of the matrix J−1. Using
equations (9) and (10), easy computations show that J−1 is given by




k1 k2 k3 k4 . . . kn−1 kn

−k2 k1 −k4 k3 . . . −kn kn−1

z31 z32 z33 z34 . . . z3(n−1) z3n

−z32 z31 −z34 z33 . . . −z3n z3(n−1)
...

...
...

...
. . .

...
...

z(n−1)1 z(n−1)2 z(n−1)3 z(n−1)4 . . . z(n−1)(n−1) z(n−1)n

−z(n−1)2 z(n−1)1 −z(n−1)4 z(n−1)3 . . . −z(n−1)n z(n−1)(n−1)




.

If we take zrr = 1, for r = 3, 5, . . . , n − 1, zij = 0 (of course, except for
the elements mentioned previously), k1 = b1/(b

2
1 + b22) and k2 = b2/(b

2
1 + b22)

in the expression of J−1, then equation (11) is satisfied with b = e1. In this
case we obtain a matrix J−1 whose determinant is k2

1 + k2
2.

On the other hand, if we take z31 = z53 = · · · = zl(l−2) = 1, zrr = 1,
for r = l + 2, l + 4, . . . , n − 1, z1(l−2) = k(l−2) = 1, z1(l−1) = k(l−1) = 0,

kl = −bl/(b2l + b2(l+1)), k(l+1) = −b(l+1)/(b
2
l + b2(l+1)) and zij = 0 for the

remaining elements, in the expression of J−1, then equation (11) is satisfied
with b = el, where l = 3, 5, . . . , n − 1. In this case we obtain for each
l = 3, 5, . . . , n− 1 a matrix J−1 whose determinant is −(k2

l + k2
(l+1)).

We recall that we work in the hypotheses that neither k, nor b is the
null vector. So at least one of the above statements (i.e. when b = el for
some l = 1, 3, . . . , n− 1) is well defined. Moreover at least one of the above
expressions for the determinant of J−1 is nonzero. Hence there exists the
change of variables x = Jy. This completes the proof of Lemma 2. �

Now we prove Lemma 3.
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Proof of Lemma 3. System (4) in the variables (θ, r, θ1, r1, . . . , θ(n/2−1),
r(n/2−1)) becomes

θ̇ = 1 +
ε

r
(cos θF2 − sin θF1),

ṙ = εH1(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)),

ṙ1 = εH2(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)),

θ̇1 = εH3(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)),

...

ṙ(n/2−1) = εHn−2(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)),

θ̇(n/2−1) = εHn−1(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)).

We note that for |ε| sufficiently small θ̇(t) > 0 for each t when (θ, r, θ1,
r1, . . . , θ(n/2−1), r(n/2−1)) ∈ S1 ×Dm. Now we eliminate the variable t in the
above system by considering θ as the new independent variable. It is easy to
see that the right-hand side of the new system is well defined and continuous
on S1×Dm×(−ε0, ε0), it is 2π-periodic with respect to the independent vari-
able θ and locally Lipschitz with respect to (r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)).
Form (5) is obtained after an expansion with respect to the small parameter
ε. �

Our next step is to prove Lemma 4. In order to calculate the expression
of h given by (6), we will use the following formulas
∫ 2π

0
cos2 θdθ = π,

∫ 2π

0
sin2 θdθ = π,

∫ 2π

0
cos(θ + s) sin(θ + s)dθ = 0,

∫ 2π

0
cos θ cos(θ + s)dθ = π cos s,

∫ 2π

0
cos θ sin(θ + s)dθ = π sin s,

∫ 2π

0
sin θ cos(θ + s)dθ = −π sin s,

∫ 2π

0
sin θ sin(θ + s)dθ = π cos s,

∫ 2π

0
cos2(θ + s)dθ = π,

∫ 2π

0
sin2(θ + s)dθ = π,

∫ 2π

0
cos θ sin θdθ = 0,

∫ 2π

0
cos(θ + s1) sin(θ + s2)dθ = π sin(s2 − s1),

∫ 2π

0
sin(θ + s1) cos(θ + s2)dθ = −π sin(s2 − s1),

∫ 2π

0
sin(θ + s1) sin(θ + s2)dθ =

∫ 2π

0
cos(θ + s1) cos(θ + s2)dθ =

= π cos(s2 − s1),

for all s, s1, s2 ∈ R.
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For each r > 0 we define

I1(r) =

∫ 2π

0
φ(r cos θ) cos θdθ,

I2(r) =

∫ 2π

0
φ(r cos θ) sin θdθ,

where φ is the piecewise linear function given by (2).
The next lemma is proved in [2].

Lemma 9. The integrals I1 and I2 satisfy

I2(r) = 0 for all r > 0,

and

(12) I1(r) =

{
πr if 0 < r ≤ 1,

πr +
2

r

√
r2 − 1 − 2r arctan

(√
r2 − 1

)
if r > 1.

Proof of Lemma 4. We must compute

(13) hj(r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) =

∫ 2π

0

Hj(θ, r, θ1, r1, . . . , θ(n/2−1), r(n/2−1))dθ,

for j = 1, . . . , n− 1. Using Lemma 9, from (13) we obtain the expressions
given in (6) for the components of the function h. This ends the proof of
Lemma 4. �

For each point (r∗, θ∗
1, r

∗
1, . . . , θ

∗
(n/2−1), r

∗
(n/2−1)) ∈ Dm of system (6) we

have a periodic orbit of system (3), because

r =
√
x2

1 + x2
2, ri =

√
x2

(2i+1) + x2
(2i+2), θi = arctan

x(2i+2)

x(2i+1)
− arctan

x2

x1
,

for i = 1, . . . , n/2 − 1 are first integrals of system (3).
Of course any isolated 2π-periodic solution of (5) with |ε| ≠ 0 sufficiently

small, corresponds to a limit cycle of (4).

Proof of Lemma 5. Lemma 3 states that the hypotheses of Theorem 6 are
fulfilled for system (5), where the function h is given by (6). Using also
Remark 8 we conclude that for |ε| sufficiently small and for each simple
zero (r∗, θ∗

1, r
∗
1, . . . , θ

∗
(n/2−1), r

∗
(n/2−1)) ∈ Dm of h, there exists an isolated

2π-periodic solution φ(., ε) of system (5) such that φ(0, ε) → (r∗, θ∗
1, r

∗
1, . . .,

θ∗
(n/2−1), r

∗
(n/2−1)) as ε → 0. In short we have proved the Theorem 5. �

For a proof of the next result see Lemma 3.4 of [2].

Lemma 10. The displacement function of system (4) for the transversal
section x2 = 0, written in the coordinates of Lemma 3, has the form

εh(r, θ1, r1, . . . , θ(n/2−1), r(n/2−1)) +O(ε2).
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5. Proof of Theorem 1

The proof of Theorem 1 will be the subject of this section. We note that
in order to find the zeros of h in Dm it is sufficient to look for them in

(0,∞) ×
[
S1 × (0,∞)

]n
2

−1
. This is due to the fact that m can be chosen

arbitrarily large, and h, as well as the transformation of Lemma 3 are 2π-
periodic with respect to the variables θ1, . . . , θ(n/2−1).

Before proving Theorem 1 for arbitrary n ≥ 6, we shall provide a more
detailed proof for the particular case n = 6.

Proposition 11. Consider system (6) with n = 6. Let h : (0,∞) × [S1 ×
(0,∞)]2 → R5 be the function h = (h1, h2, h3, h4, h5) whose components are
given by (6). Then

(i) h is of class C1;
(ii) the maximum number of isolated zeros of h in (0,∞)× [S1 × (0,∞)]2

is 324.

5.1. Proof of Proposition 11. Function h is a composition of some ele-
mentary functions and the function I1. A direct study of I1 shows that it is
of class C1 on (0,∞). Thus statement (i) holds. We will divide the proof of
the statement (ii) into Lemmas 13, 14 and 15.

The following result will be needed later on. For a proof see Lemma 4.2
of [2].

Lemma 12. We consider the equation

(14) I1(r) = λr, r > 0,

where I1 is given by (12) and λ is a real parameter. Then we have the
following situations.

(a) If 0 < λ < π, then (14) has a unique solution r∗ > 1.

(b) If λ = π, then (14) has the interval (0, 1] as the set of solutions.

(c) If λ > π or λ ≤ 0, then (14) has no solution.
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Our next goal is to find zeros of h = 0 when n = 6. The components of
h are given by
(15)
h1 = c1r + (c1,2 cos θ1 + c1,3 sin θ1)r1 +

+ (c1,4 cos θ2 + c1,5 sin θ2)r2 + b1I1(r)

h2 = (c2 cos θ1 + c3 sin θ1)r + c2,2r1 +

(c2,4 cos(θ1 − θ2) + c2,5 sin(θ1 − θ2))r2 + b3 cos θ1I1(r),

h3 = (c+ c2,3) + (c1,3 cos θ1 − c1,2 sin θ1)
r1
r

+

(c1,5 cos θ2 − c1,4 sin θ2)
r2
r

+ (c3 cos θ1 − c2 sin θ1)
r

r1
+

(c2,5 cos(θ1 − θ2) − c2,4 sin(θ1 − θ2))
r2
r1

− b3
r1

sin θ1I1(r),

h4 = (c4 cos θ2 + c5 sin θ2)r + (c4,2 cos(θ2 − θ1) + c4,3 sin(θ2 − θ1))r1 +

c4,4r2 + b5 cos θ2I1(r),

h5 = (c+ c4,5) + (c1,3 cos θ1 − c1,2 sin θ1)
r1
r

+

(c1,5 cos θ2 − c1,4 sin θ2)
r2
r

+ (c5 cos θ2 − c4 sin θ2)
r

r2
+

(c4,3 cos(θ2 − θ1) − c4,2 sin(θ2 − θ1))
r1
r2

− b5
r2

sin θ2I1(r).

By Lemma 2 we get (b1, b3, b5) equal to (1, 0, 0) or (0, 1, 0) or (0, 0, 1).
Each one of the three next lemmas make reference to one of these cases.

Lemma 13. Consider (b1, b3, b5) = (1, 0, 0). So system (15) can have at
most 324 zeros.

Proof. Using h2 = h4 = 0 we obtain

r1 =
f1(θ1, θ2)

g1(θ1, θ2)
r and r2 =

f2(θ1, θ2)

g1(θ1, θ2)
r,

and we get r ̸= 0. Consider r̃1 = g1(θ1, θ2)
2r1/r and r̃2 = g1(θ1, θ2)

2r2/r.
With the notations cos θ1 = x, sin θ1 = z, cos θ2 = y, sin θ2 = w, multiply-

ing h3 = 0 by r̃1 and h5 = 0 by r̃2, we obtain a system with four equations
and four unknowns (x, y, z, w) given by

(16)

h̃3 = 0

h̃5 = 0
x2 + z2 − 1 = 0
y2 + w2 − 1 = 0.

Using the software Mathematica we get that the two first equations of (16)
are polynomial functions of degree 9. By Bezout’s Theorem (see [13]), the
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polynomial system (16) has at most 324 solutions. Using the first equa-
tion of (15) and Lemma 12, to each solution (x∗, y∗, z∗, w∗) ∈ (−1, 1) ×
(−1, 1) × (−1, 1) × (−1, 1) corresponds, at most, one solution r∗ of (14) and
consequently, one solution r∗

1 and one solution r∗
2. �

Lemma 14. Consider (b1, b3, b5) = (0, 1, 0). So system (15) can have at
most 224 zeros.

Proof. Using h1 = h4 = 0 we obtain

r1 =
f3(θ1, θ2)

g2(θ1, θ2)
r and r2 =

f4(θ1, θ2)

g2(θ1, θ2)
r,

and we get r ̸= 0. Consider r̃1 = g2(θ1, θ2)
2r1/r and r̃2 = g2(θ1, θ2)

2r2/r.
With the notations cos θ1 = x, sin θ1 = z, cos θ2 = y, sin θ2 = w, mul-

tiplying h5 = 0 by r̃2 and considering h̃2 = g2(θ1, θ2)
2zh2/r + r̃1xh3, we

obtain a system with four equations and four unknowns (x, y, z, w) given by

(17)

h̃2 = 0

h̃5 = 0
x2 + z2 − 1 = 0
y2 + w2 − 1 = 0.

Using the software Mathematica we get that the first and the second equa-
tions of (17) are polynomial functions of degree 8 and 7 respectively. By
Bezout’s Theorem, the polynomial system (17) has at most 224 solutions.
Using the second equation of (15) and Lemma 12, to each solution (x∗, y∗, z∗,
w∗) ∈ (−1, 1)×(−1, 1)×(−1, 1)×(−1, 1) corresponds, at most, one solution
r∗ of (14) and consequently, one solution r∗

1 and one solution r∗
2. �

Lemma 15. Consider (b1, b3, b5) = (0, 0, 1). So system (15) can have at
most 224 zeros.

Proof. Using h1 = h2 = 0 we obtain

r1 =
f5(θ1, θ2)

g3(θ1, θ2)
r and r2 =

f6(θ1, θ2)

g3(θ1, θ2)
r,

and we get r ̸= 0. Consider r̃1 = g3(θ1, θ2)
2r1/r and r̃2 = g3(θ1, θ2)

2r2/r.
With the notations cos θ1 = x, sin θ1 = z, cos θ2 = y, sin θ2 = w, mul-

tiplying h3 = 0 by r̃1 and considering h̃4 = g3(θ1, θ2)
2wh4/r + r̃2yh5, we

obtain a system with four equations and four unknowns (x, y, z, w) given by

(18)

h̃3 = 0

h̃4 = 0
x2 + z2 − 1 = 0
y2 + w2 − 1 = 0.

Using the software Mathematica we get that the first and the second equa-
tions of (18) are polynomial functions of degree 7 and 8 respectively. By
Bezout’s Theorem, the polynomial system (18) has at most 224 solutions.
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Using the fourth equation of (15) and Lemma 12, to each solution (x∗, y∗, z∗,
w∗) ∈ (−1, 1)×(−1, 1)×(−1, 1)×(−1, 1) corresponds, at most, one solution
r∗ of (14) and consequently, one solution r∗

1 and one solution r∗
2. �

5.2. Proof of Theorem 1 for the general case. As for the case n = 6
we note that the function h is a composition of some elementary functions
and the C1 function I1.

Proof of Theorem 1. Consider n ≥ 6 and b = e1. The subsystem, obtained
from (6), formed by all the equations hj = 0, where j is even, is a (n/2 −
1) × (n/2 − 1) linear system in the variables ri, i = 1, . . . , n/2 − 1. By
Cramer’s Rule we get ri = ∆ri/∆n, where ∆n is the determinant of the
matriz (Pji) with Pji = Pji(yj/2, wj/2, yi, wi), a polynomial of degree 2,
being the coefficient of ri in hj and ∆ri is equal to ∆n replacing the column
i by the vector (Bjr), where −Bj is the coefficient of r in hj . An easy
computation shows that ri = rfi/∆n where fi is an appropriated function.

It is easy to see that, for each n, deg ∆n = (deg ∆n−2)+ 2 = n− 2, where
deg p denotes the degree of the polynomial p (note that ∆n has n/2 − 1
rows).

Multiplying hj+1 by (rj/2(∆n)2)/r, we obtain a polynomial of degree 2n−
3 in the variables (y1, w1, . . . , yn/2−1, wn/2−1) where yk = cos θk and wk =
sin θk for k = 1, . . . , n/2−1. By Bezout’s Theorem, the subsystem, obtained
of (6), formed by all the equations hj+1 = 0, where j+1 ≥ 3 is odd, together

with the equations y2
k +w2

k − 1 = 0 for k = 1, . . . , n/2 − 1 has (4n− 6)n/2−1

solutions (y∗
1, w

∗
1, . . . , y

∗
n/2−1, w

∗
n/2−1). Using the first equation of (6) and

Lemma 12, for each one of the previous solutions, we obtain at most one r∗,
and consequently at most one r∗

i , i = 1, . . . , n/2 − 1.

If b = ej we replace hj by h1 in the evaluation to obtain ri, i = 1, . . . , n/2−
1. As consequence we apply the Bezout’s Theorem for polynomials of smaller
degree. So the number of solutions when b ̸= e1 is smaller. �
Remark 16. Using the main result of [3] the stability of the limit cycles
associated with the solution (r∗, θ∗

1, r
∗
1, . . . , θ

∗
(n/2−1), r

∗
(n/2−1)) is given by the

eigenvalues of the matrix

∂(h1, . . . , hn−1)

∂(r, θ1, r1, . . . , θ(n/2−1), r(n/2−1))

∣∣∣
(r,θ1,r1,...,θ(n/2−1),r(n/2−1))=(r∗,θ∗

1 ,r∗
1 ,...,θ∗

(n/2−1)
,r∗

(n/2−1)
)
.
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