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Abstract

Consider the planar ordinary differential equation ẋ = −y(1 − y)m, ẏ = x(1 − y)m,
where m is a positive integer number. We study the maximum number of zeroes of the
Abelian integral M that controls the limit cycles that bifurcate from the period annulus
of the origin when we perturb it with an arbitrary polynomial vector field. One of the key
points of our approach is that we obtain a simple expression of M based on some successive
reductions of the integrals appearing during the procedure.
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1 Introduction and main result

Consider the family of planar systems

{
ẋ = −yC(x, y) + εP (x, y),
ẏ = xC(x, y) + εQ(x, y),

(1)
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where P,Q and C are real polynomials, C(0, 0) 6= 0, and ε is a small real parameter. It is well
known that the number of zeroes of the Abelian integral

M(r) =

∫

γr

Q(x, y) dx− P (x, y) dy

C(x, y)
, (2)

where γr = {(x, y) : x2 + y2 = r2}, controls the number of limit cycles of (1) that bifurcate
from the periodic orbits of the unperturbed system (1) with ε = 0, see [2]. Notice that since the
sets γr are circles, the Abelian integral M(r) is simpler that in the general weak Hilbert’s 16th
Problem, see [5].

The problem of finding upper and lower bounds for the number of zeroes of M(r), when P
and Q are arbitrary polynomials of a given degree, say n, and C is a particular polynomial, has
been faced in several recent papers. The cases where the curve {C(x, y) = 0} is one line; two
parallel lines; two orthogonal lines; k lines, parallel to two orthogonal directions; or k isolated
points are some of these situations, see [1, 3, 4, 6, 7], respectively. Notice that none of these
algebraic curves has a multiple factor.

As far as we know the only studied case having a polynomial C with multiple factors is
considered in [8]. In that paper the authors take C(x, y) = (1 − y)m and prove that an upper
bound for the number of zeroes of M(r) on its domain of definition, (0, 1), is n+m−1 and that
this bound is reached when m = 1. This bound coincides with the one obtained in [6] for m = 1.

Our main result improves the upper bound given in [8] and provides the optimal upper bound
for the zeroes of M(r). We prove

Theorem 1.1 Consider

M(r) =

∫

γr

Q(x, y) dx− P (x, y) dy

(1− y)m
, (3)

where γr = {(x, y) | x2 + y2 = r2}, r ∈ (0, 1) and P and Q polynomials of degree n. Then the
maximum number of zeroes of M(r), taking into account their multiplicities, is

[
m+n
2

]
− 1 when

n < m− 1 and n when n ≥ m− 1. Moreover, in both cases the corresponding upper bounds are
reached for suitable P and Q.

The approach of [8] is mainly based on the explicit computation of M(r). On the other hand
our point of view allows to approach to the expression of M(r) keeping most of the time some
simple “basic” integrals that we do not need to compute until the final step.

More concretely, first we prove that M(r) can be given as

M(r) =

n+1∑

j=0

αm−jIm−j(r) + U(r2)I1(r),

for some suitable constants αi and some polynomial U, where

Ik(r) :=

∫ 2π

0

1

(1− r sin θ)k
dθ, r ∈ [0, 1) and k ∈ Z, (4)
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see Theorem 2.3. Afterwards we show that the integrals Ik(r) can be obtained in terms of
rational functions of r2 and

I1(r) =
2π√
1− r2

,

see Proposition 2.4. Both results together give that

M(r) =
V (r2)

(1− r2)m−1/2
+W (r2),

for some new polynomials V and W of a controlled degree. From this last expression the proof
of the upper bound follows easily.

This approach for the computation of M(r) is also crucial to know how to choose P and Q
such that the maximum number of zeroes of M can be obtained.

Notice also that Theorem 1.1 proves that if n is big enough and m ≥ 1 the maximum number
of limit cycles bifurcating from the periodic orbits γr, r ∈ (0, 1), for the system

{
ẋ = −y(1− y)m + ε P (x, y),

ẏ = x(1− y)m + εQ(x, y),
(5)

where P (x, y), Q(x, y) are polynomials of degree n is independent of m. Hence to obtain systems
with many limit cycles it seems that it is not a good idea to consider polynomials C with multiple
factors in (1).

2 Preliminary results

This section contains all the preliminary computations to express the Abelian integral M(r)
given in (3) in terms of polynomials and the family of functions Ik(r), k ∈ Z introduced in (4)
of the previous section.

Lemma 2.1 Let RN(x) be a polynomial of degree N , then for r ∈ [0, 1) and m ∈ N it holds that

∫ 2π

0

RN (r sin θ)

(1− r sin θ)m
dθ =

N∑

k=0

αm−kIm−k(r),

for some αj ∈ R.

Proof. Notice that for k ≥ 0,

∫ 2π

0

rk sink θ

(1− r sin θ)m
dθ =

∫ 2π

0

(−(1− r sin θ) + 1)k

(1− r sin θ)m
dθ =

k∑

j=0

(
k

j

)
(−1)j

∫ 2π

0

(1− r sin θ)j

(1− r sin θ)m
dθ =

k∑

j=0

(
k

j

)
(−1)jIm−j(r). (6)
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The result follows by applying the above formula to each term of

RN(r sin θ) =

N∑

k=0

rk(r sin θ)
k.

�

Lemma 2.2 Let Ik be the functions introduced in (4). Then for 1 6= k ∈ Z,

r2Ik(r) = Ik(r) +
3− 2k

k − 1
Ik−1(r) +

k − 2

k − 1
Ik−2(r). (7)

Proof. Notice that

Ik−1(r) =

∫ 2π

0

1− r sin θ

(1− r sin θ)k
dθ = Ik(r)− r

∫ 2π

0

sin θ

(1− r sin θ)k
dθ. (8)

Using integration by parts in the last integral we get

r

∫ 2π

0

sin θ

(1− r sin θ)k
dθ =

[
− r cos θ

(1− r sin θ)k

]2π

0

+

∫ 2π

0

kr2 cos2 θ

(1− r sin θ)k+1
dθ

=k

∫ 2π

0

r2 − r2 sin2 θ

(1− r sin θ)k+1
dθ

=kr2Ik+1(r)− k

∫ 2π

0

(−1 + 1− r sin θ)2

(1− r sin θ)k+1
dθ

=kr2Ik+1(r)− k(Ik+1(r)− 2Ik(r) + Ik−1(r)).

Substituting it in (8), we find

r2Ik+1(r) = Ik+1(r) +
1− 2k

k
Ik(r) +

k − 1

k
Ik−1(r).

Replacing k by k − 1 we obtain the formula of the statement. �

Theorem 2.3 Let M(r) be the Abelian integral given in (3) associated to system (5). Then, for
r ∈ [0, 1),

M(r) =
n+1∑

j=0

αm−jIm−j(r) +

{
0, when n < m,

U[n−m+2
2 ](r

2)I1(r), when n ≥ m,
(9)

where αi are suitable real constants and Uk is a polynomial of degree k. Moreover M(0) = 0.
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Proof. Parameterizing the curve γr in polar coordinates, (x, y) = (r cos θ, y = r sin θ),
the integral M(r) writes as

M(r) =−
∫ 2π

0

Q(r cos θ, r sin θ) r sin θ + P (r cos θ, r sin θ) r cos θ

(1− r sin θ)m
dθ =

n+1∑

j=1

∫ 2π

0

Rj(cos θ, sin θ) r
j

(1− r sin θ)m
dθ =

n+1∑

j=1

∫ 2π

0

Sj(sin θ) r
j

(1− r sin θ)m
dθ, (10)

where Rj(x, y) denotes a homogeneous polynomial of degree j, Sj(x) denotes a polynomial of
degree j and in the last equality we have used that

∫ 2π

0

sinp θ cos2q+1 θ

(1− r sin θ)m
dθ =

∫ 2π

0

sinp θ(1− sin2 θ)q cos θ

(1− r sin θ)m
dθ = 0

and ∫ 2π

0

sinp θ cos2q θ

(1− r sin θ)m
dθ =

∫ 2π

0

sinp θ(1− sin2 θ)q

(1− r sin θ)m
dθ,

for any nonnegative integer numbers p and q. Moreover using the homogeneity of the polynomials
Rj we also know that the polynomials Sj in (10) are odd polynomials when j is odd and even
polynomials when j is even. That is, to fix the ideas,

n+1∑

j=1

Sj(sin θ)r
j =(s1,1 sin θ) r +

(
s2,0 + s2,2 sin

2 θ
)
r2 +

(
s3,1 sin θ + s3,3 sin

3 θ
)
r3

+
(
s4,0 + s4,2 sin

2 θ + s4,4 sin
4 θ

)
r4 + · · ·+ Sn+1(sin θ)r

n+1.

Notice that collecting the higher powers in sin θ for each term rj we define

(s1,1 sin θ)r + (s2,2 sin
2 θ)r2 + · · ·+ (si,i sin

i θ)ri =: Ti(r sin θ),

where Ti, for i = 1, . . . , n + 1, is a polynomial of degree i vanishing at the origin. Continuing
this process we obtain that

n+1∑

j=1

Sj(sin θ)r
j = Tn+1(r sin θ) + r2Tn−1(r sin θ) + · · ·+ r2[(n+1)/2]Tn−2[(n+1)/2]+1(r sin θ),

for some polynomials Tj . Hence

M(r) =
n+1∑

j=1

∫ 2π

0

Sj(sin θ) r
j

(1− r sin θ)m
dθ =

[(n+1)/2]∑

j=0

r2j
∫ 2π

0

Tn+1−2j(r sin θ)

(1− r sin θ)m
dθ

=

[(n+1)/2]∑

j=0

r2j
[
αj
mIm(r) + αj

m−1Im−1(r) + · · ·+ αj
m+2j−n−1Im+2j−n−1(r)

]
,
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where we have used Lemma 2.1 and αj
k are real constants.

Observe that from Lemma 2.2 we can transform each term

r2j
[
αj
mIm(r) + αj

m−1Im−1(r) + · · ·+ αj
m+2j−n−1Im+2j−n−1(r)

]

with j > 0 to another one of the form

r2j−2
[
βj−1
m Im(r) + · · ·+ βj−1

m+2j−n+1Im+2j−n+1(r)
]
+ δr2jαj

1I1(r),

for some real constants βj−1
ℓ and δ = 1 if 1 ∈ {m,m−1, . . . , m+2j−n−1} and δ = 0 otherwise.

Then by using reiteratively the above procedure we get that

M(r) = αmIm(r) + αm−1Im−1(r) + · · ·+ αm−n−1Im−n−1(r) + U[n−m+2
2 ](r

2)I1(r),

where αj are real constants and U[n−m+2
2 ] is a polynomial of degree

[
n−m+2

2

]
when n−m+2 > 0

or vanishes identically otherwise.
Notice that since the numerator of (10) is a polynomial that vanishes at r = 0 thenM(0) = 0.

�
Finally, next results gives the structure of the functions Ik(r).

Proposition 2.4 The functions (4) satisfy

Ik(r) =
1

(1− r2)k−
1
2

I1−k(r). (11)

Moreover,

Ik(r) =





Rk
[−k

2
]
(r2) k ≤ 0,

R1−k

[ k−1
2

]
(r2)

(1− r2)k−1/2
, k ≥ 1,

(12)

where Rj
ℓ are polynomials of (exact) degree ℓ.

Proof. It is easy to check that equality (11) is true for k = 0, 1. First we prove that it is
true for any k ≥ 2 by induction. Suppose that it is true for k and k + 1, that is

(1− r2)k−
1
2 Ik(r) = I1−k(r),

(1− r2)k+
1
2 Ik+1(r) = I−k(r).

(13)

We need to prove that
(1− r2)k+

3
2 Ik+2(r) = I−(k+1)(r). (14)
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Taking k + 2 instead of k in Lemma 2.2 we have that

(1− r2)Ik+2(r) =
2k + 1

k + 1
Ik+1(r)−

k

k + 1
Ik(r).

Then (14) writes as

(1− r2)k+
3
2 Ik+2(r) =

2k + 1

k + 1
(1− r2)k+

1
2 Ik+1(r)−

k

k + 1
(1− r2)k+

1
2 Ik(r).

By using the assumption (13) we find

(1− r2)k+
3
2 Ik+2(r) =

2k + 1

k + 1
I−k(r)−

k

k + 1
(1− r2)I1−k(r). (15)

Then, taking 1− k instead of k in Lemma 2.2 we get

(1− r2)I1−k(r) =
2k + 1

k
I−k(r)−

k + 1

k
I−(k+1)(r).

Substituting this last relation in (15) we obtain

(1− r2)k+
3
2 Ik+2(r) =

2k + 1

k + 1
I−k(r)−

k

k + 1

[
2k + 1

k
I−k(r)−

k + 1

k
I−(k+1)(r)

]
,

which gives (14) and so equality (11) for k ≥ 0 holds. Notice that, indeed, the proof also gives
the equality (11) for k < 0.

The second statement when k ≤ 0 is a direct consequence of the fact that we integrate
functions of θ that are polynomials in r. Moreover the coefficients with odd powers vanish by
symmetry. Finally the case k ≥ 1 follows from equality (4). �

Remark 2.5 Some explicit expressions of Ik(r) are:

I1(r) =
2π

(1− r2)1/2
, I2(r) =

2π

(1− r2)3/2
, I3(r) =

(r2 + 2)π

(1− r2)5/2
,

I4(r) =
(3r2 + 2)π

(1− r2)7/2
, I5(r) =

(3r4 + 24r2 + 8)π

4(1− r2)9/2
, I6(r) =

(15r4 + 40r2 + 8)π

4(1− r2)11/2

and

I0(r) = 2π, I−1(r) = 2π, I−2(r) = (r2 + 2)π,

I−3(r) = (3r2 + 2)π, I−4(r) =
(3r4 + 24r2 + 8)π

4
, I−5(r) =

(15r4 + 40r2 + 8)π

4
.
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Lemma 2.6 Consider the family of functions

F (x) = Ai(x) +Bj(x)(a− x)α,

defined on (−∞, a), where Ai and Bj are polynomials of degree i and j respectively and α 6∈ Z.
Then each non trivial function has at most i + j + 1 real zeroes, taking into account their
multiplicities. Moreover there exist polynomials Ai and Bj such that the corresponding function
has exactly this number of zeroes.

Proof. First we will prove that the maximum number of zeroes is i+ j + 1. Note that

d

dx
(Bj(x)(a− x)α) = B̃j(x)(a− x)α−1

for some polynomial B̃ also of degree j. Hence di+1

dxi+1F (x) = B̂j(x)(a − x)α−(i+1), for some

polynomial B̂j of degree j. This function has at most j zeroes in (−∞, a). Hence the result
follows by Rolle’s Theorem.

The lower bound is a consequence of the fact that the functions

1, x, x2, . . . , xi, (a− x)α, . . . , xj(a− x)α

are linearly independent because α 6∈ Z. �

3 Proof of Theorem 1.1

We consider the expression of M(r) given in Theorem 2.3. Before studying its number of zeroes
we will transform M into a simpler form. We start first with the case n < m − 1. For these
values of n and m we know that

M(r) =

n+1∑

j=0

αm−jIm−j(r)

and m− j ≥ 1 for j = 0, . . . , n+ 1. Then, from Proposition 2.4, we can write

M(r) =
n+1∑

j=0

αm−j

R
1−(m−j)

[m−j−1
2 ]

(r2)

(1− r2)m−j−1/2
=

n+1∑
j=0

αm−j(1− r2)jR
1−(m−j)

[m−j−1
2 ]

(r2)

(1− r2)m−1/2
.

As the numerator of the previous expression is a sum of polynomials in r2 of degree j+
[
m−j−1

2

]
=[

m+j−1
2

]
, j = 0, . . . , n + 1, the maximum number of zeroes of M(r) in [0, 1) is the total degree

of the numerator, that is
[
m+n
2

]
.
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Now we deal with the case n ≥ m− 1. From Theorem 2.3 and Proposition 2.4 we can write

M(r) =
m−1∑

j=0

αm−jIm−j(r) +
n+1∑

j=m

αm−jIm−j(r) + U[n−m+2
2 ](r

2)I1(r)

=

m−1∑

j=0

αm−j

R
1−(m−j)

[m−j−1
2 ]

(r2)

(1− r2)m−j−1/2
+

n+1∑

j=m

αm−jR
m−j

[ j−m
2 ]

(r2) + U[n−m+2
2 ](r

2)I1(r)

=

m−1∑
j=0

αm−j(1− r2)jR
1−(m−j)

[m−j−1
2 ]

(r2) + 2π(1− r2)m−1U[n−m+2
2 ](r

2)

(1− r2)m−1/2

+
n+1∑

j=m

αm−jR
m−j

[ j−m
2 ]

(r2) =
S[n+m

2 ](r
2)

(1− r2)m−1/2
+ T[n−m+1

2 ](r
2),

where Sj and Tj are given polynomials of degree j. Then, using Lemma 2.6, M(r) has at most[
n+m
2

]
+
[
n−m+1

2

]
+ 1 = n+ 1 zeroes in [0, 1).

Finally, by Theorem 2.3, for all n and m we know that M(0) = 0. Then M(r) has at most[
m+n
2

]
− 1 or n zeroes in (0, 1), taking into account their multiplicities, when n < m − 1 or

n ≥ m− 1, respectively.
Notice that, from the above proof, to show that the obtained upper bounds are realizable it

suffices to find polynomials P and Q, in (3), such that the coefficients of (9) are arbitrary with
the only restriction M(0) = 0. We will again split the study in the same two cases: n < m − 1
and n ≥ m− 1.

In the first case, consider P (x, y) = 0 and Q(x, y) = −
n∑

k=0

aky
k. Then

M(r) = −
∫ 2π

0

Q(r cos θ, r sin θ) r sin θ

(1− r sin θ)m
dθ =

n+1∑

k=1

∫ 2π

0

ak−1r
k sink θ

(1− r sin θ)m
dθ

=
n+1∑

k=1

ak−1

∫ 2π

0

rk sink θ

(1− r sin θ)m
dθ =

n+1∑

k=1

ak−1

k∑

j=0

(
k

j

)
(−1)jIm−j(r) =

n+1∑

j=0

ãm−jIm−j(r)

where we have used (6). Note that, choosing suitably constants ak, the values ãk are arbitrary
with the only restriction

∑n+1
j=0 ãm−jIm−j(0) = 0, for compatibility with the condition M(0) = 0.

Hence the lower bound follows in this situation.
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In the second case, we choose the polynomials of degree at most n,

P (x, y) = − (1− y)m−1

[n−m
2 ]∑

j=0

bjx(x
2 + y2)j,

Q(x, y) =−
n∑

k=0

aky
k − (1− y)m−1

[n−m
2 ]∑

j=0

bjy(x
2 + y2)j .

Then

M(r) =

n+1∑

j=0

ãm−jIm−j(r) +

[n−m+2
2 ]∑

j=1

bj−1r
2j

∫ 2π

0

dθ

1− r sin θ

=
n+1∑

j=0

ãm−jIm−j(r) +

[n−m+2
2 ]∑

j=1

bj−1r
2jI1(r)

and so the result holds.
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