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Abstract. We complete the study of the analytic integrability of the Class A of
Bianchi cosmological models with k = 1, characterizing the analytic first integrals
of the Bianchi types VI0 and VIII0.

1. Introduction and statement of the main result

A cosmological model describes the universe and is defined by the space time geom-
etry (determined by a metric); the presence of the matter and its physical behaviour
(determined by the energy-momentum tensor); and the interaction between geometry
and matter (described through the Einstein’s equations).

Friedmann in 1922 introduced the study of homogeneous cosmologies. For spa-
tially homogeneous cosmologies the Einstein field equations can be written as an au-
tonomous system of first order differential equations, see [19] and references therein.

Bianchi models describe space-times which are foliated by homogeneous hypersur-
faces of constant time. Homogeneity requires a three dimensional isometry group
(and so a three dimensional Lie algebra). Bianchi [2, 3] was the first to solve the
problem of classifying three dimensional Lie algebras which are non-isomorphic. The
classification is determined by the dimension n of the algebra. There are nine types
of models according to n:

(a) n = 0: type I;
(b) n = 1: types II, III;
(c) n = 2: types IV, V, VI, VII;
(d) n = 3: types VIII, IX.

The types I,V and IX contain as special cases the Friedmann-Robertson-Walker uni-
verses, see [16].

If we consider X1, X2, X3 an apropiate basis of the three dimensional Lie algebra,
then the classification depends on a scalar a ∈ R and a vector (n1, n2, n3), with
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ni ∈ {−1, 0, 1}, such that

[X1, X2] = n3X3, [X2, X3] = n1X1 − aX2, [X3, X1] = n2X2 + aX1,

where [ , ] is the Lie bracket. In particular for a = 0 we obtain the models of Class A
and for a 6= 0 we obtain the models of Class B. For more details see Bogoyavlensky
[4]. The Bianchi models of Class A are detailed in Table 1.

Type I II VI0 VII0 VIII IX

a 0 0 0 0 0 0
n1 0 1 1 1 1 1
n2 0 0 −1 1 1 1
n3 0 0 0 0 −1 1

Table 1. The classification of Bianchi Class A cosmologies.

Bianchi models as dynamical systems were first studied in 1971 by Collins [5].
A systematic study is due to Bogoyavlensky and collaborators [4]. According to
Bogoyavlensky’s work, the dynamics of Class A types can be reduced into a six
dimensional autonomous differential system defined on a compact manifold with a
boundary. Since then we find in the literature a big amount of works studying the
dynamical behaviour of these cosmologies.

It is worth to mention that the most contraversory model seems to be the Bianchi
IX model because of its chaotic (in some sense) behaviour. Many authors studied
the integrability of this model. We must mention that the notion of integrability
can have different meanings. Cushman and Sniatycki [6] proved that Bianchi IX is a
locally integrable Hamiltonian system. Latifi, Musette and Conte [7] proved that this
model is not integrable in the sense that it does not satisfy the Painlevé property.
Morales-Ruiz and Ramis [15], using techniques of differential Galois theory, showed
that the Bianchi IX model (as a complex Hamiltonian system) is not completely
integrable (in the Liouville sense) with rational first integrals. Llibre and Valls in [8],
using techniques of formal series, proved that any analytic first integral of Bianchi
IX is a function of its Hamiltonian. The same authors in [9] proved that Bianchi
VIII does not admit an analytic first integral different from the Hamiltonian using
the Darboux theory of integrability. Maciejewski, Strelcyn and Szyd lowski in [12]
applied Morales-Ramis approach (and also Kovacic algorithm for a reduced system)
to prove the non-meromorphic integrability of Bianchi VIII.

In [14] Class A was studied reducing the dimension of the system. In [17] the
authors studied the vacuum Bianchi models of Class A, and using the zero level set
of the Hamiltonian they reduced the dimension of the dynamical system (preserving
the polynomial structure). In [18] there is a study about the algebraic integrability
of Class A Bianchi models in vacuum and with dust and radiative matter.
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The Bianchi Class A cosmological models that we consider here are defined by the
Hamiltonian

H =
1

(q1q2q3)(1−k)/2
H,

where

H = −(p21q
2
1 + p22q

2
2 + p23q

2
3) + 2(p1p2q1q2 + p1p3q1q3 + p2p3q2q3)

+
1

2
(n1n2q1q2 + n1n3q1q3 + n2n3q2q3)

− 1

4
(n2

1q
2
1 + n2

2q
2
2 + n2

3q
2
3).

(1)

Here we consider the case k = 1 also analyzed in the works of Maciejewski and
Szyd lowski [13, 14], and of Llibre and Valls [8, 9]. See the first two papers for a good
physical introduction to these systems.

The differential system associated to H is q̇i = Hpi, ṗi = −Hqi , for i = 1, 2, 3,
which writes

q̇1 = 2q1(−p1q1 + p2q2 + p3q3),

q̇2 = 2q2(p1q1 − p2q2 + p3q3),

q̇3 = 2q3(p1q1 + p2q2 − p3q3),

ṗ1 = −n1

2
(−n1q1 + n2q2 + n3q3) − 2p1(−p1q1 + p2q2 + p3q3),

ṗ2 = −n2

2
(n1q1 − n2q2 + n3q3) − 2p2(p1q1 − p2q2 + p3q3),

ṗ3 = −n3

2
(n1q1 + n2q2 − n3q3) − 2p3(p1q1 + p2q2 − p3q3).

(2)

System (2) is Hamiltonian with three degrees of freedom. Due to its Hamiltonian
structure it is completely integrable if it admits three independent first integrals in
involution, see for more details [1].

Under the two changes of variables qi → xi, pi → xi+3/xi, for i = 1, 2, 3, first, and
xi → 6xi, for i = 1, 2, 3, t → t/2, afterwards, system (2) becomes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4 − x5 + x6),

ẋ3 = x3(x4 + x5 − x6),

ẋ4 = 9n1x1(n1x1 − n2x2 − n3x3),

ẋ5 = 9n2x2(−n1x1 + n2x2 − n3x3),

ẋ6 = 9n3x3(−n1x1 − n2x2 + n3x3).

(3)

This system has lost the Hamiltonian structure. The first integral corresponding to
system (3) coming from (1) is

H∗ = −9(n2
1x

2
1 + n2

2x
2
2 + n2

3x
2
3) − (x2

4 − x2
5 − x2

6)

+ 18(n1n2x1x2 + n1n3x1x3 + n2n3x2x3) + 2(x4x5 + x4x6 + x5x6).
(4)
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Our aim in this work is to complete the characterization of the analytic integrability
of all Bianchi cosmologies of Class A with k = 1 described by systems (2) or (3).

Theorem 1. The following statements hold for system (3).

(a) The Bianchi type I model has three independent polynomial first integrals,
namely x4, x5 and x6.

(b) The Bianchi type II model has three independent polynomial first integrals,
namely x5, x6 and H∗ = −9x2

1 − x4(x4 − 2x5 − 2x6).
(c) The Bianchi types VI0 and VII0 models have the polynomial first integrals x6

and H∗ = −9(x1 − n2x2)
2 − (x2

4 + x2
5 + x2

6) + 2(x4x5 + x4x6 + x5x6). These
models do not admit any additional analytic first integral independent from
the two previous ones.

(d) The Bianchi type VIII and IX models have the polynomial first integral H∗ =
−9(x2

1 + x2
2 + n2

3x
2
3)− (x2

4 + x2
5 + x2

6) + 18(x1x2 + n3x1x3 + n3x2x3) + 2(x4x5 +
x4x6 +x5x6). These models do not admit any additional analytic first integral
independent from the previous one.

Due to the Theorem of Liouville-Arnold (see for details [1]) and since system (2)
is Hamiltonian, we only need three independent first integrals in involution for de-
scribing their dynamics. We provide the independent analytical first integrals of the
equivalent system (3), from these we can compute the corresponding ones of sys-
tem (2). Of course, systems (2) and (3) can have more than three independent first
integrals.

Statements (a) and (b) of Theorem 1 are easy to check by direct computation. In
fact the Bianchi type I model has the two additional non-polynomial independent
first integrals

xx4−x5+x6
1 xx4−x5−x6

2 , xx4+x5−x6
1 xx4−x5−x6

3 ;

and the Bianchi type II model has the two additional non-polynomial independent
first integrals

x
√
A−2x6

1 x
√
A

2 (A+
√
A(−x4 + x5 + x6))

2x6 , x
√
A−2x5

1 x
√
A

3 (A +
√
A(−x4 + x5 + x6))

2x5,

where A = (x5 + x6)
2 −H∗.

Statement (d) of Theorem 1 is proved in [8, 9].

The main result of this paper is statement (c) of Theorem 1 on the Bianchi types
VI0 and VII0 models. Related with the integrability of these two systems there are
some related results when the dynamics of these systems are reduced to dimension
three, see [14, 10].
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2. Proof of statement (c) of Theorem 1

System (3) for Bianchi types VI0 and VII0 has the form

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4 − x5 + x6),

ẋ3 = x3(x4 + x5 − x6),

ẋ4 = 9x1(x1 − n2x2),

ẋ5 = −9n2x2(x1 − n2x2),

ẋ6 = 0,

(5)

with n2 = ±1 depending on the Bianchi type.

The following result is well known, see for instance [11].

Proposition 2. Let F be an analytic function and let F =
∑

i Fi be its decomposition
into homogeneous polynomials of degree i. Then F is an analytic first integral of the
homogeneous differential system (3) if and only if for all i Fi is a homogeneous
polynomial first integral of system (3).

Proposition 2 shows that for studying the analytic first integrals of the homoge-
neous differential system (3) it is sufficient to study its homogeneous polynomial first
integrals.

We assume from now on that n1 = 1, n2 = ±1, n3 = 0; this case corresponds to
Bianchi types VI0 and VII0, see Table 1. Proposition 3 shows the existence of two
independent polynomial first integrals and Theorem 4 assures that there are no more
polynomial first integrals independent from the ones provided by Proposition 3.

Proposition 3. Two independent polynomial first integrals for the Bianchi types VI0
and VII0 models are x6 and

H = −9(x1 − n2x2)
2 − (x2

4 + x2
5 + x2

6) + 2(x4x5 + x4x6 + x5x6). (6)

Proof. It follows easily by direct computations. �

Theorem 4. Let h(x1, . . . , x6) be a polynomial first integral of system (5). Then h
is a polynomial in the variables x6 and H, where H is given by (6).

We state a lemma before proving Theorem 4. See [9] for a proof.

Lemma 5. Let xk be one dimensional variables for k = 1, . . . , n and n > 1. Let
f = f(x1, . . . , xn) be a polynomial and let f1 = f(x1, . . . , xn)|xl=c0, for some l ∈
{1, . . . , n}, where c0 is a constant. Then there exists a polynomial g = g(x1, . . . , xn)
such that f = f1 + (xl − c0)g.

Proof of Theorem 4. Let h1 = h|x3=0. We consider the involution σ defined by
σ(x1) = n2x2, σ(x2) = n2x1, σ(x3) = −x3, σ(x4) = x5, σ(x5) = x4 and σ(x6) = x6.
We note that h1 is invariant under the involution σ, namely σ(h1) = h1. By Lemma
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5 there exists a polynomial g such that h = h1 + x3g. System (5) on x3 = 0 writes

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4 − x5 + x6),

ẋ4 = 9x1(x1 − n2x2),

ẋ5 = −9n2x2(x1 − n2x2),

ẋ6 = 0.

(7)

Moreover h1 is a first integral of system (7). Now we restrict system (7) to x1 = 0
and we obtain

ẋ2 = x2(x4 − x5 + x6),

ẋ4 = 0,

ẋ5 = 9x2
2,

ẋ6 = 0.

(8)

Let h2 = h1|x1=0; h2 is a polynomial first integral of system (8). Let H̃ = H|x1=0 =

−9x2
2 − (x2

4 + x2
5 + x2

6) + 2(x4x5 + x4x6 + x5x6). It is clear that H̃ , x4 and x6 are
first integrals of system (8), and that they are independent. Since system (8) is
a four dimensional system with three independent first integrals H̃ , x4 and x6, we
have h2 = h2(x4, x6, H̃). Applying Lemma 5 we get h1 = h2(x4, x6, H̃) + x1g1,
where g1 = g1(x1, x2, x4, x5, x6) is a polynomial and h2 eventually can be zero. Since
H̃ = H + 9x1(x1 − 2n2x2) we have

h1 = h2(x4, x6, H̃) + x1g1 = h2(x4, x6, H) + x1g2,

for some polynomial g2 = g2(x1, x2, x4, x5, x6).

We claim that h2 does not depend on x4. We prove the claim: as x6 and H are
also invariant by σ we have

h2(x4, x6, H) + x1g2 = h1 = σ(h1) = h2(x5, x6, H) + n2x2σ(g2).

Since the most left hand side and the most right hand side of the previous expression
are equal, it follows that h2(x4, x6, H) = h2(x5, x6, H). Therefore h2 = h2(x6, H). In
short the claim is proved.

We have h1 = h2(x6, H) + x1g2. Next we prove that g2 ≡ 0 proceeding by contra-
diction. Suppose that g2 6≡ 0 and write x1g2 = xα

1 g3, with α ∈ N, g3 6= 0 and x1 ∤ g3.
Let X be the vector field associated to system (7), i.e.

X = x1(−x4 + x5 + x6)
∂

∂x1

+ x2(x4 − x5 + x6)
∂

∂x2

+ 9x1(x1 − n2x2)
∂

∂x4

− 9n2x2(x1 − n2x2)
∂

∂x5

.
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As h1 = h2(x6, H) + xα
1 g3, x6 and H are first integrals of system (7) we have

0 =
X(h1)

xα
1

=
X(xα

1g3)

xα
1

= x1(−x4 + x5 + x6)
∂g3
∂x1

+ x2(x4 − x5 + x6)
∂g3
∂x2

+ 9x1(x1 − n2x2)
∂g3
∂x4

− 9n2x2(x1 − n2x2)
∂g3
∂x5

+ α(−x4 + x5 + x6)g3.

(9)

Let g4 = g3|x1=0. Since g4 satisfies equation (9) applied on x1 = 0, we obtain

x2(x4 − x5 + x6)
∂g4
∂x2

+ 9x2
2

∂g4
∂x5

+ α(−x4 + x5 + x6)g4 = 0.

Thus x2|g4 and g4 = xβ
2g5, with β ∈ N, g5 6≡ 0 and x2 ∤ g5. Hence

x2(x4 − x5 + x6)
∂g5
∂x2

+ 9x2
2

∂g5
∂x5

+
[
α(−x4 + x5 + x6) + β(x4 − x5 + x6)

]
g5 = 0,

and therefore x2|g5, a contradiction. Hence g2 ≡ 0 and h1 = h2(x6, H).

Back to h, we proved that h = h2(x6, H) + x3g. It remains to prove that g ≡ 0.
Assume that g 6≡ 0. Let x3g = xγ

3 ḡ1, with γ ∈ N, ḡ1 6≡ 0 and x3 ∤ ḡ1. Let Y be the
vector field associated to system (5), i.e.

Y = x1(−x4 + x5 + x6)
∂

∂x1
+ x2(x4 − x5 + x6)

∂

∂x2

+ x3(x4 + x5 − x6)
∂

∂x3
+ 9x1(x1 − n2x2)

∂

∂x4
− 9n2x2(x1 − n2x2)

∂

∂x5
.

As h, x6 and H are first integrals of system (5), we have

0 =
Y (h)

xγ
3

=
Y (xγ

3 ḡ1)

xγ
3

= x1(−x4 + x5 + x6)
∂ḡ1
∂x1

+ x2(x4 − x5 + x6)
∂ḡ1
∂x2

+ x3(x4 + x5 − x6)
∂ḡ1
∂x3

+ 9x1(x1 − n2x2)
∂ḡ1
∂x4

− 9n2x2(x1 − n2x2)
∂ḡ1
∂x5

+ γ(x4 + x5 − x6)ḡ1.

(10)

Let ḡ2 = ḡ1|x3=0. We have that ḡ2 6≡ 0 and that it satisfies equation (10) with
x3 = 0:

x1(−x4 + x5 + x6)
∂ḡ2
∂x1

+ x2(x4 − x5 + x6)
∂ḡ2
∂x2

+ 9x1(x1 − n2x2)
∂ḡ2
∂x4

− 9n2x2(x1 − n2x2)
∂ḡ2
∂x5

+ γ(x4 + x5 − x6)ḡ2 = 0.

(11)
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We write ḡ2 = xδ
1ḡ3, with δ ∈ N ∪ {0}, ḡ3 6≡ 0 and x1 ∤ ḡ3. Then, after dividing by

xδ
1 we get

x1(−x4 + x5 + x6)
∂ḡ3
∂x1

+ x2(x4 − x5 + x6)
∂ḡ3
∂x2

+ 9x1(x1 − n2x2)
∂ḡ3
∂x4

− 9n2x2(x1 − n2x2)
∂ḡ3
∂x5

+
[
γ(x4 + x5 − x6) + δ(−x4 + x5 + x6)

]
ḡ3 = 0.

(12)

Let ḡ4 = ḡ3|x1=0. It satisfies equation (12) with x1 = 0:

x2(x4 − x5 + x6)
∂ḡ4
∂x2

+ 9x2
2

∂ḡ4
∂x5

+
[
γ(x4 + x5 − x6) + δ(−x4 + x5 + x6)

]
ḡ4 = 0. (13)

From this equation we have x2|ḡ4, and hence ḡ4 = xλ
2 ḡ5, with λ ∈ N, ḡ5 6≡ 0 and

x2 ∤ ḡ5. After dividing by xλ
2 we obtain

x2(x4 − x5 + x6)
∂ḡ5
∂x2

+ 9x2
2

∂ḡ5
∂x5

+
[
γ(x4 + x5 − x6) + δ(−x4 + x5 + x6) + λ(x4 − x5 + x6)

]
ḡ5 = 0.

(14)

We note that the factor of ḡ5 in (14) is

(−δ + λ + γ)x4 + (δ − λ + γ)x5 + (δ + λ− γ)x6.

The coefficients of x4, x5, x6 in this expression are identically zero if and only if δ =
λ = γ = 0, which is not possible because γ and λ are different from zero. Hence
we get from (14) that x2|ḡ5, a contradiction. Back to h, we have g ≡ 0 and then
h = h2(x6, H). The theorem follows. �

Undoing the changes of variables, system (2) for Bianchi types VI0 and VII0 has
only two independent polynomial first integrals which are H1 = p3q3 and H2 =
−(q1−n2q2)

2−4(p21q
2
1 +p22q

2
2 +p23q

2
3)+8(p1p2q1q2 +p1p3q1q3 +p2p3q2q3), with n2 = ±1

depending on the Bianchi type. We note that we can obtain the Hamiltonian (1)
from H2: H = H2/4.

Proposition 3 and Theorem 4 prove statement (c) of Theorem 1.
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