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SOME NEW RESULTS ON DARBOUX INTEGRABLE
DIFFERENTIAL SYSTEMS

ANTONI FERRAGUT†

Abstract. We deal with complex planar differential systems having a Darboux
first integral H. We present a definition of remarkable values and remarkable curves
associated to H and characterize the existence of a polynomial inverse integrating
factor for these systems. Furthermore, we study the relation between the charac-
teristic polynomial F and the inverse integrating factors of the system and show
the importance of the numerator of the exponential factor of H in the construction
of F .

1. Introduction and preliminary definitions

A complex planar polynomial differential system of degree d is

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P,Q ∈ C[x, y] are coprime and d = max{degP, degQ}. We write X = (P,Q)
and Xf = Pfx +Qfy, f a C1-function.

Let U be an open subset of C2. A first integral of X in U is a non-constant C1-
function H : U → C, possibly multi-valued, which is constant on all the solutions of
X contained in U , i.e. XH = 0 on U . We say in this case that X is integrable on U .

An inverse integrating factor of X in U is a C1-function V : U → C satisfying
XV = div(X)V , where div(X) = Px + Qy is the divergence function of X. The
function V is a very useful tool to study integrable systems (see [5]). Indeed the set
V −1(0) contains a lot of information about the ‘skeleton’ or the separatrices of the
phase portrait of X in U , see [3, 16, 15, 18, 4].

We say that the inverse integrating factor V is associated to the first integral H of
system (1) in U if (P,Q) = (−Hy, Hx)V in U \ {V = 0}.

Let f ∈ C[x, y]. We say that the algebraic curve f = 0 is invariant if there exists
a polynomial K ∈ C[x, y] of degree at most d − 1, called the cofactor, such that
Xf = K f .

Let g, h ∈ C[x, y] be coprime polynomials. The function F = eg/h is an exponential
factor of system (1) if there exists a polynomial L ∈ C[x, y] of degree at most d− 1,
called the cofactor, such that XF = LF . In this case, h = 0 is an invariant algebraic
curve. The notion of exponential factor is due to Christopher [7]. An exponential
factor appears when an invariant algebraic curve has multiplicity greater than one.
For more details on exponential factors see [10].
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2 A. FERRAGUT

A function of the form
p∏

i=1

fλii

q∏

j=1

exp

(
gj
hj

)µj
, (2)

where fi, gj, hj ∈ C[x, y] and λi, µj ∈ C, i = 1, . . . , p, j = 1, . . . , q, is called a
Darboux function. If system (1) has a first integral or an inverse integrating factor
of the form (2), being fi = 0 invariant algebraic curves and exp(gj/hj) exponential
factors of system (1), then system (1) is Darboux integrable. The Darboux Theory of
Integrability (or Darboux method) relates the number of invariant algebraic curves
and exponential factors with the existence of a Darboux first integral, see [17] for a
summary of the main results about the Darboux method and its improvements.

It is known that a Darboux function H can be written as

H(x, y) =

p∏

i=1

fλii exp

(
g∏p

i=1 f
ni
i

)
, (3)

where fi ∈ C[x, y] is irreducible, λi ∈ C, ni ∈ N∪{0} and g ∈ C[x, y] is coprime with
fi if ni > 0, for i = 1, . . . , p. Of course not both λi and ni are zero for any i. We
shall use this expression of H as Darboux function all along the paper. We note that
it can be easily proved that the exponential function in (3) is an exponential factor
with cofactor L = −∑p

i=1 λiKi, where Ki is the cofactor of fi = 0, for all i = 1, . . . , p.

If the function H in (3) is a Darboux first integral of system (1) then the system
has the rational inverse integrating factor

V (x, y) =

∏p
i=1 f

ni+1
i

R
=

1

gcd
(
(logH)x, (logH)y

) , (4)

where R is a polynomial, the so-called remarkable factor (see [12]). Note that V is the
inverse integrating factor associated to the first integral logH. If H is not rational
then V is the only rational inverse integrating factor of system (1), see [6].

It is known that if system (1) has a polynomial inverse integrating factor, then
in most cases it has degree d + 1 (see [6, 23, 9, 24, 12] and see also the survey on
the inverse integrating factor [14]). We define the extension of the degree function
δ(
∏
gαii ) =

∑
αi deg gi, where αi ∈ C and gi ∈ C[x, y]. Of course, if αi ∈ N for all

i then δ is exactly the degree function. We note that δ(V ) ∈ N ∪ {0}, V defined in
(4). As in the polynomial case, we shall compare δ(V ) with d + 1 and we will show
in which cases they are equal.

In the same context of Darboux integrability we deal with the infinity, relating the
singular points at infinity with the inverse integrating factor and with the polynomials
appearing in (3). In particular we show how important is the polynomial g of the
expression (3). All these new results are stated in Theorem 1, see Subsection 2.1.

Still concerning Darboux integrable systems, we define remarkable values and re-
markable curves for Darboux first integrals. Remarkable values and remarkable curves
were first defined by Poincaré in [19] for rational first integrals; their importance in
the phase portrait of the system has been widely shown, see for example [6, 11, 12].
Here we extend these definitions to Darboux first integrals and prove a result that
characterizes the existence of a polynomial inverse integrating factor by means of the
number of critical remarkable values, see Theorem 4 in Subsection 2.2.
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The paper is organized as follows. In Section 2 we state our new results, that we
split in two subsections. Section 3 is devoted to the proof of the results of Subsection
2.1. In Subsection 4 we prove the results stated in Subsection 2.2. Finally in Section
5 we provide some examples of application and state an open question.

2. Statement of the new results

For the sake of clearness we split our results in two subsections. In the first one
with deal with the infinity; in the second one we deal with remarkable values.

2.1. The infinity and the inverse integrating factor. Consider the polynomial
system X given by (1) and suppose that it has a Darboux first integral (3). We denote

by f̃ the homogeneous part of highest degree of a polynomial f . Let F = xQ̃ − yP̃
be the characteristic polynomial associated to X. We define

Π1 =

p∏

i=1

f̃ λii , Π2 = g̃/

p∏

i=1

f̃ nii . (5)

We note that δ(Π1) ∈ C and δ(Π2) ∈ Z.

Our first main result is Theorem 1. We relate in it the characteristic polynomial
F with some inverse integrating factor and we show the importance of the polyno-
mial g appearing in the expression of H. Moreover we compare δ(V ) with d + 1,
characterizing whether they are equal.

Theorem 1. Consider system (1) and suppose that it has a Darboux first integral (3)
which is not rational and the inverse integrating factor V given in (4). The following
statements hold.

(1) δ(V ) < d+ 1 if and only if δ(Π2) > 0. Moreover

F = δ(Π2)
g̃
∏p

i=1 f̃i

R̃
6≡ 0.

(2) δ(V ) = d + 1 if and only if either δ(Π2) < 0 and Π1 is not constant, or
δ(Π2) = 0. Moreover

F = δ(Π1)Ṽ .

(3) δ(V ) > d+ 1 if and only if δ(Π2) < 0 and Π1 is constant. Moreover

F∞ =

(
vd+2V |C

∂ log(H|C)

∂v

)∣∣∣∣
v=0

6≡ 0,

where F∞ = vd+1F|C ∈ C[u, v] and C = {(x, y) = (1, u)/v}.
Next corollary corrects Theorem 2 of [12] about a characterization of polynomial

differential systems having a Darboux first integral and degenerate infinity. We recall
that the infinity is degenerate if and only if F ≡ 0.

Corollary 2. Consider system (1) and suppose that it has a Darboux first integral
(3). The infinity is degenerate if and only if δ(Π1) = 0 and either δ(Π2) < 0 and Π1

is not constant, or δ(Π2) = 0.
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The rational case H = h1/h2 (that is g ≡ 0, ni = 0 and λi ∈ Z for all i = 1, . . . , p
in (3)) is a particular one of Darboux functions. We note that (4) writes then as

V =
h1h2

R
. (6)

The results of Theorem 1 hold, as the next corollary assures.

Corollary 3. Suppose that system (1) has a rational first integral H = h1/h2, where
h1 and h2 are coprime polynomials. Let (6) be an inverse integrating factor of system
(1). Then δ(V ) = d+ 1 and F = δ(H)Ṽ .

Remark 1. If R is a constant, g ≡ 0 and ni = 0 for all i ∈ {1, . . . , p}, we have a
generalization of a result due to Kooij and Christopher [9] and Zoladek [24].

Remark 2. Concerning the degree of V in case that R is constant, statement (e)
of the Main Theorem of [6] assures that deg V = d + 1 under certain conditions.
This statement is not always true. We provide a counterexample in Section 5 (see
Example 5) with an explanation of why it fails. The correct hypotheses are the ones
of Theorem 1.

2.2. Remarkable values of Darboux first integrals. The remarkable values and
remarkable curves were first introduced by Poincaré in [19], and afterwards studied by
several authors, see [6, 12, 11]. It has been shown in the literature that the remarkable
curves play an important role in the phase portrait as they are strongly related to the
separatrices. It is proved in [6] that there are a finite number of them. In [6, 12] they
are related with the inverse integrating factor. In [12, 11] some techniques to compute
remarkable curves are provided. Moreover remarkable values and remarkable curves
are used in [13, 4] to prove some results on integrability and the inverse integrating
factor, and in [1] to study degenerate singular points.

Let H = h1/h2 be a rational first integral of system (1). We define the degree of
H as degH = max{deg h1, deg h2}. We say that the degree of H is minimal if any
other rational first integral of (1) has degree at least degH.

The remarkable values are defined as level sets c of a minimal rational first integral
H = h1/h2 for which h1+ch2 factorizes. The factors of h1+ch2 provide the remarkable
curves associated to c. If in this factorization some factor has exponent greater than
one, then the corresponding remarkable curve and remarkable value are said to be
critical. We note that the critical remarkable curves are the factors of h2

2 gcd(Hx, Hy).

An important property of the inverse integrating factor is that usually a polynomial
differential system X having a first integral has an inverse integrating factor with an
easier expression. In what follows we are more precise:

(i) If X has a Liouvillian first integral, then it has a Darboux inverse integrating
factor.

(ii) If X has a Darboux first integral (including rational), then it has a rational
inverse integrating factor.

(iii) If X has a rational first integral and has no polynomial first integrals, then it
has a polynomial inverse integrating factor if and only if the first integral has
at most two critical remarkable values.

(iv) If X has a polynomial first integral, then it has a polynomial inverse integrat-
ing factor.
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For a definition of Liouvillian function see [21], roughly speaking a Liouvillian
function comes from the integral of a Darboux function. Statement (i) was proved
in [21] (see also [8]). Statement (ii) was proved in [20] (see also [6]). Statement (iii)
was proved in [6]. Statement (iv) was proved in [13] (see also [12]). Our second
main result is Theorem 4, which characterizes the polynomial differential systems (1)
having a Darboux first integral and a polynomial inverse integrating factor, extending
statement (iii) above to differential systems having a Darboux first integral. See
Section 4 for a definition of critical remarkable values of Darboux first integrals.

Theorem 4. Suppose that system (1) has a Darboux first integral (3) which is not
rational. Then the inverse integrating factor V defined in (4) is a polynomial if and
only if the number of critical remarkable values of H is zero.

Now statement (iii) above can be rewritten in a similar way as Theorem 4. Without
loss of generality, in the case of existence of a rational first integral, we assume that if
c 6= 0,∞ is a critical remarkable value, then both 0 and∞ are also critical remarkable
values.

Theorem 5 (see [6]). Suppose that system (1) has a minimal rational first integral
H = h1/h2 and has no polynomial first integrals. Then system (1) has a polynomial
inverse integrating factor if and only if the number of critical remarkable values dif-
ferent from 0 and ∞ is zero. This polynomial inverse integrating factor is to be the
function V defined in (6).

As we already mentioned, Theorem 4 extends the result of [6] about the existence
of a polynomial inverse integrating factor for systems having a rational first integral
to systems having a Darboux first integral. In that article the authors also prove
that the polynomial differential systems having a complete Darboux first integral
and having no rational first integrals have a polynomial inverse integrating factor.
We recall that H is complete if the fi = 0 appearing in (3) are the unique invariant
algebraic curves of system (1). In particular, it implies that there are no critical
remarkable curves, and so it is clear that (4) is a polynomial. Hence our result is
stronger than that one.

3. The infinity and the inverse integrating factor

The characteristic polynomial F is either homogeneous of degree d+1 or identically
zero. In the former case, it provides the characteristic directions at infinity, which
are in correspondance with the singular points at infinity. In the latter case the
infinity is degenerate and clearly P̃ = xW and Q̃ = yW , for a certain homogeneous
polynomial W of degree d−1. This polynomial W provides the singular directions at
infinity, which may correspond to singular points at infinity after removing the line of
singularities. For more information see [2]. In Theorem 1 we give an expression of F
in terms of the polynomials appearing in (3) and relate it to the inverse integrating
factor. Moreover, as we mentioned before, we compare δ(V ) and d+ 1.

Before proving Theorem 1 we need to do some remarks.

Remark 3. When deg g =
∑p

i=1 ni deg fi 6= 0 and Π2 is constant, we can divide g
by
∏p

i=1 f
ni
i ; hence there exists a polynomial ḡ such that g = Π2

∏p
i=1 f

ni
i + ḡ, with
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deg ḡ < deg g. Therefore

exp

(
g∏p

i=1 f
ni
i

)
= eΠ2 exp

(
ḡ∏p

i=1 f
ni
i

)
.

In this case we consider the first integral H/eΠ2 instead of H and now we have
deg ḡ <

∑p
i=1 ni deg fi. Hence we can assume without loss of generality that the case

deg g =
∑p

i=1 ni deg fi and Π2 constant does not appear in our study.

Remark 4. Applying the change of variables

C = {x = 1/v, y = u/v} (7)

to system (1), we obtain the polynomial differential system

u̇ = vd+1(xQ− yP )|C , v̇ = −vd+1P |C . (8)

It is clear that v = 0 in this new system corresponds to the line of infinity of system
(1). The singular points of (8) on v = 0 are in correspondance with the linear factors
of F . We assume without loss of generality that x - F if F 6≡ 0, as otherwise this
linear factor x would not appear as a singular point of (8).

Proof of Theorem 1. We denote by Xf the Hamiltonian system (−fy, fx), for some
function f . We first compute XlogH :

XlogH =

p∑

i=1

λi
Xfi

fi
+
Xg

∏p
i=1 fi − g

∑p
i=1 niXfi

∏
j 6=i fj∏p

i=1 f
ni+1
i

=
1∏p

i=1 f
ni+1
i

[
Xg

p∏

i=1

fi +

p∑

i=1

(
λi

p∏

j=1

f
nj
j − nig

)
Xfi

∏

j 6=i
fj

]
. (9)

As P and Q are coprime and logH is a first integral of system (1), we have

X = (P,Q) =

∏p
i=1 f

ni+1
i

R
XlogH = V XlogH , (10)

where the remarkable factor R is the greatest common divisor of the expression
between brackets in (9) and V was defined in (4).

The equality (10) is also proved in [17]. We prove it here again for completeness. It
is clear that d+ 1 ≤ max{∑p

i=1 ni deg fi, deg g}+
∑p

i=1 deg fi− degR, the inequality
holding only in the case that the highest order terms of the two expressions between
brackets in (9) are both identically zero.

As all the possibilities for δ(Π1), δ(Π2) and δ(V ) are considered in the three state-
ments of Theorem 1 (taking into account Remark 3), we only need to prove one
direction of the statements to prove the whole Theorem. Hence we distinguish some
different cases depending on the sign of δ(Π2).

If δ(Π2) > 0 then

R̃(P̃ , Q̃) =

p∏

i=1

f̃i

(
Xg̃ − g̃

p∑

i=1

ni
Xf̃i

f̃i

)
= g̃

p∏

i=1

f̃iXlog Π2 6≡ 0, (11)

as Π2 is not constant because δ(Π2) > 0. Then

F = g̃

∏p
i=1 f̃i

R̃

x∂Π2

∂x
+ y ∂Π2

∂y

Π2

= δ(Π2)
g̃
∏p

i=1 f̃i

R̃
6≡ 0,
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where we have applied the Euler Theorem for homogeneous functions. Moreover, as
V =

∏p
i=1 f

ni+1
i /R and δ(Π2) > 0, we obtain δ(V ) < degF = d + 1. The ‘only if’

part of statement (1) follows.

If δ(Π2) = 0 then

R̃(P̃ , Q̃) =

p∏

i=1

f̃i

(
Xg̃ +

p∑

i=1

(
λi

p∏

j=1

f̃
nj
j − nig̃

)Xf̃i

f̃i

)

=

p∏

i=1

f̃ ni+1
i

(
X

log
∏p
i=1 f̃

λi
i

+Xg̃/
∏p
i=1 f̃

ni
i

)

=

p∏

i=1

f̃ ni+1
i Xlog Π1+Π2 ,

(12)

provided that Xlog Π1+Π2 6≡ 0. Indeed log Π1 + Π2 is constant if and only if Π1 and Π2

are constant, but we are assuming that Π2 is not constant in this case, see Remark
3. Hence (12) always holds. Therefore δ(V ) = d+ 1 and

F =
(
δ(Π1) +

0︷ ︸︸ ︷
δ(Π2) Π2

)
Ṽ = δ(Π1)Ṽ .

If δ(Π2) < 0 then

R̃(P̃ , Q̃) =

p∏

i=1

f̃ ni+1
i

p∑

i=1

λi
Xf̃i

f̃i
=

p∏

i=1

f̃ ni+1
i Xlog Π1 , (13)

provided that Π1 is not constant. If this is the case, we have δ(V ) = d+ 1 and

F =

(
p∑

i=1

λi deg fi

)
Ṽ = δ(Π1)Ṽ .

We have proved the ‘only if’ part of statement (2). If Π1 is constant then δ(V ) > d+1.

Finally, if δ(Π2) < 0 and Π1 is constant, then v−δ(Π2) divides (g/
∏p

i=1 f
ni
i )|C .

Moreover (
∏p

i=1 f
λi
i )|C |v=0 = Π1. Hence H|C |v=0 = Π1 is constant, and thus v = 0

is invariant under the flow of system (8). Hence the infinity of system (1) is not
degenerate.

To compute F∞ we note that H|C and vd+2V |C are respectively a first integral and
an inverse integrating factor of system (8). Moreover u̇ = vd+2V |C(log(H|C))v. The
infinite singular points of system (1) are in correspondance with the singular points
of system (8) on v = 0, as u̇ = vd+1(xQ − yP )|C . Hence we obtain the expression
of F∞ of statement (3), as we wanted. Therefore the ‘only if’ part of statement (3)
follows and the Theorem is proved. �
Remark 5. We note that V logH is another inverse integrating factor of system (1).
Moreover, we have

Ṽ log H̃ =
g̃
∏p

i=1 f̃i

R̃
+

∏p
i=1 f̃

ni
i

R̃

p∑

i=1

λi log f̃i.

Observe that in statement (1) of Theorem 1 F is, up to a constant, the rational
summand of this expression. In particular this summand is to be a homogeneous
polynomial of degree d+ 1.
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Remark 6. In statement (2) it is clear that if F 6≡ 0 then Ṽ is a polynomial. But if
F ≡ 0 then Ṽ is not to be a polynomial in general, as we will see in Proposition 9 of
Section 5.

Proof of Corollary 2. The only case in Theorem 1 for which F ≡ 0 is statement (2)
with δ(Π1) = 0. �

Proof of Corollary 3. Without loss of generality we make the assumption that either
deg h1 6= deg h2, or deg h2 = deg(h1 + ch2) for all c ∈ C. We claim that Π1 = h̃1/h̃2

is not constant. To prove the claim we distinguish two cases. If deg h1 6= deg h2 then
δ(Π1) 6= 0 and thus Π1 is not constant. If deg h2 = deg(h1 + ch2) for all c ∈ C and
Π1 is constant, then deg(h1 − Π1h2) < deg h2, a contradiction.

Now we apply similar arguments to those of statement (2) of Theorem 1 to get
δ(V ) = d+ 1 and F = δ(H)Ṽ . �

We provide next a result similar to Theorem 1 (the proof is similar) but concerning
the origin instead of infinity. We state it as a corollary of Theorem 1. First we need
some definitions.

We denote by f̂ the homogeneous part of lowest degree of a polynomial f , and
by sdeg f the degree of f̂ . Let m = min{sdeg P, sdeg Q}. We suppose that the

origin of system (1) is a singular point at the origin and we call FO = xQ̂− yP̂ the
characteristic polynomial associated to this singular point. Let

Σ1 =

p∏

i=1

f̂ λii , Σ2 = ĝ/

p∏

i=1

f̂ nii .

Finally we define µ(
∏
gαii ) =

∑
αi sdeg gi, where αi ∈ C and gi ∈ C[x, y]. We note

that µ(Σ1) ∈ C and µ(Σ2) ∈ Z.

Corollary 6. Consider system (1) and suppose that it has a Darboux first integral (3)
which is not rational and a inverse integrating factor (4). The following statements
hold.

(1) µ(V ) > m+ 1 if and only if µ(Σ2) < 0. Moreover

FO = µ(Σ2)
ĝ
∏p

i=1 f̂i

R̂
6≡ 0.

(2) µ(V ) = m + 1 if and only if either µ(Σ2) > 0 and Σ1 is not constant, or
µ(Σ2) = 0. Moreover in this case

FO = µ(Σ1)V̂ .

(3) µ(V ) < m+ 1 if and only if µ(Σ2) > 0 and Σ1 is constant. Moreover FO 6≡ 0
and we can compute the characteristic directions by means of a blow-up.

Remark 7. After Corollary 6 we remark two particular cases.

(1) The origin is dicritical (that is, FO ≡ 0) if and only if µ(Σ1) = 0 and either
µ(Σ2) > 0 and Σ1 is not constant, or µ(Σ2) = 0.

(2) Suppose that system (1) has a rational first integral H = h1/h2 and the inverse
integrating factor (6). Then µ(V ) = m+ 1 and F = µ(H)Ṽ .



DARBOUX INTEGRABLE SYSTEMS 9

4. Critical remarkable values of Darboux first integrals

The purpose of this section is to provide a definition of critical remarkable values
and curves of Darboux first integrals, and afterwards to prove Theorem 4, which
characterizes polynomial differential systems having a Darboux first integral and a
polynomial inverse integrating factor by means of the number of critical remarkable
values of the first integral. We begin the section with a lemma that we will use later
on.

Lemma 7. Suppose that system (1) has a Darboux first integral (3). Then fi - R for
all i ∈ {1, . . . , p}.
Proof. Suppose that fi|R for a certain i ∈ {1, . . . , p}. If ni 6= 0 then from (9) we
have that fi|nigXfi

∏
j 6=i fj, and this cannot happen because (fi, fj) = 1, because

(fi, g) = 1 as ni > 0 and because a polynomial cannot divide its derivatives.

If ni = 0 then from (9) again we have fi|λi
∏p

j=1 f
nj
j Xfi

∏
j 6=i fj. We note that fi

does not appear in the products as ni = 0. Hence λi = 0, a contradiction again. �
Suppose that system (1) has a Darboux first integral (3) which is not rational. Let

f = 0 be an irreducible invariant algebraic curve of system (1). We say that f = 0 is
a critical remarkable curve of H if either f = fi and ni > 0, for some i ∈ {1, . . . , p},
or f |R. In the second case we say that c = H|f=0 ∈ C \ {0} is a critical remarkable
value and we define the exponent of f = 0 as its exponent in the factorization of R
plus one.

We note that the function (6) has in its numerator all the factors of h1h2 powered
to one because of the remarkable factor. It coincides with the function V of Theorem
4 with ni = 0 for all i ∈ {1, . . . , p}, as in this case fi - R by Lemma 7. We do not
associate critical remarkable values to the fi, but according to the above observation
we define the exponent of fi = 0 as a critical remarkable curve as ni + 1, for i =
1, . . . , p.

The remarkable factor R is formed by invariant algebraic curves different from the
fi. But the curves fi and the ones appearing in the factorization of R are not the
unique invariant algebraic curves that system (1) can have, as we will show in some
of the examples of Section 5. We call these curves non-critical remarkable curves
and the corresponding level sets of H non-critical remarkable values. We define their
exponent as 1. The polynomials fi such that ni = 0 are also considered non-critical
remarkable curves, again without an associated remarkable value.

When dealing with critical remarkable values of a rational first integral H = h1/h2

we assume that the degree of H is minimal, see Subsection 2.2. This important
assumption in the rational case is not a matter in the Darboux case, as the next
lemma shows.

Lemma 8. Suppose that system (1) has two Darboux (non-rational) first integrals H
and H̄. Then H̄ = Hα, where α ∈ C \ {0}.
Proof. Let V and V̄ be the rational inverse integrating factors associated to H and
H̄, respectively. Then either V/V̄ is a rational first integral of system (1), or there
exists α ∈ C \ {0} such that V = αV̄ . As the system has a Darboux first integral
it cannot have rational first integrals, hence V = αV̄ . This implies that the first
integral associated to V̄ is H̄ = Hα, and therefore the proof is finished. �
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Remark 8. It makes no difference to use H or Hα, with α ∈ C\{0}, in the definition
of critical remarkable values and curves. The associated inverse integrating factors
are V and V/α, respectively.

Proof of Theorem 4. It is clear that V is a polynomial if and only if either R is
constant, or R|∏p

i=1 f
ni+1
i . The former case holds if and only if the number of critical

remarkable values is zero. The latter case is equivalent to say that R =
∏

j∈J f
lj
j ,

where J ⊆ {1, . . . , p}, lj ∈ N and lj ≤ nj + 1 for all j ∈ J , as the fi are irreducible.
But this is a contradiction with Lemma 7. Hence the Theorem follows. �

5. Examples

As Lemma 7 shows, the factor R is formed by invariant algebraic curves different
from the fi. Next example shows that the curves fi and the ones appearing in the
factorization of R are not the unique invariant algebraic curves that system (1) can
have. Moreover the characteristic polynomial F of the differential system is computed
using Theorem 1.

Example 1. Consider the Darboux function

H =
(−1 + x− 2y + 2x2 − y2)2

(−1 + x− y2)(1− x− 3y + 3x2 + y2)
exp

(
x3(y − x2)

2y4

)
.

Its associated polynomial differential system has degree d = 11. We note that y−x2 =
0 is an invariant algebraic curve of the system; indeed, H|y=x2 = −1. The system has
the polynomial inverse integrating factor V = 2y5(−1 + x− 2y+ 2x2− y2)(−1 + x−
y2)(1 − x − 3y + 3x2 + y2), associated to logH. Hence y − x2 = 0 is different from
the invariant algebraic curves fi = 0 appearing in the expression of H and is not a
factor of R.

The characteristic polynomial can be computed from H: as deg g = 5 > 4 =∑3
i=1 ni deg fi we apply statement (1) of Theorem 1 to obtain F = x5y3(2x2 −

y2)(3x2 + y2) 6≡ 0. �
In the following two examples we apply the results of Theorem 1 and Theorem 4.

Example 2. Let f1 = 1 + x + 2y − x2 − 2xy − y2 and f2 = 1 + 4x + 2y + 2x2 +
4xy + 2y2. Consider the polynomial differential system which has the Darboux first
integral H = f1/f

2
2 exp(x3/(f 2

1 f2)) and the (polynomial) inverse integrating factor
V = f 3

1 f
2
2 of degree 10. As V is a polynomial, by Theorem 4 the system has no

critical remarkable values. Moreover, deg g < 2 deg f1 +deg f2 and Π1 is not constant,
hence by statement (2) of Theorem 1 we have δ(V ) = d + 1, which means that the
system has degree 9. Moreover we can compute the singular points at infinity from
Ṽ : F = (deg f1 − 2 deg f2)Ṽ = 8(x+ y)10. �
Example 3. Consider the quadratic differential system (−1− 3x− 2y + x2 − 2xy −
3y2, 1 + 3x + 3y + 4xy + 4y2). This system has the Darboux first integral H =
f1/f2 exp(3(1−x− y)/f1) and the polynomial inverse integrating factor V = f 2

1 f2/9,
where f1 = 1 + x + 2y − x2 − 2xy − y2 and f2 = 1 + 4x + 2y + 2x2 + 4xy + 2y2.
As V is a polynomial, by Theorem 4 the system has no critical remarkable values.
Moreover, as deg g < deg f1 and Π1 = −1/2, by statement (3) of Theorem 1 we have
δ(V ) > d + 1. Indeed δ(V ) = 6 > 3 = d + 1. We can compute the infinite singular
points from Theorem 1: F∞ = 3u(1 + u)2. Hence F = 3y(x+ y)2 6≡ 0. �
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We wonder whether we can find a relation betweeen V and F in case V is a Darboux
inverse integrating factor. We check a simple example.

Example 4. Consider the quadratic differential system (1, 2xy + y2). This sys-

tem has the Darboux inverse integrating factor V = y2e−x
2

and the first integral
H = −e−x

2
/y − √π/2 erfi(x), where erfi(x) is the imaginary error function. The

characteristic polynomial is F = xy(2x+ y). �
We state the following open question.

Open Question. How can we relate the characteristic polynomial with the inverse
integrating factor for polynomial differential systems having a Darboux inverse inte-
grating factor, if such a relation exists?

There are many examples in the literature showing the existence of a polynomial
inverse integrating factor when system (1) has a Darboux first integral (3) and the
infinity is degenerate (see for example [22]). Next proposition shows that this is not
always the case.

Proposition 9. The cubic differential system (2x(4 + a + 6(4 + a)x + 8(4 + a)x2 +
8ay2), y(4 + a + 4(8 + 3a)x + 16(4 + a)x2 + 16ay2)), with a ∈ R, appearing in [6]
has a Darboux first integral and degenerate infinity, but it has no polynomial inverse
integrating factors.

Proof. The system has the Darboux first integrals H = y−2(4+a)(x+2x2+2y2)4−a((a−
4)x(1 + 4x) + 4ay2)2a if a 6= 4 and H = y2/(x + 2x2 + 2y2) exp

(
x(1 + 4x)/(2y2)

)

if a = 4. Moreover it has the rational inverse integrating factor V = y(x + 2x2 +
2y2)((a− 4)x(1 + 4x) + 4ay2)/x.

Applying statement (2) of Theorem 1 we have that δ(V ) = d + 1 = 4 and that
F ≡ 0.

If H is not rational then V is the unique rational (including polynomial) inverse
integrating factor of the system, and hence there are no polynomial inverse integrating
factors. If H is rational then it has three critical remarkable values (that is, 0,∞ and
the one corresponding to the critical remarkable curve x = 0) and therefore there are
no polynomial inverse integrating factors by Theorem 5 or [6]. �

We finally provide an example showing that statement (e) of the Main Theorem
of [6] is not correct (see Remark 2 in Subsection 2.1).

Example 5. The polynomial differential system X = (P,Q) having the Darboux
first integral

H = (x+ iy)3+2i(x− iy)3−2i(x+ y)2 exp

(
x3

(2x+ iy)2

)

and having the (polynomial) inverse integrating factor V = (2x+ iy)3(x+y)(x2 +y2)
has degree d = 6. It is easy to check that the system satisfies the hypotheses of
statement (e) of the Main Theorem of [6], but deg V = 6 6= 7 = d+ 1.

The theorem fails because in its proof it considers the homogeneous polynomial
system (P̃ , Q̃) of degree d = 6 and the polynomial inverse integrating factor V̄ =
xQ̃− yP̃ = x3(x2 + y2)(2x+ iy)(x+ y) of degree d+ 1 = 7 to arrive to contradiction.
In this example P̃ and Q̃ are not coprime. Indeed the homogeneous system is linear
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after removing the common factors. Moreover this linear system has the polynomial
inverse integrating factor x(2x+iy) and the rational first integral x3/(2x+iy)2, which
is the exponent of the exponential factor of H.

We finally note that the inverse integrating factor V of degree 6 is the one of (4)
and that V̄ is just the non-logarithmic part of V logH appearing in statement (1) of
Theorem 1, for we are under its hypotheses. �
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