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Abstract

We consider two types of non-autonomous 2-periodic Gumovski-Mira difference
equations. We show that while the corresponding autonomous recurrences are conju-
gated, the behavior of the sequences generated by the 2-periodic ones differ dramatically:
in one case the behavior of the sequences is simple (integrable) and in the other case it
is much more complicated (chaotic). We also present a global study of the integrable

case that includes which periods appear for the recurrence.
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1 Introduction

Autonomous difference equations are a classical tool for the modeling of ecological systems,

see for instance [16, 18, 22]. One of the modifications applied in the models in order to adapt
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them to more realistic situations consists in converting the recurrences into non-autonomous
ones changing one of the constant parameters by a periodic cycle (see [9, 10, 11, 13, 14, 21]
and references therein). In this situation it is said that the model takes into account
seasonality. For instance a parameter taking values in a cycle of period 4 could model an
ecological situation that has different features during spring, summer, autumn or winter.

In this paper we will consider a very simple autonomous recurrence, which depends on
a unique parameter and another one which is conjugated to this one. Then we will show
that changing the constant parameter by a two cycle has a completly different effect in both
cases. Indeed in one of them the recurrence has an invariant while in the second one the
recurrence looks as a chaotic one. This phenomenon is very surprising and shows that this
procedure used in modelling of changing the constant parameters by periodic cycles is quite
delicate.

More specifically, we take

QTn+1

1+ x%ﬂ

Tpy2 = —Tp + with  a >0, (1)

which is one of the recurrences considered by Gumovski and Mira in [17]. Performing the

change of variables z,, = \/a y,, it writes as

Yn+1 .
Ynt2 = —Yn+ —5— with [f=1/a>0. (2)
B+ yfm

We will see that when considering the corresponding 2-periodic recurrences

OnTn+4+1
x = —Tp+—, 3
nt2 " 14 :c%+1 (3)
and
Tn+1
x = —Tp+ ——— 4
n+2 n ﬁn T $,21+17 ( )

where {ay,},, is a 2-periodic cycle of positive values and 8, = 1/ay,,n > 0, their behaviors
are completely different. For the second case it is very simple, indeed integrable (that is, it
has a two-periodic invariant), see Theorem 8. On the other hand, for the first recurrence
and suitable initial conditions the points {z,}, seem to fill densely many disjoint closed
intervals. In fact its unfolding (x,,, ,+1) presents all the complexity of the perturbed twist
maps, see Section 3 and also Figure 1.

More specifically, in Subsection 2.2, we characterize all the sequences generated by the

recurrence (4). They are:
(i) Constant sequences or periodic sequences with period 2¢ for some ¢ € N;

(ii) Sequences {xy, }nen such that its adherence is formed by the same orbit plus an accu-

mulation point;



(iii) Sequences {xy, }nen such that its adherence is formed by one closed interval;

(iv) Sequences {x, }nen such that its adherence is formed by two closed intervals.

With respect to recurrence (3), we will see in Section 3 that there appear the same four

types of sequences given above plus other ones:

(v) Sequences {xy}nen such that its adherence is formed by the same orbit plus some

accumulation points;

(vi) Sequences {x, }nen such that its adherence is formed by several closed intervals.

The differences are perhaps more clear when considering the composition maps ([6, 7])
associated to the non-autonomous difference equations, which in this case are given by

Foy 0, = Fo, 0o Fy, and Gg, g, := Gpg, 0 Gg,, where

2

oy Y
Fo(z,y) = <y —w+1+y2> and  Gg(z,y) = <y —x+ B+y2>’

are the corresponding maps associated to the recurrences in (1) and (2). Notice that for

instance
(21, x2) &) (z2,x3) % (r3,24) % (x4,x5) % (x5, x6) %
where {xj}ren is the sequence generated by (4) and similarly for the recurrence (3).

For all o and 3 the maps Fi, and Gg are integrable diffeomorphisms from R? to R?,
which preserve area, and the dynamics on the level sets of their corresponding first integrals
is translation-like ([3, 5]). In a few words this means that when the level sets are circles it is
conjugated to a rotation and when they are diffeomorphic to the real line, it is conjugated
to a translation on this line.

The curious phenomenon that we present is that while the maps F, and Gy/, are
conjugated via the linear change ¥(z,y) = (v/az, /ay) (that is Gy = U~loF,oW), and
both maps posses a first integral, the dynamics of the compositions maps are very different:
while F,,, o, numerically exhibits all the features of a non-integrable perturbed twist map,
the map G /q,,1/q, has a first integral given by

1 1
V(z,y) = 071962 + CTQyQ + 2%y? — zy,

and its dynamics is translation-like (see Theorem 2). These two different behaviors are

illustrated in Figure 1 below.



Figure 1: In (a) and (b), some orbits of the maps G ,1/, and Fy o with a =2, b =1/2 are
depicted. In (c), a detail of (b) is shown.

2 The integrable case

Consider the non-autonomous recurrence

Tn41 (5)

Tpy2 = —Tp + 5,
Bn +x
n n+1

with
5, = a>0 for n=2k,
"]l b>0 for n=2k+1, keN,

The local analysis of the constant recurrences generated by it and the level sets of its
associated non-autonomous invariant I(z,y,n) = B,2? + Bni1y® — xy + 2%y%, has been
already done in [8] (see also [3] and [17]). In this section we complete the description of the
global dynamics of the difference equation (5) and its associated composition map Gj 4.

2.1 Dynamics of the discrete dynamical system generated by G, ,

The above invariant for (5), gives the first integral
Voa(,y) = 1(2,y,2) = az® + by* — wy + 2%y?,

for the the map Gp 4,

Y PR R (a+y°)(y — 2(a+y°))
Gb@(gg,y) = ( + a+y2’ y+ b(a+y2)2 + (y _ x(a+y2))2> . (6)

In [8] a full description of the level sets of V}, is given, they are also described in Theorem
2, bellow. In a few words, the level sets are like (a) in Figure 1 when ab > 1/4 and like

Figure 2 when ab < 1/4.



Figure 2: Some orbits of the maps Gy, with a =1/4, b =2/9.

To describe the dynamics on each level set we need to apply the result bellow, which

follows from [5].

Proposition 1. Let ¢ : Y — U, U C R? be a smooth planar area preserving map having
finitely many fized points and a smooth first integral V : U — R. Then:

(a) When a connected component of a level set of V' does not contain fixed points of ®, is

variant and

(i) it is diffeomorphic to a circle then ®, on it, is conjugated to a rotation.

(i) it is diffeomorphic to the real line then ®, on it, is conjugated to a translation.

(b) When a connected component of a level set contains fixed points of ®. Then on each
invariant connected component of this level set minus the fized points, ® is conjugated

to a translation.

Taking into account the above proposition and the topology of the level sets of V; 4, we
obtain the characterization of the dynamics of the composition maps on these invariant level
curves. This result improves the ones obtained in [8] for ab > 0, where only the stability
problem was considered.

We will use the following notations:

/ 1 /b / 1 /a
Py = = +14/ — - —, 4/ — + — — .
+ (l‘i,yi) b+ 2\/; a 2\/;

These points correspond to the non-zero fixed points of Gy 4, that only exist for ab < 1/4.
We also set hpin == Vpo(Py) = —i —ab+ Vab.



Theorem 2. (a) If ab > 1/4, then the origin is the unique fized point of Gy o and it is of
elliptic type. The sets {Vyq(x,y) = h > 0} surround the origin, are diffeomorphic to
circles and invariant under Gy, .. Moreover on each of them the map is conjugated to

a rotation.
(b) If ab < 1/4, then:

(i) The origin is a hyperbolic saddle of Gyo. The set {Vyq(x,y) = 0} \ {(0,0)}
coincides with the stable and unstable manifolds of the saddle and consists of two
curves diffeomorfic to the real line. Each of them is invariant under Gy, and

the map s conjugated to a translation.

(i) The sets {Vyq(x,y) = h > 0} are diffeomorphic to circles surrounding the set
{Vbo <0}. They are invariant under Gy, and on each of these sets the map is

conjugated to a rotation.
(iii) Py are fized points of Gy, of elliptic type.
(v) The sets {Vyo(z,y) = h < 0,h # hmin} are diffeomorphic to two circles sur-

rounding Py and P_ respectively. Each of these circles is invariant under Gy,

and the map on each of these sets is conjugated to a rotation of the circle.

In next subsection we will use the above result to describe the behavior of the sequences
{zn}nez generated by the recurrence (5).

Notice that when the level sets of V;, are diffeomorphic to circles, the above result
allows to associate to each level set {V}, q(x,y) = h} the rotation number of the map Gy,
restricted to it. We denote it by pp,(h) and we call the function py o, the rotation number
function. Recall that when pyo(h) = p/q € Q, with ged(p,q) = 1, then {V} ,(z,y) = h}
is full of g-periodic points of Gy, and when p,(h) ¢ Q, then the orbit of Gy, is dense
on {Vyq(z,y) = h}. Notice that pp,(h) is a well defined function of h, because when
{Vbo(z,y) = h} has two ovals, then py, coincides on both because of the invariance of the
map Gy, by the change of variables (z,y) — (—z, —y). Hence, to describe the periods of
Gb,o we must study the map pp o(h).

Following the techniques introduced in [4, 5] and some new tools we prove the following

result:

Proposition 3. (i) Let pyq(h) be the rotation number map associated to Gy, for h > 0.
Then it is analytic on (0,+00). Moreover, limp,_, o pp.a(h) = 1/2 and

0, when  ab < 1/4,

lim ppa(h) =<4 1 1
h—0t " — — - > 1/4.
5 Arceos (2ab 1>, when ab>1/4



(1) When ab < 1/4, ppo(h) is also defined for h € (hmin, 0) it is analytic on this interval
and
1

lim pyq(h) = — arccos(1 — 16 Vab + 32ab).
h—Py' 2m

Proof. (i) Following [5, Thm 1] under our hypotheses the rotation number function on each
level set admits a dynamical interpretation in terms of the time of the flow associated to

the planar vector field

= (z — 2by — 22°%y, 2ax — y + 2zy°).

MWVya Vi
Xb,a(xay) = ( " b )

oy = Ox
More concretely, each closed curve {V} ,(z,y) = h} is a periodic orbit of period T'(h) of the
differential equation associated to Xp,, and moreover Gy q(x,y) = ¢(7(h);z,y), where ¢
is the flow associated to X3 ,. Then pyq(h) = 7(h)/T'(h). From this expression it is not
difficult to see that it is an analytic function for h € (0, 00), see [4].

A straightforward computation shows that when ab > 1/4

1—2ab+iv4ab—1
2ab '

Spec(DGp4(0,0)) = {A\*,A\"}, where M\ =
By using the tools developed to prove [4, Prop. 19] we get that

. 1 1 1
hlg& pva(h) = 5, arceos (Re(N)) = 5, arccos <M — 1)7

as we wanted to show.

To study the case ab < 1/4 we will use another approach. Notice that in this situation
the level set Vo := {V} o(z,y) = 0}, is formed by the origin, which is a saddle point, and their
stable and unstable manifolds, which coincide, forming two loops, see Figure 2. Moreover
on each of these loops the map Gy, is conjugated to a translation and

lim Gy, (21, 72) = (0,0),

n—+oo

for each (x1,22) € Vo \ {(0,0)}. Given any £ > 0, we take N such that 1/(2N) < ¢ and
the points P := Gi;‘(xl, x2). Observe that both are in the same connected component of
Vo \ {(0,0)}. Note that G%g(Pn_) = P;F. By continuity of Gijg we known that the image
for Ggi\{ of a point, near P, , on {V,4(x,y) = h > 0} is, for h > 0 small enough, as close
as we want to P, . This implies that after 2V iterates this point has given less that half a
turn to {V44(x,y) = h > 0}. Consequently, for h small enough, py4(h) < 1/(2N) < ¢, as
we wanted to prove.

The case ab = 1/4 follows from the above two results, again by continuity arguments.



Finally, to compute hlim pb.a(h) we consider the change of variables given by (z,w) =
——+00

(1/x,1/y) which conjugates the behavior at infinity of Gy, with the behavior at the origin

é(z7w) _ <_ z (1 + aw?) p(z,w)w> 7

1—zw+aw? q(z,w)

of the new map:

where
p(z,w) = 1+ 2aw? — 22w + b2? + a®>w? — 2azw? + 2abz*w? + 22w? + a?b2?w?,

q(z,w) = 14 2aw? — zw + bz? + a?w* + 2abz*w? + a?zw® + a?b2?w* — az?w?.

Clearly G(z,w) = (=2 4+ Oa(z,w), —w + Oa(z,w)) and so DG(0,0) has the eigenvalues
+1 = +¢™. Hence arguing as in the study of G, near (0,0) we obtain that

T 1
li h)=—=2
A pra(h) = 50 =5
as we wanted to prove.
(ii) Follows by using similar arguments. [}

Remark 4. (i) Applying the method developed in the previous proposition to study Gy, we
would obtain hEI—ir-loo pp(h) = 1/4. This gives a new proof of this fact which is essentially
different of the one given in [3].

(i) It holds that

1 1 1 1
%arccos <M - 1) < %arccos (-1) = 3

Hence the map py.q(h) can not be a constant function. In particular this implies that there

are no positive values a and b for which Gy, or Gy, are globally periodic.

Before stating our main result on the periods appearing for Gy, ,, we study in detail the

2-periodic points.

Lemma 5. Fora >0 and b > 0 the map Gy o has 2-periodic points if and only if 0 < ab <
1/16. Moreover they are given by the two ovals {V} o(z,y) = —ab}.

Proof. We have to solve the system Gy, o(Gb.q(x,y)) = (x,y), which is equivalent to the new

one G q(z,y) = G; (2, y). After some manipulations it gives

(22%y — o + 2by) R(z,y) =0,
(22y° + 2az — y) R(z,y) =0,

where R(z,y) := 22y* + ax® — zy + by* + ab = V} (2, y) + ab. Its solutions have to contain
also the fixed points of the map. It is not difficult to check that the fixed points are the



real solutions of the system {222y — x +2by = 0, 229>+ 2ax —y = 0}. Hence the 2-periodic
points coincide with the set R := {R(x,y) = 0}. Therefore we need to study when it has

real points. Notice R is a quadratic polynomial with respect to x. Its discriminant is
D(y) := —4by* + (1 — 8ab) y* — 4ba?.

Since a > 0 and b > 0 then R will be non-empty when D(y) takes non-negative values. The
discriminant of D(y), with respect to y2, is 16ab—1 > 0. So when 0 < ab < 1/16, the set R
is non empty. When ab = 1/16 it coincides with the other fixed points Py. For ab < 1/16 it
is formed by two ovals surrounding them, which form precisely the level set with rotation
number 1/2, that is pp o(—ab) = 1/2. Hence the result follows. [}

Recall that the origin is always a fixed point of the map G, and that when ab < 1/4
it has two more fixed points. Next result gives the periodic points of this map with period

greater than one.
Theorem 6. Let Gy, the map defined in (6) for a >0 and b > 0.
(a) For 0 < ab < 1/16 it has continua of periodic points of all the periods greater than one.

(b) For 1/16 < ab < 1/4 it has continua of periodic points of all the periods greater than

two and has no periodic points of period two.

(¢) For ab > 1/4 it has continua of periodic points of all the periods q such that there exists
p € N, with ged(p, q) = 1 and such that

p_(1 A
= — arccos [ — — — ).
q 27 2ab 2

In particular, there is a computable number qo(a,b) such that Gy, has continua of

periodic points of all periods greater than qo(a,b).

Proof. 1t is a direct consequence of Theorem 2, Proposition 3 and Lemma 5. Notice that the
fact that all periods greater than 2 appear when ab < 1/4 is because ¢ > 3, 1/q € (0,1/2).
The final conclusion in (c) follows from the well-known fact that any open interval contains
irreducible fractions with all the denominators bigger that a given number which depends

on their extremes. A constructive upper bound for this number is developed in [4]. ]

Remark 7. (a) If the rotation number function pyq(h) was monotonous with respect to h
then we could also completely characterize all the periods for the case ab > 1/4. They would
be precisely the ones given in item (c).

(b) Theorem 6 can be easily adapted to obtain similar results for the Gumouski-Mira

maps, Gp,b > 0. The corresponding results complete the ones of [3] obtained for the case



b > 1/2, where all the level sets of the corresponding first integral, but the origin, are

diffeomorphic to circles.

2.2 Study of the recurrence (5)

Theorem 2 will allow us to characterize the sequences {z,},en generated by the recur-
rence (5). Observe that in fact since the map Gy, is a diffeomorphism of R?, by using its
inverse we can define the extended sequence {xy, },cz. Recall that it is said that a recurrence
is persistent if any sequence {z, }ncz is contained in a compact set or R, which depends on
the initial conditions z; and xs.

Clearly for any a > 0, b > 0 and =1 = 29 = 0 we get that z,, = 0 for all n € Z. Next

result describes the behaviour of {z, },ez for non-null initial conditions.

Theorem 8. The recurrence (5) is persistent. Furthermore, let {zy}nez be any sequence
defined by (5) with initial conditions x1 and x2, (x1,x2) # (0,0) and set

1 1 1
hmin = —Z—ab—i—\/% and hy =35 —(a2+b2)—§+ (a+b) V(a—b)2+1].

It holds that hpin, < hy < 0.

(a) Assume that ab < 1/4. Then:

(i) For (x1,x2) = Py, which coincide with the set {Vj o(2,y) = hmin}, the sequence
{Zn}nez is two periodic when a # b and a constant sequence when a = b.
(it) For (z1,x2) # (0,0) and Vp q(z1,22) =0, Elil xy, = 0.
(111) For a numerable and dense set of values of h, the level sets {Vj, o(x,y) = h} give

initial conditions such that {xy}nez is a periodic sequence of even period which

only depends on h.

(iv) For the rest of values of h (which form a dense set of full measure), the level
sets {Vpa(x,y) = h} give initial conditions such that the adherence of the cor-
responding sequence {x, }nez is given by one or two intervals. More concretely,
this adherence is given by one interval when either a =b; h > 0; or hy < h <0
and by two intervals when a # b and hyin < h < hy.

(b) Assume that ab > 1/4. Then only the behaviors given in items (iii) and (iv) appear.

Moreover in item (iv) the adherence is always formed by a single interval.

Proof. We will use the techniques introduced in [6] where we studied the 2-periodic Lyness

recurrences. First notice that the relation between the terms of the recurrence and the

10



iterates of the composition map is given by

Goa(Tan—1,%20) = (T2n41, Tont2),  Gap(T2n, Tont1) = (T2nt2, Tonts),

where (z1,72) € R? and n € Z. Also observe that a simple computation shows that

%,a (.%‘, y) = Va,b(Ga (:L'? y)),

which implies that the odd terms of the sequence {x,,},cz are contained in the projection
on the z-axis of the level sets of the form {V} ,(x,y) = Vjo(x1,22) = h} and the even ones
are in the corresponding projection of the level sets {Vg 4(z,y) = Vo p(Galx1,22)) = h}.

The result (i) is clear. Statement (ii) is a new consequence of Theorem 2 and the fact
that the sets {V,q(x,y) = 0} \ {(0,0)} are two homoclinic loops starting and ending at
(0,0). To prove (iii) and (iv) we consider the cases (a) and (b) together.

Again from Theorem 2 we know that the sequence starting at a point (z1, z2) such that
pba(Voa(z1,22)) = p/q € Q with ged(p,q) = 1, will be 2¢g-periodic. When it holds that
Pba(Voa(z1,22)) € Q, then it will densely fill the projection of {V},(z,y) = h} (the odd
terms) together with the projection of {V, y(x,y) = h} (the even terms).

Hence to end the proof we only need to show that the rational values of pg (V4,4 (h)) are
taken only for a numerable dense set of values h and, when p, 5(Vp o (R)) € Q, to distinguish
whether the above to projections do or do not overlap.

Let us prove first that p, (Vs q(h) € Q only for a numerable and dense set of values
of h. First recall that from Proposition 3 and Remark 4 we know that the function is
analytic and nonconstant in the intervals where it is defined. Next we use the well-known
fact that a nonconstant analytic function has a numerable number of zeroes. This implies
that for any r € Q the set P, := {h € R : ppq(h) —7 = 0} is numerable. Therefore U,cqPy
is numerable as we wanted to see. That it is dense follows from the continuity of all the
involved functions.

To end the proof we only need to decide whether the projections into the z-axis of
{Vbo(z,y) = h} and {V, (x,y) = h} intersect or not.

When h > 0, for any positive a and b both ovals {V}, 4(z,y) = h} and {Vyp(x,y) = h}
surround the origin. Hence the adherence of {x,, },cz is always one closed interval.

Assume now that h < 0 (and so ab < 1/4). An easy computation shows that when
a # b, G4(Pz) is neither Py nor Py, so the points Py give rise to two different 2-periodic
solutions of the recurrence. When a = b, Py are fixed points of G, and the situation is like
the previous one. So in the following we also assume that a # b.

Since G4 (Py) is neither Py nor Py, and G, is a diffeomorphism, it is possible to take

ovals of the form {Vj ,(x,y) = h} with hmin =~ h < 0 whose projections into the abscissa

11



axis do not overlap with the corresponding ones of {V, ;(z,y) = h}. However, by increasing
h the projections will start to overlap.

Let be I = I*(a,b,h), and J* = J¥(a,b, h) be the projections on the abscissa axis
of the ovals contained in the level sets given by {Vj.(z,y) = h} and {Vou(z,y) = h}
respectively, surrounding Py and P_. We want to detect the values of h for which the
intervals I™ and J* (and I~ and J~ respectively) have exactly one common point. First
we seek for their boundaries. Since the level sets are given by quartic curves, quadratic
with respect the y-variable, these points will correspond with values of x for which the

discriminant of the quadratic equation with respect to ¥ is zero. So, we compute

Ri(z,h,a,b) :=dis (Vpo(2,y) — h,y) = —dax* + (—dab+4h+ 1) 22 + 4bh,
Ro(x, h,a,b) :=dis (V,p(z,y) — hyy) = —4ba* + (—4dab+4h+ 1)z + 4ah.

To search for relations among a,b and h for which these functions have some common

solution, x, we compute the following resultant
472 2 2 2 2\ 2
Res(R1, Ro; ) = 256 (a — b)* h (16h + (16a% + 16 1% + 8) h + (4ba — 1) )

Since a # b, the possible bifurcation values of h are given by the roots of the quadratic
polynomial
Pi(h) :=16h* + (16a* + 160> + 8) h + (4ba — 1)?, (7)

which are

ha ;:% —(a2+b2)—%j: (a+b) Va—b2+1].

Then the number of disjoint intervals depends only on the relative positions of huyin, h+ and
Vba(z1, 22).

To study the relative positions of Ay, and hi, we introduce the auxiliary polynomial
Py(h) = (h+ ab+ 3)* — ab, because one of its roots is Amin. Then

Res(Py, Py; h) = 16 (4ab — 1)% (a — b)%.

This means that we can split the parameter set A := {(a,b), a,b > 0, ab < 1/4} into the

following disjoints sets:
A={a,b>0,ab<1/4,a>b}U{a,b>0,ab<1/4,a=>b}U{a,b>0,ab<1/4,a < b}.

Observe that, because of the properties of the resultant, the relative positions of Ay, and
h+ on the above subsets do not vary. So testing their values for some particular parameters,

we obtain that when a # b we always have that Ay, < he < 0 (we also notice that when

a=0b, ho < humin = hy).

12



In summary, the above considerations imply that when a # b, and since G,(Py) # Py,
the projections into the abscissa axis of all the ovals {V} o(x,y) = h} and {V,, = h} when
hmin < h < hy do not overlap, giving rise to two different intervals. When hy < h < 0 they

overlap giving only one interval. ]

From the above theorem we get that the list of behaviours (i)-(iv) listed in the introduc-
tions are the only ones that the sequences generated by (5) can present. Moreover, given
some values of a and b the information about the possible periods of the periodic sequences
can be obtained from Theorem 6.

We end this subsection with a concrete example.

Example 9. Consider a = 0.01, b = 0.49. For any initial condition (x1,x2), set hg =
V},’a(a:l,afg). From the definitions given in Theorem 8 we have that hyym = —0.1849 and
hy ~ —0.0928, so

o Ifho € (hmin, h+ ), the sequence generated by the recurrence (5) is either periodic (with

even period) or it fills densely two intervals.

o If hg € [hy,0), the sequence generated by the recurrence (5) is either periodic (with

period a multiple of 2) or it fills densely one interval.

For instance if we consider the initial conditions (x1,x2) = (x4 —0.1,y4 —0.1), we have
that hg = Hyq(x1,22) ~ —0.1459, hence hg € (hmin, h+), and the corresponding sequence
generated by the recurrence (5) is either periodic or it densely fills two disjoint intervals.

This last option is the one that appears in our numerical simulations, see Figure 3.

C

Figure 3: Here a = 0.01, b= 0.49. The ovals {V} o(x,y) = ho} and {Vap = ho} with

ho ~ —0.1459 and their projections on the abscissa axis.
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2.3 Integrability for general k-periodic Gumovski-Mira recurrences

In this section we search for invariants of the form

4
I(z,y,n) = Y IJa'y (8)
itj=1

for the recurrence (5), but for any sequence {f,}, of positive numbers. This form is
natural because includes the invariants known for {f,}, constant or 2-periodic. As far
as we know, this method was introduced in [15]. It was also used in [7] to prove that
non-autonomous Lyness recurrences, zp+2 = (o, + Tpt1)/xy, only admit invariants of a
suitable form when {w,}, are periodic with periods 1,2,3 and 6. If we could find a new
integrable Gumovski-Mira recurrence all the methods used in this section could be adapted
to study it. Unfortunately, next result shows that for the Gumovsky-Mira non-autonomous
recurrences, only the cases of {3, }, with period 1 and 2 seem to be integrable. We have
chosen I(z,y,n) with terms of degree at most 4 for simplicity. Bigger degrees could be also

studied by using the same approach.

Proposition 10. The non-autonomous k-periodic recurrence (4), with {fn}n a sequence of
positive numbers, has invariants of the form (8) if and only if {Bn}n is k-periodic and k €
{1,2}. Moreover, in these cases the invariants are I(z,y,n) = Bnz?+ Bni1y® +y2%y? — vy,
for any v # 0.

Proof. The condition that a function I(x, y,n) of the form (8) is a non-autonomous invariant

of the recurrence (5) writes as

I<y,—:c—|— Q,n—l—l)—f(x,y,n)zo,

_Yy
Bnty

for all (x,5) € R? and all n € N. Imposing that all the monomials of the left hand side of
the above relation vanish and after some work we get in particular that 8,42 = 3, and so

that such an invariant exists only when {/,}, is constant or 2-periodic. For both cases we

also obtain the explicit form of the known invariants. ]

3 The chaotic case

In this section we consider the non-autonomous recurrence

AnTn41 (9)

x 92 = —X +
n+ n 1+x%+1>

with
a>0 for n=2k,
(0% =
" b>0 for n=2k+1, keN.
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Recall that for each fixed value of a, the map F; associated to the corresponding au-

tonomous recurrence
ATn41

nt 5 10
L+, 1o

Ip42 = —T
has the first integral
Wal(z,y) = 22y* + 22 + y* — axy.

Moreover it is conjugated to Gy/,. Therefore F,, and Fy, , are integrable and the dynamical
systems generated by them as well as the recurrences generated by (10) can be easily

described using the results of the previous section.

3.1 The map F;, as a perturbed twist

Here we will see that the map Fj ., which writes as,

(g, WOy — a4 y?)
Fb,a(%y)—< +1+y2’ y+(1+y2)2+(ay—$(1+92))2>’

(11)

is far from preserving neither the integrability nor the translation-like dynamics, proved for
G- In fact, our numerical simulations show all the features of a non-integrable perturbed
twist map, that is: many invariant curves and, between them, couples of orbits of p-periodic
points (for several values of p), half of them of elliptic type and the other half of hyperbolic
saddle type, see for instance [2, Chapter 6]. Notice that the sequences corresponding to
the stable manifolds of the hyperbolic saddles are precisely the ones that give rise to the
behaviour (v) described in the introduction.

More precisely, for instance, when a € (0,2) the positive level sets of W, in R? are
closed curves surrounding the origin, which is the unique fixed point of Fj, (see Figure 1
(a)) and we know that the action of F, restricted to each of them is conjugated to a rotation.
In fact, both F, and F? can be seen as area preserving integrable twist diffeomorphisms
since, at least locally, the rotation number function associated F, to most level set of W, is
monotonous. Therefore when we consider Fy. 4, for € small enough, it can be thought as
a perturbed twist map. Our numerical experiments show that this perturbed twist map is
no more integrable and that this behaviour remains even when the values of b are not close
to the ones of a. This is the situation depicted in Figure 1 (b) and (c). Unfortunately we
have not been able to prove the non-integrability of Fy , for b # a.

When a > 2 the negative level sets of W, are two nests of closed curves surrounding two
fixed points of F,. These two nests are surrounded by a polycycle composed by a saddle
point of the map and a couple of homoclinic curves surrounding both elliptic fixed points.
The rest of the level sets are given by closed curves surrounding the polycycle, see Figure 2.

The dynamics of F, on the invariant level sets of W, is again translation-like. In this case,
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when we consider b = a + € for € small enough, near the nests of F, the map F;, can
be seen again as a non-integrable perturbation of the twist map Fg = Fj 4, and the same
phenomena than above appear. These behaviours are also observable when the values of b
are not close to the ones of a. This is the situation exemplified in Figure 4, where it can
also be observed orbits of I} , which seem to fill densely a sets of positive Lebesgue measure

in R2.

Figure 4: (a) Several orbits of the map Fy/s 4. (b) Plot of 10° iterates of the orbit of Fy/o.4
starting at (1.18,0.1).

From the viewpoint of the solutions {z, }ncz of the equation (9), another difference is
that the number of disjoint intervals of the adherence of an orbit can be more than 2, as it

is shown in the following examples.

Example 11. Consider a =2 and b= 1/2. We give some initial conditions giving rise to

solutions {xn }nez which, numerically, seems to densely fill more than 2 intervals.

Initial conditions | Intervals
(1.10,0.5) 7
(1.25,0.5) 16
(1.29,0.5) 1
(1.30,0.5) 23
(1.35,0.5) 1
(1.40,0.5) 6
(1.48,0.5)
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In Figure 5 are depicted the 6 intervals corresponding to the initial condition (1.48,0.5),
and the 16 intervals of the initial condition (1.25,0.5)

[e) =

)

(a) (b)

Figure 5: Orbits of F} /35 and their images under Fy corresponding to the initial
conditions (1.48,0.5) and (1.25,0.5) respectively, together with their corresponding

projections on the abscissa axis.

Example 12. An ezample similar to Example 11 with a =4 and b =9/2.

Initial conditions | Intervals
(2.5,0.5) 4
(2.9,0.5) 1
(3.0,0.5) 5

(3.1,0.5) 3

(3.2,0.5) 1

( ) 4

3.2,0.5
3.6,0.5

In Figure 6 we show the 4 intervals corresponding to the initial condition (2.5,0.5), and the
5 intervals of the initial condition (3,0.5).

17



[

AN

= - N

() (b)

Figure 6: Orbits of Fy/; 4 and their images under Fy corresponding to the initial conditions

(2.5,0.5) and (3,0.5) respectively, and their corresponding projections on the abscissa axis.

3.2 Local study of F},, near the origin

The origin is an elliptic fixed point of the area preserving map Fy, when ab < 4. In fact

the characteristic polynomial of DF}, ,(0,0) is
Pop(A) = A+ (2 = ba)d + 1

and Spec(DFy4(0,0)) = {A\*, A7}, where AT := —1+ % £ £ /ab(4 — ab).

Computing the resultants
Res(P,p(A\), A\F —1;)), for k=1,2,3

we know that for ab # 1 the eigenvalues A\* are under the non-resonance conditions of
Moser’s Stability Theorem, see [1, 20]. That is, they are not kM roots of the unity for
k = 1,2,3. We remark that Example 11 seems to show that the situation ab = 1 is not
special at all.

We have obtained the local Birkhoff normal form of F}, , at the origin using [12, 19]. It
is given by z = A2 (1 +i02z + O3(2,2)), where 2 =z + iy € C and

_ 3(b+a)/ab(4 — ab)
B 4b (4 — ab)

£ 0.

So, from Moser’s Theorem we know that for ab # 1, in every neighborhood of the
origin, there exist infinitely invariant closed curves surrounding it. Although the theorem

does not allow to make the distinction between the integrable and the non-integrable cases,
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by using the Poincaré-Birkhoff Theorem, see [20], we can ensure the existence of periodic
orbits having all periods bigger that a given one, between each two of these invariant
closed curves. Therefore we have proved that for the corresponding values of a and b the
recurrence (9) generates periodic sequences of any even period, bigger that some constant,
which depends on a and b. These sequences correspond to the ones described in item (i) of

the introduction.
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