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Abstract

We consider two types of non-autonomous 2-periodic Gumovski-Mira difference

equations. We show that while the corresponding autonomous recurrences are conju-

gated, the behavior of the sequences generated by the 2-periodic ones differ dramatically:

in one case the behavior of the sequences is simple (integrable) and in the other case it

is much more complicated (chaotic). We also present a global study of the integrable

case that includes which periods appear for the recurrence.

Keywords: Integrable and chaotic difference equations and maps; rational difference equa-

tions with periodic coefficients; perturbed twist maps.
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1 Introduction

Autonomous difference equations are a classical tool for the modeling of ecological systems,

see for instance [16, 18, 22]. One of the modifications applied in the models in order to adapt
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them to more realistic situations consists in converting the recurrences into non-autonomous

ones changing one of the constant parameters by a periodic cycle (see [9, 10, 11, 13, 14, 21]

and references therein). In this situation it is said that the model takes into account

seasonality. For instance a parameter taking values in a cycle of period 4 could model an

ecological situation that has different features during spring, summer, autumn or winter.

In this paper we will consider a very simple autonomous recurrence, which depends on

a unique parameter and another one which is conjugated to this one. Then we will show

that changing the constant parameter by a two cycle has a completly different effect in both

cases. Indeed in one of them the recurrence has an invariant while in the second one the

recurrence looks as a chaotic one. This phenomenon is very surprising and shows that this

procedure used in modelling of changing the constant parameters by periodic cycles is quite

delicate.

More specifically, we take

xn+2 = −xn +
αxn+1

1 + x2n+1

with α > 0, (1)

which is one of the recurrences considered by Gumovski and Mira in [17]. Performing the

change of variables xn =
√
α yn, it writes as

yn+2 = −yn +
yn+1

β + y2n+1

with β = 1/α > 0. (2)

We will see that when considering the corresponding 2-periodic recurrences

xn+2 = −xn +
αnxn+1

1 + x2n+1

, (3)

and

xn+2 = −xn +
xn+1

βn + x2n+1

, (4)

where {αn}n is a 2-periodic cycle of positive values and βn = 1/αn, n ≥ 0, their behaviors

are completely different. For the second case it is very simple, indeed integrable (that is, it

has a two-periodic invariant), see Theorem 8. On the other hand, for the first recurrence

and suitable initial conditions the points {xn}n seem to fill densely many disjoint closed

intervals. In fact its unfolding (xn, xn+1) presents all the complexity of the perturbed twist

maps, see Section 3 and also Figure 1.

More specifically, in Subsection 2.2, we characterize all the sequences generated by the

recurrence (4). They are:

(i) Constant sequences or periodic sequences with period 2q for some q ∈ N;

(ii) Sequences {xn}n∈N such that its adherence is formed by the same orbit plus an accu-

mulation point;
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(iii) Sequences {xn}n∈N such that its adherence is formed by one closed interval;

(iv) Sequences {xn}n∈N such that its adherence is formed by two closed intervals.

With respect to recurrence (3), we will see in Section 3 that there appear the same four

types of sequences given above plus other ones:

(v) Sequences {xn}n∈N such that its adherence is formed by the same orbit plus some

accumulation points;

(vi) Sequences {xn}n∈N such that its adherence is formed by several closed intervals.

The differences are perhaps more clear when considering the composition maps ([6, 7])

associated to the non-autonomous difference equations, which in this case are given by

Fα2,α1 := Fα2 ◦ Fα1 and Gβ2,β1 := Gβ2 ◦Gβ1 , where

Fα(x, y) =

(
y,−x+

αy

1 + y2

)
and Gβ(x, y) =

(
y,−x+

y

β + y2

)
,

are the corresponding maps associated to the recurrences in (1) and (2). Notice that for

instance

(x1, x2)
Gβ1−−→ (x2, x3)

Gβ2−−→ (x3, x4)
Gβ1−−→ (x4, x5)

Gβ2−−→ (x5, x6)
Gβ1−−→ · · ·

where {xk}k∈N is the sequence generated by (4) and similarly for the recurrence (3).

For all α and β the maps Fα and Gβ are integrable diffeomorphisms from R2 to R2,

which preserve area, and the dynamics on the level sets of their corresponding first integrals

is translation-like ([3, 5]). In a few words this means that when the level sets are circles it is

conjugated to a rotation and when they are diffeomorphic to the real line, it is conjugated

to a translation on this line.

The curious phenomenon that we present is that while the maps Fα and G1/α are

conjugated via the linear change Ψ(x, y) = (
√
αx,
√
αy) (that is G1/α = Ψ−1 ◦Fα ◦Ψ), and

both maps posses a first integral, the dynamics of the compositions maps are very different:

while Fα2,α1 numerically exhibits all the features of a non-integrable perturbed twist map,

the map G1/α2,1/α1
has a first integral given by

V (x, y) =
1

α1
x2 +

1

α2
y2 + x2y2 − xy,

and its dynamics is translation-like (see Theorem 2). These two different behaviors are

illustrated in Figure 1 below.
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(a) (b) (c)

Figure 1: In (a) and (b), some orbits of the maps G1/b,1/a and Fb,a with a = 2, b = 1/2 are

depicted. In (c), a detail of (b) is shown.

2 The integrable case

Consider the non-autonomous recurrence

xn+2 = −xn +
xn+1

βn + x2n+1

, (5)

with

βn =

{
a > 0 for n = 2k,

b > 0 for n = 2k + 1, k ∈ N,

The local analysis of the constant recurrences generated by it and the level sets of its

associated non-autonomous invariant I(x, y, n) = βnx
2 + βn+1y

2 − xy + x2y2, has been

already done in [8] (see also [3] and [17]). In this section we complete the description of the

global dynamics of the difference equation (5) and its associated composition map Gb,a.

2.1 Dynamics of the discrete dynamical system generated by Gb,a

The above invariant for (5), gives the first integral

Vb,a(x, y) := I(x, y, 2) = ax2 + by2 − xy + x2y2,

for the the map Gb,a,

Gb,a(x, y) =

(
−x+

y

a+ y2
,−y +

(a+ y2)(y − x(a+ y2))

b(a+ y2)2 + (y − x(a+ y2))2

)
. (6)

In [8] a full description of the level sets of Vb,a is given, they are also described in Theorem

2, bellow. In a few words, the level sets are like (a) in Figure 1 when ab ≥ 1/4 and like

Figure 2 when ab < 1/4.
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Figure 2: Some orbits of the maps Gb,a with a = 1/4, b = 2/9.

To describe the dynamics on each level set we need to apply the result bellow, which

follows from [5].

Proposition 1. Let φ : U → U , U ⊂ R2 be a smooth planar area preserving map having

finitely many fixed points and a smooth first integral V : U → R. Then:

(a) When a connected component of a level set of V does not contain fixed points of Φ, is

invariant and

(i) it is diffeomorphic to a circle then Φ, on it, is conjugated to a rotation.

(ii) it is diffeomorphic to the real line then Φ, on it, is conjugated to a translation.

(b) When a connected component of a level set contains fixed points of Φ. Then on each

invariant connected component of this level set minus the fixed points, Φ is conjugated

to a translation.

Taking into account the above proposition and the topology of the level sets of Vb,a, we

obtain the characterization of the dynamics of the composition maps on these invariant level

curves. This result improves the ones obtained in [8] for ab > 0, where only the stability

problem was considered.

We will use the following notations:

P± = (x±, y±) :=


±

√

−b+
1

2

√
b

a
,±
√
−a+

1

2

√
a

b


 .

These points correspond to the non-zero fixed points of Gb,a, that only exist for ab < 1/4.

We also set hmin := Vb,a(P±) = −1
4 − ab+

√
ab.
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Theorem 2. (a) If ab ≥ 1/4, then the origin is the unique fixed point of Gb,a and it is of

elliptic type. The sets {Vb,a(x, y) = h > 0} surround the origin, are diffeomorphic to

circles and invariant under Gb,a. Moreover on each of them the map is conjugated to

a rotation.

(b) If ab < 1/4, then:

(i) The origin is a hyperbolic saddle of Gb,a. The set {Vb,a(x, y) = 0} \ {(0, 0)}
coincides with the stable and unstable manifolds of the saddle and consists of two

curves diffeomorfic to the real line. Each of them is invariant under Gb,a and

the map is conjugated to a translation.

(ii) The sets {Vb,a(x, y) = h > 0} are diffeomorphic to circles surrounding the set

{Vb,a ≤ 0}. They are invariant under Gb,a and on each of these sets the map is

conjugated to a rotation.

(iii) P± are fixed points of Gb,a of elliptic type.

(iv) The sets {Vb,a(x, y) = h < 0, h 6= hmin} are diffeomorphic to two circles sur-

rounding P+ and P− respectively. Each of these circles is invariant under Gb,a,

and the map on each of these sets is conjugated to a rotation of the circle.

In next subsection we will use the above result to describe the behavior of the sequences

{xn}n∈Z generated by the recurrence (5).

Notice that when the level sets of Vb,a are diffeomorphic to circles, the above result

allows to associate to each level set {Vb,a(x, y) = h} the rotation number of the map Gb,a

restricted to it. We denote it by ρb,a(h) and we call the function ρb,a, the rotation number

function. Recall that when ρb,a(h) = p/q ∈ Q, with gcd(p, q) = 1, then {Vb,a(x, y) = h}
is full of q-periodic points of Gb,a and when ρb,a(h) 6∈ Q, then the orbit of Gb,a is dense

on {Vb,a(x, y) = h}. Notice that ρb,a(h) is a well defined function of h, because when

{Vb,a(x, y) = h} has two ovals, then ρb,a coincides on both because of the invariance of the

map Gb,a by the change of variables (x, y) −→ (−x,−y). Hence, to describe the periods of

Gb,a we must study the map ρb,a(h).

Following the techniques introduced in [4, 5] and some new tools we prove the following

result:

Proposition 3. (i) Let ρb,a(h) be the rotation number map associated to Gb,a for h > 0.

Then it is analytic on (0,+∞). Moreover, limh→+∞ ρb,a(h) = 1/2 and

lim
h→0+

ρb,a(h) =





0, when ab < 1/4,

1

2π
arccos

(
1

2ab
− 1

)
, when ab ≥ 1/4.

6



(ii) When ab < 1/4, ρb,a(h) is also defined for h ∈ (hmin, 0) it is analytic on this interval

and

lim
h→P±

ρb,a(h) =
1

2π
arccos(1− 16

√
ab+ 32ab).

Proof. (i) Following [5, Thm 1] under our hypotheses the rotation number function on each

level set admits a dynamical interpretation in terms of the time of the flow associated to

the planar vector field

Xb,a(x, y) =

(
−∂Vb,a

∂y
,
∂Vb,a
∂x

)
= (x− 2by − 2x2y, 2ax− y + 2xy2).

More concretely, each closed curve {Vb,a(x, y) = h} is a periodic orbit of period T (h) of the

differential equation associated to Xb,a, and moreover Gb,a(x, y) = ϕ(τ(h);x, y), where ϕ

is the flow associated to Xb,a. Then ρb,a(h) = τ(h)/T (h). From this expression it is not

difficult to see that it is an analytic function for h ∈ (0,∞), see [4].

A straightforward computation shows that when ab > 1/4

Spec(DGb,a(0, 0)) =
{
λ+, λ−

}
, where λ± =

1− 2ab± i
√

4ab− 1

2ab
.

By using the tools developed to prove [4, Prop. 19] we get that

lim
h→0+

ρb,a(h) =
1

2π
arccos (Re(λ)) =

1

2π
arccos

(
1

2ab
− 1

)
,

as we wanted to show.

To study the case ab < 1/4 we will use another approach. Notice that in this situation

the level set V0 := {Vb,a(x, y) = 0}, is formed by the origin, which is a saddle point, and their

stable and unstable manifolds, which coincide, forming two loops, see Figure 2. Moreover

on each of these loops the map Gb,a is conjugated to a translation and

lim
n→±∞

Gnb,a(x1, x2) = (0, 0),

for each (x1, x2) ∈ V0 \ {(0, 0)}. Given any ε > 0, we take N such that 1/(2N) < ε and

the points P±n := G±nb,a (x1, x2). Observe that both are in the same connected component of

V0 \ {(0, 0)}. Note that G2N
b,a (P−n ) = P+

n . By continuity of G2N
b,a we known that the image

for G2N
b,a of a point, near P−n , on {Vb,a(x, y) = h > 0} is, for h > 0 small enough, as close

as we want to P+
n . This implies that after 2N iterates this point has given less that half a

turn to {Vb,a(x, y) = h > 0}. Consequently, for h small enough, ρb,a(h) < 1/(2N) < ε, as

we wanted to prove.

The case ab = 1/4 follows from the above two results, again by continuity arguments.
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Finally, to compute lim
h→+∞

ρb,a(h) we consider the change of variables given by (z, w) =

(1/x, 1/y) which conjugates the behavior at infinity of Gb,a with the behavior at the origin

of the new map:

G̃(z, w) =

(
− z

(
1 + aw2

)

1− zw + aw2
,−p(z, w)w

q(z, w)

)
,

where

p(z, w) = 1 + 2aw2 − 2zw + bz2 + a2w4 − 2azw3 + 2abz2w2 + z2w2 + a2bz2w4,

q(z, w) = 1 + 2aw2 − zw + bz2 + a2w4 + 2abz2w2 + a2zw5 + a2bz2w4 − az2w4.

Clearly G̃(z, w) = (−z + O2(z, w),−w + O2(z, w)) and so DG̃(0, 0) has the eigenvalues

±1 = ±eπi. Hence arguing as in the study of Gb,a near (0, 0) we obtain that

lim
h→∞

ρb,a(h) =
π

2π
=

1

2
,

as we wanted to prove.

(ii) Follows by using similar arguments.

Remark 4. (i) Applying the method developed in the previous proposition to study Gb we

would obtain lim
h→+∞

ρb(h) = 1/4. This gives a new proof of this fact which is essentially

different of the one given in [3].

(ii) It holds that

1

2π
arccos

(
1

2ab
− 1

)
<

1

2π
arccos (−1) =

1

2
.

Hence the map ρb,a(h) can not be a constant function. In particular this implies that there

are no positive values a and b for which Gb or Gb,a are globally periodic.

Before stating our main result on the periods appearing for Gb,a, we study in detail the

2-periodic points.

Lemma 5. For a > 0 and b > 0 the map Gb,a has 2-periodic points if and only if 0 < ab <

1/16. Moreover they are given by the two ovals {Vb,a(x, y) = −ab}.

Proof. We have to solve the system Gb,a(Gb,a(x, y)) = (x, y), which is equivalent to the new

one Gb,a(x, y) = G−1b,a(x, y). After some manipulations it gives

{
(2x2y − x+ 2by)R(x, y) = 0,

(2xy2 + 2ax− y)R(x, y) = 0,

where R(x, y) := x2y2 + ax2 − xy+ by2 + ab = Vb,a(x, y) + ab. Its solutions have to contain

also the fixed points of the map. It is not difficult to check that the fixed points are the
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real solutions of the system {2x2y−x+ 2by = 0, 2xy2 + 2ax− y = 0}. Hence the 2-periodic

points coincide with the set R := {R(x, y) = 0}. Therefore we need to study when it has

real points. Notice R is a quadratic polynomial with respect to x. Its discriminant is

D(y) := −4by4 + (1− 8ab) y2 − 4ba2.

Since a > 0 and b > 0 then R will be non-empty when D(y) takes non-negative values. The

discriminant of D(y), with respect to y2, is 16ab−1 > 0. So when 0 < ab ≤ 1/16, the set R
is non empty. When ab = 1/16 it coincides with the other fixed points P±. For ab < 1/16 it

is formed by two ovals surrounding them, which form precisely the level set with rotation

number 1/2, that is ρb,a(−ab) = 1/2. Hence the result follows.

Recall that the origin is always a fixed point of the map Gb,a and that when ab < 1/4

it has two more fixed points. Next result gives the periodic points of this map with period

greater than one.

Theorem 6. Let Gb,a the map defined in (6) for a > 0 and b > 0.

(a) For 0 < ab < 1/16 it has continua of periodic points of all the periods greater than one.

(b) For 1/16 ≤ ab ≤ 1/4 it has continua of periodic points of all the periods greater than

two and has no periodic points of period two.

(c) For ab > 1/4 it has continua of periodic points of all the periods q such that there exists

p ∈ N, with gcd(p, q) = 1 and such that

p

q
∈
(

1

2π
arccos

(
1

2ab
− 1

)
,
1

2

)
.

In particular, there is a computable number q0(a, b) such that Gb,a has continua of

periodic points of all periods greater than q0(a, b).

Proof. It is a direct consequence of Theorem 2, Proposition 3 and Lemma 5. Notice that the

fact that all periods greater than 2 appear when ab ≤ 1/4 is because q ≥ 3, 1/q ∈ (0, 1/2).

The final conclusion in (c) follows from the well-known fact that any open interval contains

irreducible fractions with all the denominators bigger that a given number which depends

on their extremes. A constructive upper bound for this number is developed in [4].

Remark 7. (a) If the rotation number function ρb,a(h) was monotonous with respect to h

then we could also completely characterize all the periods for the case ab > 1/4. They would

be precisely the ones given in item (c).

(b) Theorem 6 can be easily adapted to obtain similar results for the Gumovski-Mira

maps, Gb, b > 0. The corresponding results complete the ones of [3] obtained for the case
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b ≥ 1/2, where all the level sets of the corresponding first integral, but the origin, are

diffeomorphic to circles.

2.2 Study of the recurrence (5)

Theorem 2 will allow us to characterize the sequences {xn}n∈N generated by the recur-

rence (5). Observe that in fact since the map Gb,a is a diffeomorphism of R2, by using its

inverse we can define the extended sequence {xn}n∈Z. Recall that it is said that a recurrence

is persistent if any sequence {xn}n∈Z is contained in a compact set or R, which depends on

the initial conditions x1 and x2.

Clearly for any a > 0, b > 0 and x1 = x2 = 0 we get that xn = 0 for all n ∈ Z. Next

result describes the behaviour of {xn}n∈Z for non-null initial conditions.

Theorem 8. The recurrence (5) is persistent. Furthermore, let {xn}n∈Z be any sequence

defined by (5) with initial conditions x1 and x2, (x1, x2) 6= (0, 0) and set

hmin := −1

4
− ab+

√
ab and h+ :=

1

2

[
−(a2 + b2)− 1

2
+ (a+ b)

√
(a− b)2 + 1

]
.

It holds that hmin < h+ < 0.

(a) Assume that ab < 1/4. Then:

(i) For (x1, x2) = P±, which coincide with the set {Vb,a(x, y) = hmin}, the sequence

{xn}n∈Z is two periodic when a 6= b and a constant sequence when a = b.

(ii) For (x1, x2) 6= (0, 0) and Vb,a(x1, x2) = 0, lim
n→±∞

xn = 0.

(iii) For a numerable and dense set of values of h, the level sets {Vb,a(x, y) = h} give

initial conditions such that {xn}n∈Z is a periodic sequence of even period which

only depends on h.

(iv) For the rest of values of h (which form a dense set of full measure), the level

sets {Vb,a(x, y) = h} give initial conditions such that the adherence of the cor-

responding sequence {xn}n∈Z is given by one or two intervals. More concretely,

this adherence is given by one interval when either a = b; h > 0; or h+ ≤ h < 0

and by two intervals when a 6= b and hmin < h < h+.

(b) Assume that ab ≥ 1/4. Then only the behaviors given in items (iii) and (iv) appear.

Moreover in item (iv) the adherence is always formed by a single interval.

Proof. We will use the techniques introduced in [6] where we studied the 2-periodic Lyness

recurrences. First notice that the relation between the terms of the recurrence and the
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iterates of the composition map is given by

Gb,a(x2n−1, x2n) = (x2n+1, x2n+2), Ga,b(x2n, x2n+1) = (x2n+2, x2n+3),

where (x1, x2) ∈ R2 and n ∈ Z. Also observe that a simple computation shows that

Vb,a(x, y) = Va,b(Ga(x, y)),

which implies that the odd terms of the sequence {xn}n∈Z are contained in the projection

on the x-axis of the level sets of the form {Vb,a(x, y) = Vb,a(x1, x2) = h} and the even ones

are in the corresponding projection of the level sets {Va,b(x, y) = Va,b(Ga(x1, x2)) = h}.
The result (i) is clear. Statement (ii) is a new consequence of Theorem 2 and the fact

that the sets {Vb,a(x, y) = 0} \ {(0, 0)} are two homoclinic loops starting and ending at

(0, 0). To prove (iii) and (iv) we consider the cases (a) and (b) together.

Again from Theorem 2 we know that the sequence starting at a point (x1, x2) such that

ρb,a(Vb,a(x1, x2)) = p/q ∈ Q with gcd(p, q) = 1, will be 2q-periodic. When it holds that

ρb,a(Vb,a(x1, x2)) 6∈ Q, then it will densely fill the projection of {Vb,a(x, y) = h} (the odd

terms) together with the projection of {Va,b(x, y) = h} (the even terms).

Hence to end the proof we only need to show that the rational values of ρa,b(Vb,a(h)) are

taken only for a numerable dense set of values h and, when ρa,b(Vb,a(h)) 6∈ Q, to distinguish

whether the above to projections do or do not overlap.

Let us prove first that ρa,b(Vb,a(h) ∈ Q only for a numerable and dense set of values

of h. First recall that from Proposition 3 and Remark 4 we know that the function is

analytic and nonconstant in the intervals where it is defined. Next we use the well-known

fact that a nonconstant analytic function has a numerable number of zeroes. This implies

that for any r ∈ Q the set Pr := {h ∈ R : ρb,a(h)− r = 0} is numerable. Therefore ∪r∈QPr
is numerable as we wanted to see. That it is dense follows from the continuity of all the

involved functions.

To end the proof we only need to decide whether the projections into the x-axis of

{Vb,a(x, y) = h} and {Va,b(x, y) = h} intersect or not.

When h > 0, for any positive a and b both ovals {Vb,a(x, y) = h} and {Va,b(x, y) = h}
surround the origin. Hence the adherence of {xn}n∈Z is always one closed interval.

Assume now that h < 0 (and so ab < 1/4). An easy computation shows that when

a 6= b, Ga(P±) is neither P± nor P∓, so the points P± give rise to two different 2-periodic

solutions of the recurrence. When a = b, P± are fixed points of Ga, and the situation is like

the previous one. So in the following we also assume that a 6= b.

Since Ga(P±) is neither P± nor P∓, and Ga is a diffeomorphism, it is possible to take

ovals of the form {Vb,a(x, y) = h} with hmin ' h < 0 whose projections into the abscissa
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axis do not overlap with the corresponding ones of {Va,b(x, y) = h}. However, by increasing

h the projections will start to overlap.

Let be I± = I±(a, b, h), and J± = J±(a, b, h) be the projections on the abscissa axis

of the ovals contained in the level sets given by {Vb,a(x, y) = h} and {Va,b(x, y) = h}
respectively, surrounding P+ and P−. We want to detect the values of h for which the

intervals I+ and J+ (and I− and J− respectively) have exactly one common point. First

we seek for their boundaries. Since the level sets are given by quartic curves, quadratic

with respect the y-variable, these points will correspond with values of x for which the

discriminant of the quadratic equation with respect to y is zero. So, we compute

R1(x, h, a, b) := dis (Vb,a(x, y)− h, y) = −4 a x4 + (−4 ab+ 4h+ 1)x2 + 4 b h,

R2(x, h, a, b) := dis (Va,b(x, y)− h, y) = −4 b x4 + (−4 ab+ 4h+ 1)x2 + 4 a h.

To search for relations among a, b and h for which these functions have some common

solution, x, we compute the following resultant

Res(R1, R2;x) = 256 (a− b)4 h2
(

16h2 +
(
16 a2 + 16 b2 + 8

)
h+ (4 ba− 1)2

)2

Since a 6= b, the possible bifurcation values of h are given by the roots of the quadratic

polynomial

P1(h) := 16h2 +
(
16 a2 + 16 b2 + 8

)
h+ (4 ba− 1)2 , (7)

which are

h± :=
1

2

[
−(a2 + b2)− 1

2
± (a+ b)

√
(a− b)2 + 1

]
.

Then the number of disjoint intervals depends only on the relative positions of hmin, h± and

Vb,a(x1, x2).

To study the relative positions of hmin and h±, we introduce the auxiliary polynomial

P2(h) = (h+ ab+ 1
4)2 − ab, because one of its roots is hmin. Then

Res(P1, P2;h) = 16 (4ab− 1)2 (a− b)2.

This means that we can split the parameter set A := {(a, b), a, b > 0, ab < 1/4} into the

following disjoints sets:

A = {a, b > 0, ab < 1/4, a > b} ∪ {a, b > 0, ab < 1/4, a = b} ∪ {a, b > 0, ab < 1/4, a < b}.

Observe that, because of the properties of the resultant, the relative positions of hmin and

h± on the above subsets do not vary. So testing their values for some particular parameters,

we obtain that when a 6= b we always have that hmin < h+ < 0 (we also notice that when

a = b, h− < hmin = h+).

12



In summary, the above considerations imply that when a 6= b, and since Ga(P±) 6= P±,

the projections into the abscissa axis of all the ovals {Vb,a(x, y) = h} and {Va,b = h} when

hmin < h < h+ do not overlap, giving rise to two different intervals. When h+ ≤ h < 0 they

overlap giving only one interval.

From the above theorem we get that the list of behaviours (i)-(iv) listed in the introduc-

tions are the only ones that the sequences generated by (5) can present. Moreover, given

some values of a and b the information about the possible periods of the periodic sequences

can be obtained from Theorem 6.

We end this subsection with a concrete example.

Example 9. Consider a = 0.01, b = 0.49. For any initial condition (x1, x2), set h0 =

Vb,a(x1, x2). From the definitions given in Theorem 8 we have that hmin = −0.1849 and

h+ ' −0.0928, so

• If h0 ∈ (hmin, h+), the sequence generated by the recurrence (5) is either periodic (with

even period) or it fills densely two intervals.

• If h0 ∈ [h+, 0), the sequence generated by the recurrence (5) is either periodic (with

period a multiple of 2) or it fills densely one interval.

For instance if we consider the initial conditions (x1, x2) = (x+−0.1, y+−0.1), we have

that h0 = Hb,a(x1, x2) ' −0.1459, hence h0 ∈ (hmin, h+), and the corresponding sequence

generated by the recurrence (5) is either periodic or it densely fills two disjoint intervals.

This last option is the one that appears in our numerical simulations, see Figure 3.

Figure 3: Here a = 0.01, b = 0.49. The ovals {Vb,a(x, y) = h0} and {Va,b = h0} with

h0 ' −0.1459 and their projections on the abscissa axis.
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2.3 Integrability for general k-periodic Gumovski-Mira recurrences

In this section we search for invariants of the form

I(x, y, n) =
4∑

i+j=1

Ii,jn xiyj (8)

for the recurrence (5), but for any sequence {βn}n of positive numbers. This form is

natural because includes the invariants known for {βn}n constant or 2-periodic. As far

as we know, this method was introduced in [15]. It was also used in [7] to prove that

non-autonomous Lyness recurrences, xn+2 = (αn + xn+1)/xn, only admit invariants of a

suitable form when {αn}n are periodic with periods 1,2,3 and 6. If we could find a new

integrable Gumovski-Mira recurrence all the methods used in this section could be adapted

to study it. Unfortunately, next result shows that for the Gumovsky-Mira non-autonomous

recurrences, only the cases of {βn}n with period 1 and 2 seem to be integrable. We have

chosen I(x, y, n) with terms of degree at most 4 for simplicity. Bigger degrees could be also

studied by using the same approach.

Proposition 10. The non-autonomous k-periodic recurrence (4), with {βn}n a sequence of

positive numbers, has invariants of the form (8) if and only if {βn}n is k-periodic and k ∈
{1, 2}. Moreover, in these cases the invariants are I(x, y, n) = βnx

2+βn+1y
2+γx2y2−γxy,

for any γ 6= 0.

Proof. The condition that a function I(x, y, n) of the form (8) is a non-autonomous invariant

of the recurrence (5) writes as

I

(
y,−x+

y

βn + y2
, n+ 1

)
− I(x, y, n) = 0,

for all (x, y) ∈ R2 and all n ∈ N. Imposing that all the monomials of the left hand side of

the above relation vanish and after some work we get in particular that βn+2 = βn and so

that such an invariant exists only when {βn}n is constant or 2-periodic. For both cases we

also obtain the explicit form of the known invariants.

3 The chaotic case

In this section we consider the non-autonomous recurrence

xn+2 = −xn +
αnxn+1

1 + x2n+1

, (9)

with

αn =

{
a > 0 for n = 2k,

b > 0 for n = 2k + 1, k ∈ N.
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Recall that for each fixed value of a, the map Fa associated to the corresponding au-

tonomous recurrence

xn+2 = −xn +
axn+1

1 + x2n+1

, (10)

has the first integral

Wa(x, y) = x2y2 + x2 + y2 − axy.

Moreover it is conjugated to G1/a. Therefore Fa and Fa,a are integrable and the dynamical

systems generated by them as well as the recurrences generated by (10) can be easily

described using the results of the previous section.

3.1 The map Fb,a as a perturbed twist

Here we will see that the map Fb,a, which writes as,

Fb,a(x, y) =

(
−x+

ay

1 + y2
,−y +

b(1 + y2)(ay − x(1 + y2))

(1 + y2)2 + (ay − x(1 + y2))2

)
, (11)

is far from preserving neither the integrability nor the translation-like dynamics, proved for

Gb,a. In fact, our numerical simulations show all the features of a non-integrable perturbed

twist map, that is: many invariant curves and, between them, couples of orbits of p-periodic

points (for several values of p), half of them of elliptic type and the other half of hyperbolic

saddle type, see for instance [2, Chapter 6]. Notice that the sequences corresponding to

the stable manifolds of the hyperbolic saddles are precisely the ones that give rise to the

behaviour (v) described in the introduction.

More precisely, for instance, when a ∈ (0, 2) the positive level sets of Wa in R2 are

closed curves surrounding the origin, which is the unique fixed point of Fa (see Figure 1

(a)) and we know that the action of Fa restricted to each of them is conjugated to a rotation.

In fact, both Fa and F 2
a can be seen as area preserving integrable twist diffeomorphisms

since, at least locally, the rotation number function associated Fa to most level set of Wa is

monotonous. Therefore when we consider Fa+ε,a, for ε small enough, it can be thought as

a perturbed twist map. Our numerical experiments show that this perturbed twist map is

no more integrable and that this behaviour remains even when the values of b are not close

to the ones of a. This is the situation depicted in Figure 1 (b) and (c). Unfortunately we

have not been able to prove the non-integrability of Fb,a for b 6= a.

When a > 2 the negative level sets of Wa are two nests of closed curves surrounding two

fixed points of Fa. These two nests are surrounded by a polycycle composed by a saddle

point of the map and a couple of homoclinic curves surrounding both elliptic fixed points.

The rest of the level sets are given by closed curves surrounding the polycycle, see Figure 2.

The dynamics of Fa on the invariant level sets of Wa is again translation-like. In this case,
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when we consider b = a + ε for ε small enough, near the nests of Fa the map Fb,a can

be seen again as a non-integrable perturbation of the twist map F 2
a = Fa,a, and the same

phenomena than above appear. These behaviours are also observable when the values of b

are not close to the ones of a. This is the situation exemplified in Figure 4, where it can

also be observed orbits of Fb,a which seem to fill densely a sets of positive Lebesgue measure

in R2.

(a) (b)

Figure 4: (a) Several orbits of the map F9/2,4. (b) Plot of 105 iterates of the orbit of F9/2,4

starting at (1.18, 0.1).

From the viewpoint of the solutions {xn}n∈Z of the equation (9), another difference is

that the number of disjoint intervals of the adherence of an orbit can be more than 2, as it

is shown in the following examples.

Example 11. Consider a = 2 and b = 1/2. We give some initial conditions giving rise to

solutions {xn}n∈Z which, numerically, seems to densely fill more than 2 intervals.

Initial conditions Intervals

(1.10, 0.5) 7

(1.25, 0.5) 16

(1.29, 0.5) 1

(1.30, 0.5) 23

(1.35, 0.5) 1

(1.40, 0.5) 6

(1.48, 0.5) 6
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In Figure 5 are depicted the 6 intervals corresponding to the initial condition (1.48, 0.5),

and the 16 intervals of the initial condition (1.25, 0.5)

(a) (b)

Figure 5: Orbits of F1/2,2 and their images under F2 corresponding to the initial

conditions (1.48, 0.5) and (1.25, 0.5) respectively, together with their corresponding

projections on the abscissa axis.

�

Example 12. An example similar to Example 11 with a = 4 and b = 9/2.

Initial conditions Intervals

(2.5, 0.5) 4

(2.9, 0.5) 1

(3.0, 0.5) 5

(3.1, 0.5) 3

(3.2, 0.5) 1

(3.6, 0.5) 4

In Figure 6 we show the 4 intervals corresponding to the initial condition (2.5, 0.5), and the

5 intervals of the initial condition (3, 0.5).
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(a) (b)

Figure 6: Orbits of F9/2,4 and their images under F4 corresponding to the initial conditions

(2.5, 0.5) and (3, 0.5) respectively, and their corresponding projections on the abscissa axis.

3.2 Local study of Fb,a near the origin

The origin is an elliptic fixed point of the area preserving map Fb,a when ab < 4. In fact

the characteristic polynomial of DFb,a(0, 0) is

Pa,b(λ) = λ2 + (2− ba)λ+ 1

and Spec(DFb,a(0, 0)) = {λ+, λ−}, where λ± := −1 + ab
2 ± i

2

√
ab(4− ab).

Computing the resultants

Res(Pa,b(λ), λk − 1;λ), for k = 1, 2, 3

we know that for ab 6= 1 the eigenvalues λ± are under the non-resonance conditions of

Moser’s Stability Theorem, see [1, 20]. That is, they are not kth-roots of the unity for

k = 1, 2, 3. We remark that Example 11 seems to show that the situation ab = 1 is not

special at all.

We have obtained the local Birkhoff normal form of Fb,a at the origin using [12, 19]. It

is given by z → λ+z (1 + iσzz̄ +O3(z, z̄)) , where z = x+ iy ∈ C and

σ =
3 (b+ a)

√
ab (4− ab)

4b (4− ab) 6= 0.

So, from Moser’s Theorem we know that for ab 6= 1, in every neighborhood of the

origin, there exist infinitely invariant closed curves surrounding it. Although the theorem

does not allow to make the distinction between the integrable and the non-integrable cases,
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by using the Poincaré-Birkhoff Theorem, see [20], we can ensure the existence of periodic

orbits having all periods bigger that a given one, between each two of these invariant

closed curves. Therefore we have proved that for the corresponding values of a and b the

recurrence (9) generates periodic sequences of any even period, bigger that some constant,

which depends on a and b. These sequences correspond to the ones described in item (i) of

the introduction.
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