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POLYNOMIAL DIFFERENTIAL SYSTEMS WITH EXPLICIT

NON–ALGEBRAIC LIMIT CYCLES

REBIHA BENTERKI1 AND JAUME LLIBRE2

Abstract. Up to know all the examples of polynomial differential systems for
which non–algebraic limit cycles are known explicitly have degree ≥ 5. Here
we show that already there are polynomial differential systems of degree ≥ 3
exhibiting explicit non–algebraic limit cycles. It is well known that polynomial
differential systems of degree 1 (i.e. linear differential systems) has no limit
cycles. It remains the open question to determine if the polynomial differential
systems of degree 2 can exhibit explicit non–algebraic limit cycles.

1. Introduction and statement of the main results

Probably the existence of limit cycles is one of the more difficult objects to study
in the qualitative theory of differential equations in the plane. There are hundreds
of papers and some books dedicated to this topic, see for instance the book of Ye
Yanqian et al. [12], or the famous Hilbert 16th problem [6] and [7]. More closed
papers to the problem here considered are [4, 5, 1, 2, 8, 9].

A polynomial differential system is a system of the form

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P (x, y) and Q(x, y) are real polynomials in the variables x and y. The degree
of the system is the maximum of the degrees of the polynomials P and Q. As usual
the dot denotes derivative with respect to the independent variable t.

A limit cycle of system (1) is an isolated periodic solution in the set of all periodic
solutions of system (1). If a limit cycle is contained in an algebraic curve of the
plane, then we say that it is algebraic, otherwise it is called non–algebraic.

To distinguish when a limit cycle is algebraic or not, in general, it is not easy.
Thus the well–known limit cycle of the van der Pol differential system discovered in
1927 (see [11]) was not proved until 1995 by Odani [10] that it was non–algebraic.
The van der Pol system can be written as a polynomial differential system (1) of
degree 3, but its limit cycles is not known explicitly.

These last years (from 2006 up to now) several papers have been published
exhibiting polynomial differential systems for which non–algebraic limit cycles are
known explicitly. This means that in some coordinates we have an explicit analytic
expression of the curve containing the non–algebraic limit cycle. The first explicit
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non–algebraic limit cycle, due to Gasull, Giacomini and Torregrosa [4], was for a
polynomial differential system of degree 5. Of course, multiplying the right hand
part of this polynomial differential system of degree 5 by (ax+ by + c)n with n an
arbitrary positive integer, where the straight line ax+ by+ c = 0 must be chosen in
such a way that it does not intersect the explicit limit cycle of the system, we get a
polynomial differential system of degree 5 + n exhibiting an explicit non–algebraic
limit cycle.

Immediately after this first paper appeared the paper of Al-Dosary [1] inspired
in [4] (note that this reference is quoted in [1]), providing a similar polynomial
differential system of degree 5 exhibiting an explicit non–algebraic limit cycle.

Giné and Grau [5] provide a polynomial differential system of degree 9 exhibiting
simultaneously two explicit limit cycles one algebraic and another non–algebraic.
Note that the paper [4] is also quoted in [5].

The objective of this paper is to show that already there are polynomial differ-
ential systems of degree 3 exhibiting explicit non–algebraic limit cycles. Thus, our
main result is the following one.

Theorem 1. The differential polynomial system of degree 3

(2)
ẋ = x+ (y − x)(x2 − yx+ y2),
ẏ = y − (y + x)(x2 − yx+ y2),

has a unique non–algebraic limit cycle whose expression in polar coordinates (r, θ),
defined by x = r cos θ and y = r sin θ, is

(3) r(θ) = eθ
√
r2∗ − f(θ),

where

r∗ = e2π
√

f(2π)

e4π − 1
≈ 1.1911644871948721..,

f(θ) = 4

∫ θ

0

e−2s

2− sin(2s)
ds.

Moreover, this limit cycle is a stable hyperbolic limit cycle.

Theorem 1 is proved in section 2.

In short, since it is well known that the linear differential systems (or polynomial
differential systems of degree 1) have no limit cycles, it remains the following open
question:

Open question. Are there or not polynomial differential systems of degree 2 ex-
hibiting explicit non–algebraic limit cycles.

2. Proof of Theorem 1

The polynomial differential system (2) in polar coordinates becomes

(4)
ṙ = r +

1

2
(sin(2θ)− 2)r3,

θ̇ =
1

2
r2(sin(2θ)− 2).

Taking as independent variable the coordinate θ, this differential system writes

(5)
dr

dθ
= r +

2

r(sin(2θ)− 2)
.
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Figure 1. The phase portrait in the Poincaré disc of the polynomial
differential system (2).

Note that since θ̇ < 0, the orbits r(θ) of the differential equation (5) has re-
versed their orientation with respect to the orbits (r(t), θ(t)) or (x(t), y(t)) of the
differential systems (4) and (2), respectively.

It is easy to check that the solution r(θ; r0) of the differential equation (5) such
that r(0; r0) = r0 is

(6) r(θ; r0) = eθ
√
r20 − f(θ),

where f(θ) is the function defined in the statement of Theorem 1.

Clearly the unique equilibrium point of the differential system (2) is the origin
of coordinates, which is an unstable node because its eigenvalues are 1 with multi-
plicity two, for more details see for instance Theorem 2.15 of [3]. This equilibrium
point in polar coordinates become r = 0. This is the unique point of the plane
where the differential equation (5) is not defined. But we can extend the flow of
this differential equation to r = 0, assuming that at the origin of the plane in polar
coordinates we have an unstable node.

The periodic orbits r(θ; r0) of the differential equation (5) must satisfy r(2π; r0) =
r0. The unique solution of this equation is r0 = r∗, where r∗ is defined in the state-
ment of Theorem 1. So, if r(θ; r∗) > 0 for all θ ∈ R, we shall have r(θ; r∗) > 0
would be a periodic orbit, and consequently a limit cycle. In what follows it is
proved that r(θ; r∗) > 0 for all θ ∈ R. Indeed

r(θ; r∗) = eθ
√

e4π

e4π − 1
f(2π)− f(θ)

≥ eθ
√
f(2π)− f(θ)

= 2eθ

√∫ 2π

θ

e−2s

2− sin(2s)
ds > 0,

because e−2s/(2− sin(2s)) > 0 for all s ∈ R.
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An easy computation shows that

d r(2π; r0)

d r0

∣∣∣∣
r0=r∗

= e4π > 1.

Therefore the limit cycle of the differential equation (5) is unstable and hyperbolic,
for more details see section 1.6 of [3]. Consequently, this is a stable and hyperbolic
limit cycle for the differential system (2).

Clearly the curve (r(θ) cos θ, r(θ) sin θ) in the (x, y) plane with

r(θ)2 = e2θ(r2∗ − f(θ)),

is not algebraic, due the expression e2θr2∗. This completes the proof of Theorem 1.

Now we shall present the phase portrait of the differential system (2) in the
Poincaré disc, see the Poincaré compactification in the Chapter 5 of [3].

Since the polynomial ẋy− ẏx = (x2+y2)(x2−xy+y2) has no real linear factors,
the compactification of Poincaré of the differential system (2) has no equilibrium
points at infinity, i.e. the infinity is a periodic orbit. Doing the change of vari-
ables r = 1/ρ, the infinity of the differential equation (5) passes at the origin, and
equation (5) becomes

dρ

dθ
= −ρ− 2ρ3

sin(2θ)− 2
.

Hence, clearly ρ = 0 is an stable equilibrium point of this differential equation,
consequently the periodic orbit at infinity of the differential equation (3) is an
unstable limit cycle. Then the phase portrait in the Poincaré disc of the polynomial
differential system (2) is given in Figure 1.
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