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Abstract. Let H be a polynomial of degree m+1 on C2 such that its generic

fiber is biholomorphic to C∗, and let ω be an arbitrary polynomial 1-form of

degree n on C2. We give an upper bound depending only on m and n for the
number of isolated zeros of the complete Abelian integral defined by H and ω.

1. Introduction and statement of the results

Let H : C2 → C be a polynomial whose generic fiber is irreducible, and let ω be
a polynomial 1-form on C2. By the complete Abelian integral defined by H and ω,
we mean the function

I(c) =

∫
[γc]

ω,

where the parameter c varies over the set of generic values of H, and [γc] is a cycle
of H: [γc] is the homology class of a loop γc ⊂ H−1(c), and [γc] is non-trivial in the
first homology group H1(H−1(c),Z) of the generic fiber H−1(c) of H.

From the classical Poincaré–Pontryagin–Andronov criterion we know that the
isolated zeros of I(c) are related to the limit cycles of the infinitesimal perturbed
Hamiltonian system

dH − εω = 0 with 0 6= ε ∈ (C, 0) fixed,

that arise from the cycles of the Hamiltonian system dH = 0, which are precisely
the cycles of H. In this sense, the problem of finding the upper bound Z(m,n) ∈ N,
depending on m = deg(H)− 1 and n = deg(ω) for the number of isolated zeros of
I(c), counting multiplicities, is referred to as the weak infinitesimal Hilbert’s 16th
problem (see [1]). Of course, in this problem we must consider all polynomials H of
degree m+ 1 and all the 1-forms ω of degree n.

Khovanskĭı [10] and Varchenko [16] proved that Z(m,n) is finite. Petrov and
Khovanskĭı claimed that Z(m,n) ≤ A(m)n + B(H), where A(m) is an explicit
constant depending only on m while B(H) is independent of ω but depends on

H. The proof of this assertion was given by Żo la̧dek [17, Theorem 6.26]. Recently

Binyamini, Novikov and Yakovenko [4] proved that Z(n, n) ≤ 22
Po(n)

, where Po(n) =
O(np) stands for an explicit polynomially growing term with the exponent p not
exceeding 61.
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A difficulty in finding an explicit upper bound for Z(m,n) is that even though
I(c) is a locally single-valued function, globally it can be multi-valued since its
analytic continuation depends on the monodromy of the polynomial H (see Section
2).

If dimH1(H−1(c),Z) = 1 for a generic value c of H, then the generic fiber of H is
irreducible and biholomorphic to C∗; therefore, H is called a primitive polynomial
of type C∗. This is the simplest non-trivial case for studying I(c) because there is
a unique cycle [γc] to consider, and H has trivial global monodromy (see Section 2,
Remark 6). Suppose then that H is primitive of type C∗ allows the (global) study
of the complete Abelian integral I(c).

In this paper we study the weak infinitesimal Hilbert’s 16th problem for primitive
polynomials of type C∗. The main result of this work is the following.

Theorem 1. Let H : C2 → C be a primitive polynomial of type C∗ of degree m+ 1,
and let ω be a polynomial 1-form of degree n on C2.

(a) The complete Abelian integral I(c), defined by H and ω, is a polynomial.

(b) I(c) has at most
[
(n+1)m

2

]
isolated zeros, where [·] denotes the integer part.

Remark 1. Statement (a) of Theorem 1 provides an interesting property of I(c),
because a priori we only expect that I(c) would be a rational function. On the
other hand, at the moment we do not know if the upper bound given in statement
(b) of Theorem 1 is optimal (see Remark 7 in Section 3).

We will recall a concept which will allow us to simplify the study of I(c). Sup-

pose that the polynomials H and H̃ are algebraically equivalent, that is, there are
polynomial automorphisms ψ and σ of C2 and C respectively, such that the diagram

(1)

C2 ψ−−−−→ C2

H

y yH̃
C σ−−−−→ C

commutes. The investigation of I(c) is then equivalent to the study of the complete

Abelian integral Ĩ(c̃) defined by H̃ := σ ◦H ◦ψ−1 and ω̃ := (ψ−1)∗(ω). We will say
that ω̃ is the polynomial 1-form defined by ω and the commutative diagram (1).

We want to apply the previous argument to the study of the complete Abelian
integrals for polynomials of type C∗. Therefore, we consider the algebraic classifica-
tion of primitive polynomials of type C∗; such classification was given by Miyanishi
and Sugie (see Subsection 4.1). They proved in [11] that any primitive polynomial

H of type C∗ is algebraically equivalent to a polynomial H̃ of the family

S :=

{
xk
(
xly − P (x)

)r ∣∣∣ k, r ∈ N, (k, r) = 1, l ∈ N ∪ {0}, and deg(P (x)) < l.
If l > 0, then P (0) 6= 0, and if l = 0, then P (x) ≡ 0

}
.

In short, the examination of the complete Abelian integrals for primitive polyno-
mials of type C∗ essentially reduces to studying the complete Abelian integrals for
the family S and to finding the relation between the degrees of the initial objects

H and ω and the degrees of the transformed objects H̃ ∈ S and ω̃.

We note that the family S has an infinite number of connected components: the
coefficients of P (x) are continuous parameters, and the parameters k, r, and l vary
over infinite discrete sets. A priori, the study of the complete Abelian integral
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defined by a polynomial in the family S and a polynomial 1-form, may depend
on each connected component of S. However, the following result shows that its
behavior only depends on the degree of the polynomial and does not depend on the
connected component that contains it.

Theorem 2. Let H be a polynomial of degree m+ 1 in the family S, and let ω be
a polynomial 1-form of degree n on C2.

(a) The complete Abelian integral I(c), defined by H and ω, is a polynomial.

(b) I(c) has at most Ẑ(m,n) :=
[
n+1
m+1

]
isolated zeros.

(c) Ẑ(m,n) is the optimal upper bound for the number of zeros of I(c).

The final ingredient in proving Theorem 1 is to determine the relationships be-

tween the degrees of H and H̃ and the degrees of ω and ω̃. These relations will be

studied in Proposition 3 (Section 3) where we will prove that 2 ≤ deg(H̃) ≤ deg(H)
and that deg(ω̃) ≤ (deg(ω) + 1) (deg(H)− 1)− 1.

Remark 2. Theorem 1 is a generalization of the classical result: If H = (x2+y2)/2

(which is of type C∗ whose representative in S is H̃ = xy), and ω is an arbitrary
polynomial 1-form of degree n, then the complete Abelian integral defined by H
and ω has at most

[
n+1
2

]
isolated zeros (for a proof in the real case, see [8], [17]).

The paper is organized as follows. In Section 2 we recall the construction of
complete Abelian integrals for primitive polynomials on C2. The proof of Theorem 1
will be given in Section 3. In Section 4 we recall the algebraic classification of
primitive polynomials of type C∗, and we will give the proof of Theorem 2.

2. Complete Abelian integrals

It is well-known that for each polynomial H : C2 → C there is a finite set ΣH ⊂ C
such that

(2) H : C2 −H−1(ΣH)→ C− ΣH

is a locally trivial smooth fibration (see [5] for a proof). The set ΣH is the set
of singular values of H and is composed of the values in C coming from singular
points in C2 and “singular points at infinity” of H (see [7] for a description of these
points). Any value c ∈ C− ΣH is called a generic value of H and

Lc :=
{

(x, y) ∈ C2 |H(x, y)− c = 0
}
⊂ C2

is called a generic fiber of H, which is an affine non-singular algebraic curve.

A polynomial H is called primitive if its generic fiber is irreducible. Thus, if a
fiber Lc0 is reducible then c0 ∈ ΣH . Moreover H is called primitive of type (g, h)
if its generic fiber is isomorphic to a compact Riemann surface of genus g ≥ 0
punctured at h ≥ 1 different points. H is rational if it is of type (0, h); moreover H
is of type C if h = 1, and H is of type C∗ := C− {0} if h = 2.

We recall that ifH is a primitive polynomial of type (g, h), then the first homology
group H1(Lc,Z) of every generic fiber Lc of H is a free Abelian group finitely
generated of dimension 2g + h− 1.

Let H be a primitive polynomial of type (g, h), and we consider the following:

• A generic value c0 of H.

• A basis
{

[γτc0 ] | τ = 1, 2, ..., 2g + h− 1
}

of H1(Lc0 ,Z).

• A complex disc ∆(c0, r) centered at c0 of radius r such that ∆(c0, r) ⊂ C− ΣH .
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• The transport γτc , induced by the fibration (2), of γτc0 into Lc with c ∈ ∆(c0, r).

• A polynomial 1-form ω = Adx+Bdy on C2.

With these objects we construct, for each τ = 1, 2, . . . , 2g + h − 1, the Abelian
integral

Iτ (c) : ∆(c0, r) → C

c 7→
∫
[γτc ]

ω,

where [γτc ] is the homology class of γτc .

Every Abelian integral Iτ (c) is well-defined and holomorphic. Indeed, we take
a representative loop for our fixed cycle [γτc0 ]. We can transport this loop contin-
uously into the neighboring fibers and integrate ω along the resulting loops. This
transportation depends on the representative loop, but since the homology classes
of the obtained loops are well-defined, the integration of ω on the resulting cycles
does not depend on the mode of transportation. Therefore the Abelian integral
Iτ (c) is a well-defined and holomorphic function.

The Abelian integral Iτ (c) can be analytically continued on C − ΣH because
the cycle γτc0 can be transported continuously into any generic fiber Lc of H. The
resulting function is locally single-valued, but globally it can be multi-valued because
the analytic continuation depends on the monodromy of polynomial H, this is, on
the action of the fundamental group π1(C − ΣH , c0) of C − ΣH based at c0 in
H1(Lc0 ,Z). If this action is trivial it states that H has trivial global monodromy
and Iτ (c) extends to a single-valued function on C−ΣH . In addition, if we consider
all possible analytic continuations of all Iτ (c), τ = 1, 2, . . . , 2g + h − 1, we obtain
the complete Abelian integral I(c).

We note that the monodromy of H depends on the complexity of π1(C−ΣH , c0),
and this complexity increases with respect to the cardinality of ΣH .

Remark 3. In [14, Corollary 1] Suzuki proved that if H is a primitive polynomial
of type (g, h), then the cardinality of ΣH is at most 2g + h− 1 = dimH1(Lc0 ,Z).

Remark 4. A primitive polynomial H is of type C if and only if ΣH = ∅. If H is
of type C, then I(c) ≡ 0.

Remark 5. If H is a primitive polynomial of type C∗, then ΣH has exactly one
point. This assertion is true because from Remark 3 the set ΣH has at most one
point and from Remark 4 the set ΣH has at least one point.

Remark 6. If H is a primitive polynomial of type C∗, then it has trivial global
monodromy.

Proof. According to the construction of the family S we have the commutative

diagram (1) with H̃ ∈ S. From Remark 3, ΣH̃ has exactly one point, and since the

fiber L̃0 = {(x, y) ∈ C2 | H̃ = 0} is reducible, ΣH̃ = {0}. Hence for c 6= 0 the fiber

L̃c = {(x, y) ∈ C2 | H̃ − c = 0} is irreducible, and it is easy to see that

(3)
ϕc : C∗ → L̃c

z 7→
(
zrcs2 ,

cs1 + zkP (zrcs2)

cls2zrl+k

)
is a parametrization, where s1 and s2 are integers such that rs1 + ks2 = 1 (recall
that (k, r) = 1). In fact the map
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Φ : (C− ΣH̃)× C∗ → C2 − H̃−1(ΣH̃)
(c, z) 7→ Φ(c, z) = ϕc(z)

is a biholomorphism such that p1 = H̃ ◦Φ, where p1 : (C−ΣH̃)×C∗ → C−ΣH̃ is

the projection on the first factor. Thus H̃ : C2 − H̃−1(ΣH̃)→ C−ΣH̃ is a globally

trivial smooth fibration, so the action of π1(C − ΣH̃ , c0) on H1(L̃c,Z) is trivial.

Therefore H̃ has trivial global monodromy.

Analogously, since the map ψ−1 ◦ Φ : (C − ΣH̃) × C∗ → C2 − H−1(ΣH) is a

biholomorphism such that p1 = σ◦H ◦ψ−1◦Φ, H has trivial global monodromy. �

An alternative proof of Remark 6 can be deduced from [2, Corollary 2] and [11,
Section 1.8].

In short, the simplest non-trivial case for the study of complete Abelian integrals
is when H is of type C∗. Indeed, in such a case H1(Lc0 ,Z) and π1(C − ΣH , c0)
are the simplest non-trivial; moreover the monodromy of H is trivial. Therefore
we have a unique Abelian integral I(c) := I1(c), which extends to a single-valued
function on C − ΣH . In addition, Theorem 1 claims that I(c) is a polynomial, so
I(c) extends to the whole C.

3. Proof of Theorem 1

To prove Theorem 1 we will use the following technical result which will be proved
later on.

Proposition 3. Let H : C2 → C be a primitive polynomial of type C∗ of degree

m + 1, and let ω be a polynomial 1-form of degree n on C2. Let H̃ and ω̃ be the
representative of H in S and the 1-form defined by ω and (1), respectively.

(a) The degree of H̃ is at least 2 and at most m+ 1.
(b) The degree of ω̃ is at most (n+ 1)m− 1.

We will give the proof of Theorem 1 by assuming Theorem 2 and Proposition 3.

Proof of Theorem 1. Proof of statement (a). From the Miyanishi–Sugie classifica-

tion we have the commutative diagram (1), with H̃ ∈ S, and we get the polynomial
1-form ω̃ defined by ω and (1). By statement (a) of Theorem 2, the Abelian integral

Ĩ(c̃) defined by H̃ and ω̃ is a polynomial, and since I(c) = Ĩ(σ(c)) and σ is linear,
I(c) is a polynomial.

Proof of statement (b). If m̃+ 1 is the degree of H̃, then from statement (a) of
Proposition 3 it follows that 2 ≤ m̃+1 ≤ m+1. By statement (b) of Proposition 3,
the degree ñ of ω̃ satisfies 1 ≤ ñ ≤ (n + 1)m − 1. Therefore, by statement (b)

of Theorem 2, the Abelian integral Ĩ(c̃) has at most [(ñ+ 1) / (m̃+ 1)] zeros. As

m̃+ 1 ≥ 2 and ñ ≤ (n+ 1)m− 1, then Ĩ(c̃) has at most [(n+ 1)m/2] zeros. Finally,

since I(c) = Ĩ(σ(c)) and σ is linear, I(c) has at most [(n+ 1)m/2] zeros in C,
counting multiplicities. �

Remark 7. For proving that the upper bound [(n+ 1)m/2], given in the above
proof, is optimal, we must demonstrate the existence of a polynomial H of degree
m+1 and a polynomial 1-form ω of degree n such that H is algebraically equivalent

to H̃ ∈ S of degree 2, the 1-form ω̃ defined by ω and (1) is of degree (n+ 1)m− 1,
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and Ĩ(c̃) has exactly [(n+ 1)m/2] zeros in C, counting multiplicities. However, we
do not have the proof of this fact.

Proof of Proposition 3. Proof of statement (a). We have H̃ = σ ◦ H ◦ ψ−1 or

equivalently H = σ−1 ◦ H̃ ◦ψ. Let m̃+ 1 = k+ r(l+ 1) be the degree of H̃. Let ψ1

and ψ2 be the two polynomial components of ψ of degrees n1 and n2, respectively.
For i ∈ {1, 2} we write ψi = ψ̄i + ψini , where ψ̄i = ψi0 + · · · + ψi(ni−1) and ψij is
the homogeneous part of degree j of ψi, with j = 0, 1, . . . , ni. Thus

H̃ ◦ ψ =
(
ψ̄1 + ψ1n1

)k ((
ψ̄1 + ψ1n1

)l (
ψ̄2 + ψ2n2

)
− P

(
ψ̄1 + ψ1n1

))r
=

k∑
µ=0

(
k

µ

)(
ψ̄1

)k−µ
ψµ1n1

((
ψ̄1 + ψ1n1

)l (
ψ̄2 + ψ2n2

)
− P

(
ψ̄1 + ψ1n1

))r
= A1 + ψk1n1

(
l∑

ν=0

(
l

ν

)(
ψ̄1

)l−ν
ψν1n1

(
ψ̄2 + ψ2n2

)
− P

(
ψ̄1 + ψ1n1

))r

= A1 + ψk1n1

(
A2 + ψl1n1

ψ2n2

)r
,

where

A1 :=

k−1∑
µ=0

(
k

µ

)(
ψ̄1

)k−µ
ψµ1n1

((
ψ̄1 + ψ1n1

)l (
ψ̄2 + ψ2n2

)
− P

(
ψ̄1 + ψ1n1

))r
and

A2 :=

l−1∑
ν=0

(
l

ν

)(
ψ̄1

)l−ν
ψν1n1

(
ψ̄2 + ψ2n2

)
+ ψl1n1

ψ̄2 − P
(
ψ̄1 + ψ1n1

)
.

In addition,

A1 + ψk1n1

(
A2 + ψl1n1

ψ2n2

)r
= A1 + ψk1n1

(
r∑

τ=0

(
r

τ

)
(A2)

r−τ (
ψl1n1

ψ2n2

)τ)

= A1 +A3 + ψk1n1

(
ψl1n1

ψ2n2

)r
,

where

A3 := ψk1n1

(
r−1∑
τ=0

(
r

τ

)
(A2)

r−τ (
ψl1n1

ψ2n2

)τ)
.

Hence

H̃ ◦ ψ = A1 +A3 + ψk1n1

(
ψl1n1

ψ2n2

)r
.

It is easy to see that deg(A1) ≤ n1(k + rl) + rn2 − 1, deg(A2) ≤ ln1 + n2 − 1,

deg(A3) ≤ n1(k + rl) + rn2 − 1 and deg(ψk1n1

(
ψl1n1

ψ2n2

)r
) = n1(rl + k) + n2r.

Therefore as σ−1 is a linear polynomial we have

(4) m+ 1 = deg(H) = deg(σ−1 ◦ H̃ ◦ ψ) = n1(rl + k) + n2r.

Now, as n1, n2, r, and k are positive integers and l ≥ 0, then

m+ 1 = n1(rl + k) + n2r ≥ (rl + k) + r = k + r(l + 1) = m̃+ 1 = deg H̃ ≥ 2.

Proof of statement (b). As l ≥ 0, k ≥ 1 and r ≥ 1 it follows from (4) that

n1 + n2 ≤ n1(rl + k) + n2r = m+ 1.
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In addition, n1 + 1 ≤ n1 + n2 ≤ m + 1 and n2 + 1 ≤ n1 + n2 ≤ m + 1, whence
n1 ≤ m and n2 ≤ m. Hence, the degree of ψ is at most m. This implies that the
degree of the polynomial automorphism ψ−1 is at most m [3, 6]. Therefore

deg(ω̃) = deg((ψ−1)∗(ω)) ≤ nm+ (m− 1) = (n+ 1)m− 1. �

4. Complete Abelian integrals for the family S.

4.1. The algebraic classification of primitive polynomials of type C∗. In
[11] Miyanishi and Sugie consider an algebraically closed field K of characteristic
zero. An irreducible polynomial f ∈ K[x, y] is generically rational if its generic fiber
is an irreducible rational curve. They assign to f a nonnegative integer ν, where
ν + 1 is the number of places at infinity of the generic fiber of f .

In our context K = C and a generically rational irreducible polynomial with
ν = 1 is precisely a primitive polynomial of type C∗.

Miyanishi and Sugie gave the algebraic classification of generically rational irre-
ducible polynomials in K[x, y] with ν = 1 as follows.

Theorem [11, Theorem 2.3]. Let f be a generically rational, irreducible polynomial
in K[x, y] with ν = 1. Then, after a suitable change of coordinates, f is reduced to
either one of the following two forms:

• f ∼ xαyβ + 1, where α > 0, β > 0 and (α, β) = 1.
• f ∼ xα(xly + P (x))β + 1, where α, β, l > 0, (α, β) = 1 and P (x) ∈ K[x],

with deg(P (x)) < l and P (0) 6= 0.

In this result a suitable change of coordinates means a change of coordinates of
K[x, y] (see [11, Lemma 2.2]) and hence a polynomial automorphism of K2.

Saito obtained essentially the same result by considering the analytic classifica-
tion of primitive holomorphic functions in two complex variables of type C∗ [13, p.
332]. As far as we know, the previous theorem can be deduced from the proof of a
result of Suzuki ([15, pp. 527-529]), where he considered the analytic classification
of primitive meromorphic functions in two complex variables of type C∗.

By using the polynomial automorphism σ = z − 1 of C and changing α = k
and β = r we obtain the algebraic classification of primitive polynomials of type
C∗ as the family S given in the introduction because the case l = 0 in the family S

corresponds to the first form in the previous theorem.

4.2. Proof of Theorem 2. By following Ilyashenko’s ideas [9], we consider the set
of polynomial 1-forms

{ωij := xiyj−idx | 1 ≤ j ≤ n, 0 ≤ i ≤ j − 1},
which is a basis for the quotient vector space of polynomial 1-forms ω = Adx+Bdy
of degree ≤ n modulo exact polynomial 1-forms dQ of degree ≤ n. Hence each

polynomial 1-form ω can be written as ω = dQ +
∑n
j=1

∑j−1
i=0 aijωij with aij ∈ C.

Thus, we need only prove Theorem 2 for the polynomial 1-forms ωij .

Let H = xk
(
xly − P (x)

)r
be a polynomial of degree m+ 1 = k+ r(l+ 1) ≥ 2 in

the family S. We split the proof of Theorem 2 into two cases, l = 0 and l > 0. In
each case we develop the following steps:

1. Each Abelian integral Pij(c) :=
∫
[γc]

ωij , defined by H and ωij , is a polynomial.

2. We compute the upper bound for the degree of Pij(c), whence we attain the upper

bound Ẑ(m,n) for the number of zeros of I(c) =
∫
[γc]

ω =
∑n
j=1

∑j−1
i=0 aijPij(c).
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3. We show that the upper bound Ẑ(m,n) is optimal; this means that there are a
polynomial H ∈ S of degree m+ 1 and a polynomial 1-form ω of degree n such that
I(c) =

∫
[γc]

ω has exactly Ẑ(m,n) isolated zeros.

Proof of Theorem 2. Case l = 0. From the definition of the family S it follows that
P (x) ≡ 0; hence H = xkyr. In this case (3) takes the form

(5)
ϕc : C∗ → Lc

z 7→
(
zrcs2 , c

s1

zk

)
.

Step 1. Let α :=
{
e2π
√
−1t | t ∈ [0, 1]

}
⊂ C∗ be the unit circle in the domain of ϕc.

Thus [γc] := [ϕc(α)] is the generator cycle of H1(Lc,Z). In addition, as the family
{γc} is given by Φ((C− ΣH)× α) then {γc} depends continuously on c. Thus∫

[γc]

ωij =

∫
α

ϕ∗c(ωij) =

∫
α

(zrcs2)i
(cs1))

j−i

z(j−i)(k)
(rzr−1cs2)dz

= r

(∫
α

1

z−r(i+1)+k(j−i)+1
dz

)
cs2(i+1)+s1(j−i).

Hence, if
∫
[γc]

ωij 6≡ 0 then −r(i + 1) + k(j − i) = 0, that is, k(j − i) = r(i + 1).

Since (k, r) = 1, there exists a positive integer q such that

(6) kq = i+ 1

and

(7) rq = j − i.
Therefore the power of c is s2(i + 1) + s1(j − i) = s2(kq) + s1(rq) = q, whence we
obtain that

∫
[γc]

ωij is the polynomial Pij(c) = r(2π
√
−1)cq.

Step 2. Next we will compute the upper bound for the degree of the polynomials
Pij(c) by finding an upper bound for the positive integer q.

The addition of (6) and (7) gives q(k + r) = j + 1, whence

q ≤
[
j + 1

k + r

]
=

[
j + 1

m+ 1

]
,

because k + r = deg(H) = m+ 1. Since j ≤ n, Pij(c) is a polynomial of degree at

most
[
n+1
m+1

]
. Therefore, the Abelian integral I(c) =

∫
[γc]

ω =
∑n
j=1

∑j−1
i=0 aijPij(c)

is a polynomial of degree at most Ẑ(m,n) :=
[
n+1
m+1

]
, which is an upper bound for

the number of isolated zeros of I(c).

Step 3. Now, we will show that the upper bound Ẑ(m,n) is optimal. We consider
the polynomial H = xmy ∈ S of degree m + 1 ≥ 2. The generic fiber Lc of H is
parameterized by

(8)
ϕc : C∗ → Lc

z 7→
(
z, c
zm
)
.

For each positive integer n we define the polynomial 1-form

Ωmn :=
(
yn + Ẑ(m,n)

(
2xmẐ(m,n)−1yẐ(m,n) − xm−1y

))
dx.

It is clear that Ωmn is of degree n. To study the complete Abelian integral defined
by H and Ωmn we will consider two possibilities n = 1 and n ≥ 2.
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i) If n = 1, then Ω1
1 = 2ydx and Ωm1 = ydx for m > 1. Hence, by using the

parametrization (8), we obtain∫
[γc]

ydx =

∫
α

c

zm
dz =

 (2π
√
−1)c if m = 1,

0 if m > 1.

ii) If n ≥ 2 then, by using the parametrization (8), we get

(9)

∫
[γc]

yndx =

∫
α

cn

znm
dz = 0 (since nm ≥ 2)

and

(10)

∫
[γc]

xmẐ(m,n)−1yẐ(m,n)dx =

∫
α

cẐ(m,n)

z
dz = (2π

√
−1)cẐ(m,n).

Moreover we have

(11)

∫
[γc]

xm−1ydx =

∫
α

c

z
dz = (2π

√
−1)c.

It follows from (9), (10) and (11) that∫
[γc]

Ωmn = (2π
√
−1)Ẑ(m,n)c

(
2cẐ(m,n)−1 − 1

)
.

From i) and ii) we conclude that
∫
[γc]

Ωmn is a polynomial of degree Ẑ(m,n). In

addition, the zeros of
∫
[γc]

Ωmn are all different. Iliev in [8] proved that the upper

bound Ẑ(m,n) is optimal for the case m = 1.

Case l > 0. Suppose that H = xk
(
xly − P (x)

)r
, where P (x) = p0+p1x+· · ·+psxs,

with 0 ≤ s ≤ l − 1 and p0 6= 0. Thus deg(H) = m+ 1 = k + r(l + 1) ≥ 2.

Step 1. Analogously as in the case l = 0 we consider the parametrization ϕc of

the generic fiber Lc of H given by (3). Let α :=
{
e2π
√
−1t | t ∈ [0, 1]

}
⊂ C∗ be the

unit circle in the domain of ϕc and the cycle [γc] := [ϕc(α)], which is a generator of
H1(Lc,Z). Then∫

[γc]

ωij =

∫
α

ϕ∗c(ωij) =

∫
α

(zrcs2)i
(
cs1 + zkP (zrcs2)

)j−i
cls2(j−i)z(j−i)(rl+k)

(rzr−1cs2)dz,

and by developing
(
cs1 + zkP (zrcs2)

)j−i
we obtain

(12)

∫
[γc]

ωij =

j−i∑
µ=0

r

(
j − i
µ

)(∫
α

(P (zrcs2))j−i−µ

zr((j−i)l−i−1)+kµ+1
dz

)
c−s2((j−i)l−i−1)+s1µ.

As P (x) = p0 + p1x+ · · ·+ psx
s, with 0 ≤ s ≤ l − 1 and p0 6= 0, then

(13) (P (zrcs2))
j−i−µ

=
∑

n0+···+ns=j−i−µ

(j − i− µ)!

n0! · · ·ns!
pn0
0 · · · pnss zrNscs2Ns ,

where n0 ≥ 0, . . . , ns ≥ 0 and Ns := n1+2n2+ · · ·+sns. Hence if in (12) we replace

the expression (P (zrcs2))
j−i−µ

with the right-hand side of (13), then we get

(14)

∫
[γc]

ωij =

j−i∑
µ=0

 ∑
n0+···+ns=j−i−µ

Aµn0...ns

(∫
α

zrÑs−kµ−1dz

)
cs2Ñs+s1µ

 ,
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where

Ñs := Ns − ((j − i)l − i− 1) and Aµn0...ns := r

(
j − i
µ

)(
(j − i− µ)!

n0! · · ·ns!

)
pn0
0 · · · pnss .

Above we defined the integer Ns as Ns = n1 + 2n2 + · · ·+ sns and since ni ≥ 0
for i = 0, . . . , s, we have the inequality Ns ≤ s(n0 + · · · + ns). In addition, with
n0 + · · ·+ ns = j − i− µ and s ≤ l − 1 we obtain Ns ≤ (l − 1)(j − i− µ). The last

inequality implies that Ñs ≤ (l − 1)(j − i− µ)− ((j − i)l − i− 1), whence

(15) Ñs ≤ −j + 2i− (l − 1)µ+ 1.

This inequality will be useful in step 2 of the proof.

Now, we will demonstrate that
∫
[γc]

ωij is a polynomial. We must assume that

the integral
∫
α
zrÑs−kµ−1dz in (14) is different from zero. Then rÑs − kµ = 0:

rÑs = kµ. Since (k, r) = 1, there exists a positive integer qsµ such that

(16) kqsµ = Ñs

and

(17) rqsµ = µ.

From (14) the integral
∫
α
zrÑs−kµ−1dz multiplies the variable c whose power is

s2Ñs + µs1. From (16) and (17) we obtain s2Ñs + µs1 = qsµ(s2k + rs1) = qsµ.
Hence the Abelian integral

∫
[γc]

ωij is a polynomial Pij(c).

Step 2. We are going to compute the upper bound for the degree of the polynomials
Pij(c) by finding an upper bound for the positive integers qsµ.

The addition of (16) and (l + 1) times (17) yields

(18) qsµ(k + r(l + 1)) = Ñs + (l + 1)µ.

From (15) we then see that the right-hand side of (18) satisfies

(19) Ñs + (l + 1)µ ≤ −j + 2i+ 2µ+ 1.

We can rewrite the right-hand side of (19) as −2j+ 2i+ 2µ+ j+ 1. On the other
hand we know that µ ≤ j − i or in an equivalent form −2j + 2i+ 2µ ≤ 0. We then
obtain −2j + 2i+ 2µ+ j + 1 ≤ j + 1. Hence we have

(20) Ñs + (l + 1)µ ≤ j + 1.

From (18) and (20) it follows that

qsµ(k + r(l + 1)) ≤ j + 1,

whence we get

qsµ ≤
[

j + 1

k + r(l + 1)

]
=

[
j + 1

m+ 1

]
.

Since j ≤ n, Pij(c) is a polynomial of degree at most Ẑ(m,n) =
[
n+1
m+1

]
. Therefore,

I(c) =
∫
[γc]

ω =
∑n
j=1

∑j−1
i=0 aijPij(c) is a polynomial of degree at most Ẑ(m,n),

which also is an upper bound for the number of isolated zeros of I(c).

Step 3. Now, we will show that the upper bound Ẑ(m,n) is optimal. As l > 0
and k, r ∈ N − {0}, then any polynomial H = xk(xly − P (x))r ∈ S has degree
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k+ r(l+ 1) ≥ 3. We consider the polynomial H(x, y) = x(xm−1y− 1) ∈ S of degree
m+ 1 ≥ 3 (thus l = m− 1 > 0). The generic fiber Lc of H is parameterized by

(21)
ϕc : C∗ → Lc

z 7→
(
z, c+ z

zm
)
.

For each positive integer n we define the polynomial 1-form

Ωmn :=
(
yn + Ẑ(m,n)

(
xmẐ(m,n)−1yẐ(m,n) − xm−2y

))
dx.

Clearly Ωmn is of degree n. To study the complete Abelian integral I(c) defined by
H and Ωmn we will consider two possibilities n = 1 and n ≥ 2.

i) If n = 1, then Ωm1 = ydx. Hence, by using the parametrization (21), we get

(22)

∫
[γc]

Ωm1 =

∫
[γc]

ydx =

∫
α

c+ z

zm
dz =

 2π
√
−1 if m = 2,

0 if m > 2.

ii) If n ≥ 2, then by using the parametrization (21), we obtain

(23)

∫
[γc]

yndx =

∫
α

(c+ z)n

zmn
dz =

n∑
µ=0

(
n

µ

)(∫
α

dz

z(m−1)n+µ

)
cµ = 0

because (m− 1)n+ µ ≥ n+ µ ≥ n ≥ 2, and

(24)

∫
[γc]

xmẐ(m,n)−1yẐ(m,n)dx =

Ẑ(m,n)∑
µ=0

(
Ẑ(m,n)

µ

)(∫
α

zẐ(m,n)−µ−1dz

)
cµ.

The integral
∫
α
zẐ(m,n)−µ−1dz in (24) is different from zero if and only if µ =

Ẑ(m,n). Hence

(25)

∫
[γc]

xmẐ(m,n)−1yẐ(m,n)dx =

(∫
α

z−1dz

)
cZ(m,n) =

(
2π
√
−1
)
cẐ(m,n).

Moreover we have

(26)

∫
[γc]

xm−2ydx =

∫
α

c+ z

z2
dz = 2π

√
−1.

Therefore from (23), (25) and (26) we obtain

(27)

∫
[γc]

Ωmn =
(
2π
√
−1
)
Ẑ(m,n)

(
cẐ(m,n) − 1

)
.

Hence from (22) and (27)
∫
[γc]

Ωmn is a polynomial of degree Ẑ(m,n). In addition,

the zeros of
∫
[γc]

Ωmn are all different. �

Remark 8. We have proved that any complete Abelian integral I(c) defined by
H ∈ S and a polynomial 1-form ω is a polynomial on C − ΣH = C − {0} and, of
course, I(c) extends to the whole C. We know that c = 0, the unique singular value

of H = (x2 + y2)/2 or equivalently of H̃ = xy ∈ S, is always a zero of I(c). Hence a
natural question is when the unique singular value c = 0 of H = xk(xly−P (x))r ∈ S

is a zero of I(c)? There are two answers.

1. If l = 0, then c = 0 is always a zero of I(c). This assertion follows from step 1 in
the case l = 0 of the previous proof.

2. If l > 0, then c = 0 may not be a zero of I(c). See for instance (25) and (27).
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