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LIMIT CYCLES

FOR TWO FAMILIES OF CUBIC SYSTEMS

M.J. ÁLVAREZ, A. GASULL, AND R. PROHENS

Abstract. In this paper we study the number of limit cycles of two
families of cubic systems introduced in previous papers to model real
phenomena. The first one is motivated by a model of star formation
histories in giant spiral galaxies and the second one comes from a model
of Volterra type. To prove our results we develop a new criterion on
non-existence of periodic orbits and we extend a well-known criterion
on uniqueness of limit cycles due to Kuang and Freedman. Both results
allow to reduce the problem to the control of the sign of certain functions
that are treated by algebraic tools. Moreover, in both cases, we prove
that when the limit cycles exist they are non-algebraic.

1. Introduction

In this work we study the number of limit cycles of two 2-parameter
families of planar cubic systems introduced in previous papers to model real
phenomena. The first one is the planar system

{
ẋ = A(1 − x− y)−Bxy2,
ẏ = −y(1− x− y) +Bxy2,

(1.1)

where A and B are positive real parameters. It turns out to be one of the
simplest models for the formation of spiral galaxies. In Section 4 we briefly
summarize how to derive it, following the explanation of [11]. The study
developed in [11] is mainly numeric. In that work, it is proved that a limit
cycle appears, via an Andronov-Hopf bifurcation, when crossing the curve
B = (1− 2A)/A2 and it always exists for B < (1− 2A)/A2. Moreover some
numerical evidences are presented to illustrate the situation. Here we make
a complete analytic study of the system, characterizing the existence and
uniqueness of the limit cycle. We prove:

Theorem A. Consider system (1.1) in the first quadrant with A > 0, B > 0.
It has a periodic orbit if and only if B < (1− 2A)/A2. Moreover in this case
it is unique, stable and non-algebraic.

The second system is a predator-prey one of Volterra type that in dimen-
sionless variables writes as{

ẋ = x(x(1− x)− (x+ n)y),
ẏ = y(x+ n)(x−m),

(1.2)
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with n and m positive parameters. See Section 5 for a short motivation for
the study of this system, following [3]. In that paper it is proved that there

are parameters near the curve m =
√
n2 + n − n where one or two limit

cycles appear via codimension one and two Andronov-Hopf bifurcations. In
particular the codimension two bifurcation takes place at the point (n,m) =
(1/8, 1/4) =: H2. We prove:

Theorem B. Consider system (1.2) and define the following regions:

R0 =

{
(n,m) : n > 0, m ≥ max

(√
n2 + n− n,

(2n+ 1)2

4n2 + 8n+ 5

)}
,

R1 =

{
(n,m) : n > 0, m < min

(√
n2 + n− n,

2n

1 + 3n

)}
,

R2 = {(n,m) : m > 0, n > 0} \ (R0 ∪R1) ,

see Figure 1. Then the following holds:

(i) For (n,m) ∈ R0 it does not have periodic orbits.
(ii) For (n,m) ∈ R1 it has exactly one periodic orbit, which is a stable limit

cycle.
(iii) There are values of (n,m) ∈ R2 such that the system has at least two

limit cycles with opposite stabilities. In particular, this happens when
n ∈ (0, 1/8) and m &

√
n2 + n− n.

Moreover, in all cases, the existing limit cycles are non-algebraic.

Figure 1. Bifurcation diagram for system (1.2). In the
small grey region we know the existence of at least two limit
cycles.
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Remark 1.1. In [3] the authors conjecture that the maximum number of
limit cycles of system (1.2) is two and its bifurcation diagram is the one
given in Figure 2. In particular they assert that on a curve above the Hopf
curve, starting at (0, 0) and ending at H2, there is a blue-sky bifurcation
and on it the system has a unique semistable limit cycle. In Figure 2 this
curve is qualitative plotted by a solid line. Notice that our theorem proves
the conjectured bifurcation diagram on regions R0 and R1. Moreover our
results on the region R2 are also coherent with the ones showed in Figure 2
and in particular with the existence of the blue-sky bifurcation, see also
Proposition 5.1(v).

We have not performed an exhaustive numerical study, but all our compu-
tations are also coherent with their conjecture. For instance when m = 0.15
we have obtained that the two limit cycles seem to disappear for a value
ñ = 0.02045 ± 5× 10−5.

Figure 2. The numbers appearing in the figure denote the
number of limit cycles for system (1.2) conjectured in [3].

The proofs of both theorems follow similar steps. We study the non-
existence of limit cycles by using a new criterion given in Subsection 2.1, see
Theorem 2.1. The proof of this result uses the Bendixson-Dulac Criterion
and extends some previous results of [14]. The regions of uniqueness of the
limit cycle are given by using an extension of a result of Kuang and Freed-
man [15] that will be given in Subsection 2.2. Finally the non-algebraicity
of the existing limit cycles is proved by applying a method introduced in [5],
briefly recalled in Subsection 2.3.

The paper is organized as follows: Section 2 is devoted to present all the
preliminary results. In Section 3, as a first illustration of the tools used in
this paper, we present a complete study of the known results for the model
of Rosenzweig and McArthur. In this case, as we will see, by using our
approach the proofs of non-existence and uniqueness of periodic orbits are
really simple. Section 4 is devoted to prove Theorem A and Section 5 to
prove Theorem B.
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2. Preliminary results.

2.1. New criterion on the non-existence of limit cycles. In this sub-
section we give a criterion of non-existence of limit cycles for a family of
Kolmogorov systems. We prove:

Theorem 2.1. Consider system

X (x, y) =

{
ẋ = x

(
g0(x) + g1(x)y + g2(x)y

2
)
,

ẏ = y
(
h0(x) + h1(x)y + h2(x)y

2
)
,

(2.1)

defined for all x ≥ 0, y ≥ 0 and where all the functions are of class C1. For
any λ ∈ R define the functions:

Sλ(x) = x[g′0(x)g1(x)− g0(x)g
′
1(x)] + λh0(x)g1(x)− (1 + λ)g0(x)h1(x),

Tλ(x) = x[g′2(x)g1(x)− g2(x)g
′
1(x)] + (2 + λ)h2(x)g1(x)− (1 + λ)g2(x)h1(x).

Let I ⊂ R+ be an open interval. We also introduce the following assump-
tions:

(i) Either g1(x) 6= 0, for all x ∈ I, or g2 ≡ 0 and, in any case, there exists
a value of λ such that Sλ(x)Tλ(x) ≥ 0, for all x ∈ I, and all zeroes of
Sλ(x)Tλ(x) are isolated.

(ii) h2 ≡ g2 ≡ 0 and there exists a λ such that Sλ(x) does not change sign,
for all x ∈ I, and all its zeroes are isolated.

If one of the assumptions (i) or (ii) holds, then system (2.1) does not have
periodic orbits totally included in the strip I × (0,+∞).

Moreover, if there exists a λ such that Sλ ≡ Tλ ≡ 0, then system (2.1) is
integrable.

Proof. First, let us assume that g2 ≡ 0. In this case, if there exists a limit
cycle then it can not intersect the set {(x, y) |x > 0, g1(x) = 0}. This holds
because if x̄ > 0 is such that g1(x̄) = 0 then either x = x̄ is an invariant
line (i.e. g0(x̄) = 0) or it is a line without contact, i.e ẋ|x=x̄ = x̄g0(x̄) 6= 0.
Hence, in the region where our system can have periodic orbits we can always
assume that g1 does not vanish.

To prove the results we look for a suitable Dulac function of the form
B(x, y) = yλ−1Z(x). Simple computations give that

D(x, y) := div
(
B(x, y)X (x, y)

)
=

[
(xg0(x)Z(x))′ + λh0(x)Z(x)

+
(
(xg1(x)Z(x))′ + (λ+ 1)h1(x)Z(x)

)
y

+
(
(xg2(x)Z(x))′ + (λ+ 2)h2(x)Z(x)

)
y2
]
yλ−1.

The solutions of the differential equation

(xg1(x)Z(x))′ + (λ+ 1)h1(x)Z(x) = 0 (2.2)

are

Zx0(x) =

exp

[
−(λ+ 1)

∫ x

x0

h1(s)

sg1(s)
ds

]

xg1(x)
,
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varying x0. Recall that these functions, for x0 > 0, are well defined in the
regions where the periodic orbits can lie, because g1 does not vanish on
them.

By taking the Dulac function B̃(x, y) = yλ−1Zx0(x), for a given x0 > 0,
and by using that Zx0(x) satisfies the differential equation (2.2), after doing
some computations, we get

D(x, y) =
Zx0(x)

g1(x)

(
Sλ(x) + Tλ(x)y

2
)
yλ−1.

Let us take a value of λ for which Sλ(x)Tλ(x) ≥ 0 in I. We have that
the function D(x, y) does not change sign in I × (0,+∞) and vanishes on a
set of zero Lebesgue measure. Hence, by the Dulac Criterion, the result is
proved.

In case (ii), note that

D(x, y) =
Zx0(x)Sλ(x) y

λ−1

g1(x)

and the result follows similarly.
Finally notice that when Sλ(x) ≡ Tλ(x) ≡ 0 the function B(x, y) is an

integrating factor of the system.
�

Observe that the function Sλ(x) of Theorem 2.1 can also be written as

Sλ(x) = g21(x)

[
x

(
g0(x)

g1(x)

)′
+ λ

h0(x)

g1(x)
− (1 + λ)

g0(x)h1(x)

g21(x)

]
.

When h1(x) ≡ 0, it essentially coincides with the one given in the non-
existence criterion presented in [14, Thm 4.1]. Of course, Tλ(x) can be also
written in a similar way.

Note that our results on system (2.1) can be applied to several Kol-
mogorov type systems. For instance they perfectly match with the Gause-
type systems considered in [17], which have the form

{
ẋ = xg(x)− yp(x),
ẏ = γy

(
−δ + h(x) − ηy − αy2

)
,

or with the system
{

ẋ = x
(
a1 + a2x− a3x

2 − ky
)
,

ẏ = y (−1 + x+ y) ,

studied in [10]. See also the systems considered in [9].
In this paper we will apply our criterion to prove the non-existence results

in Theorems A and B, but as a first illustration we will use it to prove that
under some hypotheses a simple Kolmogorov system does not have limit
cycles. We prove:

Proposition 2.2. The system,
{

ẋ = x
(
a+ bx+ cy + dy2

)
,

ẏ = y
(
e+ fx+ gy + hy2

)
,

(2.3)

where all the parameters are real numbers satisfying
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(i) either cf − bg 6= 0 and

(abg + beg − cbe− afg)(2cfh+ bdg − bgh − cbh− dfg) > 0;

(ii) or d = h = 0,

does not have limit cycles in the first quadrant.

We remark that in the above proposition we fix our attention into the first
quadrant but similar results can be obtained for the whole plane. Notice
also that item (ii) proves in particular the well-known fact that the classical
competitive Lotka-Volterra model in two dimensions does not have limit
cycles for any value of the parameters. Recall that it can be written as





ẋ = r1x

(
1− x

K1
− α12

K1
y

)
,

ẏ = r2y

(
1− y

K2
− α21

K2
x

)
,

where all the appearing parameters are positive.

Proof of Proposition 2.2. In order to apply Theorem 2.1 notice that:

g0(x) = a+ bx, g1(x) = c, g2(x) = d,

h0(x) = e+ fx, h1(x) = g, h2(x) = h,

and we take I = (0,∞). Straightforward computations give that

Sλ(x) = [(cf − bg)λ+ b(c− g)] x+ [(ce − ag)λ− ag] ,

Tλ(x) = (ch − dg)λ+ 2ch− dg,

(i) Since we assume that cf−bg 6= 0 we can take λ = λ∗ := b(g−c)/(cf −
bg) and then

Sλ∗(x) =
c(abg + beg − cbe− afg)

cf − bg
,

Tλ∗(x) =
c(2cfh+ bdg − bgh− cbh− dfg)

cf − bg
.

When c = 0, the system is integrable and, hence, looking at its integrating
factor we conclude that it does not have any limit cycle. When c 6= 0 we
have by hypothesis that

Sλ(x)Tλ(x) > 0.

Therefore, by using (i) of Theorem 2.1 we obtain that it has no periodic
orbits.

(ii) When d = h = 0 and cf − bg = 0 then either system (2.3) does not
have critical points outside the invariant axes or it has a line full of critical
points, but in any case it trivially does not have limit cycles. So we can
assume that cf − bg 6= 0 and take again λ = λ∗. Then Sλ∗(x) coincides with
the above expression and Tλ∗(x) ≡ 0. By applying item (ii) of Theorem 2.1,
when the above quantity Sλ∗(x) is not zero, we know that the system does
not have periodic orbits and when it is zero we have an integrable system.
In any case there are no limit cycles, as we wanted to prove. �
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2.2. A criterion on the uniqueness of limit cycles. In this subsection
we extend a nice criterion of Kuang and Freedman, see [15], for determining
the uniqueness of the limit cycle for some systems of Kolmogorov type.

Theorem 2.3. Consider system

ẋ = xg(x)− yp(x),
ẏ = y(−γ + q(x)),

(2.4)

in the first quadrant, with γ > 0. Assume that there exist K > 0 and x∗ > 0
such that:

(i) p(0) = 0, p′(x) > 0, for 0 < x < K,
(ii) g(K) = 0, (x−K)g(x) < 0, for 0 < x 6= K,
(iii) q(x∗) = γ, (q(x)− γ)(x− x∗) > 0, for x ∈ [0,K]\{x∗},
(iv) the unique equilibrium point (x∗, y∗) in the region R = {(x, y) : x ∈

[0,K], y > 0} is unstable,
(v) for 0 < x < K,

Φ(x) :=
d

dx

(
xg′(x) + g(x) − xg(x)p′(x)/p(x)

−γ + q(x)

)
≤ 0, x 6= x∗.

Then system (2.4) has exactly one periodic orbit which is a globally asymp-
totically stable limit cycle.

Sketch of the proof. The proof follows the same steps as the one of Kuang
and Freedman’s theorem, [15], and there are only two differences. The first
one is that in that paper it is assumed that g(0) > 0 to make system (2.4)
as a consistent predator-prey model.

The second one is that it is assumed that q(0) > 0 and q′(x) > 0, for
x > 0, to ensure that −γ + q(x) has only one simple positive solution.

Looking carefully to the Kuang and Freedman’s proof one realizes that
the first condition is used nowhere while the second one is only needed to
know that the system has a unique equilibrium point in the region R. �

Remark 2.4. (i) As we will see when we apply the previous theorem to
system (1.2) the fact that we have been able to remove the hypothesis that
q′(x) > 0 increases the region of parameters for which we can prove the
existence of exactly one limit cycle.

(ii) By using the well-known Rosenzweig and McArthur criterion [4, §4]
we know that the hyperbolic instability of (x∗, y∗) is equivalent to

d

dx

(
xg(x)

p(x)

)∣∣∣∣
x=x∗

> 0.

2.3. A method for studying the existence of algebraic solutions. In
this section we recall a method developed in [5] for studying the existence
of algebraic invariant curves of planar polynomial systems for which we
know a concrete solution. As we will see this method works especially well
for Kolmogorov systems for which the two axes are known to be invariant
curves.

It is said that F (x, y) = 0 is an algebraic solution of a planar polynomial
differential equation {

ẋ = P (x, y),
ẏ = Q(x, y),

(2.5)
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if F (x, y) is a polynomial for which there exists another polynomial K(x, y)
(called the cofactor of F ) such that

∂F (x, y)

∂x
P (x, y) +

∂F (x, y)

∂y
Q(x, y) = K(x, y)F (x, y). (2.6)

It is clear that the set F = {(x, y) ∈ R2 : F (x, y) = 0} is an invariant set
for the flow associated to (2.5). Notice also that the degree of K(x, y) is at
most one degree less that max(deg(P (x, y)),deg(Q(x, y))).

Fixed an analytic solution of (2.5) of the form y = α(x), which is not
contained in the set F , we can consider the following Taylor expansion in z,

Φ(x, α(x) + z) = Φ0(x) + Φ1(x)z +Φ2(x)z
2 + . . . ,

where Φ is taken as one of the functions P,Q,F or K. Notice that α′(x) =
Q0(x)/P0(x). Then equation (2.6) can be written as

∞∑

k=0

(
k∑

i=0

(
Pk−i(x)F

′
i (x)

+
(
iQk−i+1(x)− iα′(x)Pk−i+1(x)−Kk−i(x)

)
Fi(x)

))
zk = 0.

The functions Fk(x) can be computed recurrently from the above relation
by solving the linear differential equations in Fk(x), obtained vanishing each
coefficient in zk. For instance, for k = 0,

P0(x)F
′
0(x)−K0(x)F0(x) = 0, (2.7)

and we obtain F0(x) = C0 exp(
∫ x
0 K0(s)/P0(s) ds), where C0 is an arbitrary

constant.
When α(x) is a polynomial, with real or complex coefficients, the linear

differential equations for each Fk(x) described in the above algorithm give us
a collection of necessary conditions for the existence of an algebraic solution
F (x, y) = 0. The conditions are that, for each k, the functions Fk(x) must
be polynomials.

3. A first example: the model of Rosenzweig and McArthur

In this section we study the number of limit cycles in the first quadrant
of the system of Rosenzweig and McArthur, see [18]:





ẋ = rx
(
1− x

k

)
− mx

A+ x
y,

ẏ = −δy + γ
mx

A+ x
y,

(3.1)

with all the parameters positive. The results that we will give are not new,
but we give a shorter prove that also serves to illustrate the methods that
we will use along this paper. It is worth to comment that the tools that we
will use, namely Theorems 2.1 and 2.3, are extensions of results proved to
study the above system.

To study system (3.1) in the first quadrant it is convenient first to repa-
rameterize the time, multiplying the vector field by the positive function
A+ x and second to prepare a dimensionless model with the new variables
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x1 = x/k, y1 = my/(δA) and t1 = t/(δA). After removing the subindexes
we obtain system

{
ẋ = x((1 − x)(P +Qx)− y),
ẏ = y(−1 +Rx),

(3.2)

where P > 0, Q > 0 and R ∈ R. In fact P = r/δ, Q = rk/(δA) and
R = k(mγ − δ)/(δA). We prove

Theorem 3.1. Consider system (3.2) in the first quadrant with P > 0 and
Q > 0. It has a periodic orbit if and only if T := PR − QR + 2Q < 0.
Moreover, in this case it is unique and stable.

Proof. The system (3.2) has a critical point in the open first quadrant only
when R > 0 and (R − 1)(PR + Q) > 0. In this case it is easy to see that
it has index +1 and that the divergence of the associated vector field at
this critical point is −T/R2. Hence when T > 0 (resp. T < 0) the point
is a local attractor (resp. repellor). Some further work when T = 0, by
computing the Lyapunov constant at the point, gives that in this case it is
also an attracting weak focus.

To prove the existence and uniqueness of the limit cycle when T < 0, we
apply Theorem 2.3. The functions appearing in its statement are

g(x) = (1− x)(P +Qx), p(x) = −x, q(x) = Rx,

γ = 1 and K = 1. Then

Φ(x) =
−2QRx2 + 4Qx+ P −Q

(Rx− 1)2
.

Note that
dis(−2QRx2 + 4Qx+ P −Q,x) = 8QT < 0,

where dis(p(x), x) denotes the discriminant of p(x) with respect to x. There-
fore we have that Φ(x) ≤ 0 for x 6= 1/R and the existence and uniqueness
of the limit cycle follows.

To prove the non-existence of periodic orbits when T ≥ 0 we use item (ii)
of Theorem 2.1 by taking

g0(x) = (1− x)(P +Qx), g1(x) = −1, h0(x) = −1 +Rx, h1(x) ≡ 0.

Then

Sλ(x) = 2Qx2 + (P −Q− λR)x+ λ.

Observe that if we find λ such that Sλ has a double root we are done. Note
that

d(λ) := dis(Sλ(x), x) = λ2 + (2R(Q− P )− 8Q)λ+ (P −Q)2

and since

dis(d(λ), λ) = 3QT ≥ 0,

such a λ always exists and the non-existence of periodic orbits follows. �
Remark 3.2. Notice that in the original parameters of the Rosenzweig and
McArthur model

T =
kr

(δA)2
(δ(A + k) + γm(A− k)).
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4. A system modeling the creation of spiral galaxies

4.1. Deduction of the model. As we have already said, in this subsection
we briefly recall the explanation of [11] for the deduction of system (1.1).
For more details, see this reference.

We concentrate in a scenario of star formation histories in giant spiral
galaxies. By observations of soft X-ray background and O VI absorption
lines, since the late 70’s it is admitted that the interstellar medium consists
of three components, instead of the two considered until then. These three
components are warm gas, cold clouds and, the new one, hot gas. Their
relative abundances are denoted by Xw,Xc,Xh, respectively. The inter-
change processes among these three components are regulated by supernova
remnants through the following three interactions:

• the sweeping of a warm gas into a cold component, that can be
approximated by aXw. Although the coefficient a depends on the
variables, in this model is set to be constant.

• the evaporation of cold clouds embedded in a hot gas, that is pro-
portional to the abundance of clouds and the temperature of the hot
gas component in which clouds are embedded. This factor can be
taken as bXcX

2
h. As in the previous item, although the complexity

of the function b, it is not very restrictive to take it as a constant.
• the radiative cooling of a hot gas by collisions with a warm gas, that
it is assumed to be proportional to the collision rate between the hot
and the warm gases, as cXwXh.

For all the previous considerations, the rate equations for the time varia-
tion of each component are





dXw

dτ
= −aXw + cXhXw,

dXc

dτ
= −bXcX

2
h + aXw,

dXh

dτ
= −cXhXw + bXcX

2
h.

(4.1)

Since the three variables are related by Xw + Xc + Xh = 1, the previous
system can be reduced to system (1.1) by denoting Xc = x,Xh = y, A =
a/c,B = b/c and doing the rescaling t = cτ.

This system turned out to be important to describe the cyclical forma-
tion of galaxies and several interpretations have been given to this periodic
behavior, see [7, 8, 13], and a slight modification of it to apply it to dwarf
galaxies at [12].

4.2. Non-existence and uniqueness of the limit cycle. We split the
proof of Theorem A in several steps. The non-algebraicity of the existing
limit cycles will be proved in next subsection.

Lemma 4.1. Consider system (1.1) with A > 0 and B > 0.

(i) When B < (1 − 2A)/A2 then it has at least one periodic orbit in the
first quadrant.

(ii) When A ≥ 1 it does not have periodic orbits in the first quadrant.
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Proof. The system has the critical points (1, 0), (0, 1) and p := ( 1−A
1+AB , A).

Notice that p is in the open first quadrant only when A < 1, so item (ii)
holds. From now one we will assume that this inequality is satisfied.

It is easy to see that the point (0, 1) is an hyperbolic saddle and, by
using the results given in [1], that (1, 0) is a semi-hyperbolic saddle-node.
Moreover the determinant of the differential of the vector field associated to
system (1.1) at p is (1−A)A2B > 0 and its trace AB(1−A2B−2A)/(1+AB).
When the trace vanishes, that is when B = (2A − 1)/A2, we compute the
first Lyapunov quantity by using [2, 6], obtaining

V3 =
π

4A2(A− 1)

√
1− 2A

1−A
.

Notice that V3 < 0 and it is always well defined, because when A ≥ 1/2 for
no positive B the trace vanishes. Hence the point p is an attractor when
B ≥ (2A− 1)/A2 and a repellor otherwise.

On the other hand the straight lines y = 0 and x + y = 1 are invariant
for the flow of the system and the straight line x = 0 is a line without
contact for 0 ≤ y < 1. Taking into account all the above information and by
studying the location of the separatrices of the critical points (1, 0) and (0, 1)
we obtain that the triangle formed by the three lines is positively invariant
by the flow of the system. Since when B < (1 − 2A)/A2 we know that p
is an unstable focus, by using the Poincaré-Bendixson Theorem, there must
exist at least one limit cycle surrounding this point, as we wanted to prove.

�
Next lemma converts system (1.1) into a new one suitable for a direct

application of the criterion introduced in the previous section.

Lemma 4.2. System (1.1) in the first quadrant and system
{

ẋ = x(Bx(1− x)− (Bx+ 1)y)
ẏ = y(−A+ x),

(4.2)

also in the first quadrant, are affine conjugated.

Proof. The change of variables x1 = y, y1 = 1−x−y, transforms one system
into the other, after omitting the subindexes. Notice that this change passes
the invariant lines of system (1.1) into the coordinate axes of the new system,
which is of Kolmogorov type. In this new expression, the segment of the
line x+ y = 1, which is in the first quadrant, is without contact. �
Theorem 4.3. Consider system (4.2) and assume that A > 0, B > 0 and
B < (1−2A)/A2. Then it has exactly one periodic orbit in the first quadrant
which is a stable limit cycle.

Proof. We apply Theorem 2.3 to the system. The functions appearing in its
statement are

g(x) = Bx(1− x), p(x) = x(1 +Bx), q(x) = x,

γ = A and K = 1. All the hypotheses, except the stability of the equilibrium
(x∗, y∗) and that Φ(x) ≤ 0 are straightforward. By the Rosenzweig and
McArthur criterion, see Remark 2.4.(ii), or by the proof of Lemma 4.1 we
know that, for these values of the parameters, the equilibrium is unstable.
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Let us study the sign of the function Φ. We have that

Φ(x) =
B
(
−B2x4 + 2B(−1 +AB)x3 + (−2 + 5AB −B)x2 + 4Ax−A

)

(1 +Bx)2(A− x)2
.

Clearly it suffices to control the sign of

φA,B(x) := −B2x4 + 2B(−1 +AB)x3 + (−2 + 5AB −B)x2 + 4Ax−A

for 0 < x < 1, 0 < A < 1/2 and B > 0.
First, notice that φA,B(0) = −A < 0 and φA,B(1) = (B+1)(2AB +3A−

B−2) < −(B+1)/2 < 0. Moreover the discriminant of φA,B(x) with respect
to x is

dis(φA,B(x), x) = 16B2A(B + 1)(1 − 2A−BA2)∆(A,B)

where

∆(A,B) := B3(27B+28)A3+3B2(20+19B)A2−3B(8B2+5B−4)A+(B+2)3.

We claim that, on the region 0 < A < 1/2, B > 0, ∆(A,B) ≥ 0 and

∆(A,B) = 0 if and only if A = Ã := (3−
√
5)/8 and B = B̃ := 8 + 4

√
5.

From the continuous dependence of the roots of a polynomial with respect
to parameters we know that the number of real roots of φA,B(x) in [0, 1] can
only vary when the above discriminant vanishes. Consider the set

S :=
{
(A,B) : 0 < A < 1/2, 0 < B < (1− 2A)/A2

}
\ {(Ã, B̃)}.

From the above claim, we know that on S the discriminant of φA,B(x) does
not vanish. Since S is a path-connected domain, all the functions φA,B, for
(A,B) ∈ S, have the same number of real roots in [0, 1]. Notice that for
x ∈ [0, 1],

φÃ,B̃(x) = −9 + 4
√
5

16

(
16x2 + (6

√
5− 14)x + 7− 3

√
5
)2

≤ 0

and, for instance, φ1/4,4(x) = −16x4 − x2 + x− 1/4 < 0. Therefore we have
proved that Φ(x) ≤ 0 and the theorem follows.

Finally, let us prove the claim. We will use similar arguments that for
studying φA,B(x). Consider ∆B(A) := ∆(A,B) and think B as a parameter.
We have that B3(27B + 28) > 0, ∆(0, B) = (B + 2)3 > 0 and ∆(1/2, B) =
(27B4 + 54B3 + 108B2 + 144B + 64)/8 > 0. Moreover

dis(∆(A,B), A) = −19683(B2 − 16B − 16)2(B + 1)4B6.

Hence the number of real roots can only vary when B2−16B−16 = 0, that
is when B = 8 + 4

√
5. Since, for A > 0,

∆(A, 0) = 8 > 0,

∆(A, 8 + 4
√
5) =

4613 + 2063
√
5

38

(
152A− 75 + 55

√
5
)(

8A− 3 +
√
5
)2

≥ 0,

∆(A, 17) = 2392631A3 + 297381A2 − 122043A + 6859 > 0,

we have proved the claim. �
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With the above two results we have proved the existence, uniqueness and
stability of the limit cycle when A,B > 0 and B < (1 − 2A)/A2 for sys-
tem (4.2) and equivalently for system (1.1). Let us prove the non-existence
in the complementary region.

Theorem 4.4. When A > 0 , B > 0 and B ≥ (1− 2A)/A2 the system (4.2)
does not have periodic orbits in the first quadrant.

Proof. By Lemma 4.1 it is not restrictive to assume that A < 1. During all
the proof we will assume this inequality and the ones of the statement. We
apply the criterion given in item (ii) of Theorem 2.1 by taking

g0(x) = Bx(1− x), g1(x) = −1−Bx, h0(x) = x−A, h1(x) ≡ 0

and I = (0, 1), because all the periodic orbits of the system have to be in
the strip (0, 1) × (0,+∞). We have that

Sλ(x) = B2x3 + (2− λ)Bx2 + (λAB − λ−B)x+ λA.

Recall that to prove the non-existence of limit cycles it will be enough with
finding a λ such that Sλ(x) does not change sign for x ∈ [0, 1].

Observe that

lim
x→−∞

Sλ(x) = −∞, Sλ(0) = λA.

If we set λ > 0 we already know that the function Sλ(x) has at least one
negative zero. Moreover, Sλ(1) = (B + 1)(B + λA − λ). As we want Sλ

not to change sign for x ∈ [0, 1] then we will search λ satisfying also that
λ < B/(1−A).

Summarizing, for each couple of given parameters A,B, we want to find
λ ∈ (0, B/(1 − A)) such that Sλ(x) does not change sign for x ∈ [0, 1]. In
fact, if for each couple of parameters, we are able to find λ in this interval
such that Sλ(x) has a double zero then the proof is completed, because it
will not change sign.

To study the double zeroes of Sλ we compute its discriminant with respect
to x. We obtain

dA,B(λ) := dis(Sλ(x), x) =

B2
[
(1 +AB)2λ4 + c3λ

3 + c2λ
2 + c1λ+ 4B2(B + 1)

]
,

where c1, c2 and c3 are given polynomials depending on A,B. Recall that
when, for some fixed λ, A and B, the polynomial Sλ has a double zero then
its discriminant is zero. Hence, for the given values of A and B, we want to
find λA,B ∈ (0, B/(1 −A)) such that dA,B(λA,B) = 0.

Note that the function dA,B satisfies:

dA,B(0) = 4B4(1 +B) > 0,

dA,B

(
B

1−A

)
=

B4(4− 8A+ 4A2 +A2B2)(−2 + 3A−B + 2AB)2

(1−A)4
> 0.

To see that d has at least one zero for all values of A,B, in the suitable
interval we study where the multiple zeroes of the curve are situated. For
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this purpose we compute a new discriminant, the one of d with respect to
λ, obtaining:

s(A,B) := dis(dA,B(λ), λ) = −256AB14(B + 1)(A2B + 2A− 1)∆(A,B)3.

Here ∆(A,B) is exactly the same function appearing in the proof of The-
orem 4.3. Recall that this function does not vanish in the region of our
interest, A > 0, B > 0 and B ≥ (1− 2A)/A2.

Therefore, the zeroes of s(A,B) are located only on the Hopf bifurcation
curve A2B + 2A − 1 = 0, and then for all the values of A,B on this Hopf
curve we can find a double zero of d, and consequently a λA,B such that
Sλ(A,B)(x) does not change sign.

Moreover it is easy to see that, for instance for A = 4/5, B = 1, the
function d4/5,1(λ) has two zeroes in the interval (0, B/(1−A)). If there exist
some values of A,B for which dA,B(λ) does not have a zero in this interval
then, there must exist some other values of A,B such that dA,B(λ) has a
double root, and for these values s(A,B) = 0. But the function s(A,B) has
no more zeroes, and consequently, for all values of A,B > 0, B ≥ (1−2A)/A2

there exists λA,B ∈ (0, B/(1 − A)) such that dA,B(λA,B) = 0 and this λA,B

will be a double zero of Sλ(A,B)(x), making this function not changing sign
for x ∈ [0, 1]. Hence the theorem follows. �

4.3. Non-algebraicity of the limit cycle. We prove the following result
which, by using Lemma 4.2, clearly implies the non-algebraicity of the limit
cycle of system (1.1) when A > 0 and B > 0. This is a part of the statement
of TheoremA.

Theorem 4.5. When A(B + 1) 6= 0 the only invariant algebraic curves for
system (4.2), {

ẋ = x(Bx(1− x)− (Bx+ 1)y)
ẏ = y(−A+ x),

are the coordinate axes.

Proof. We use the method introduced in Subsection 2.3, with y = α(x) ≡ 0,
after interchanging x and y. We write the algebraic curve

F (x, y) = f0(y) + f1(y)x+ · · ·+ fk(y)x
k = 0,

with k ∈ N, and its corresponding cofactor, as

K(x, y) = k0,0 + k0,1y + k0,2y
2 + (k1,0 + k1,1y)x+ k2,0x

2,

because the system is cubic. Then, by using equation (2.7), we obtain that
f0(y) has to be a polynomial satisfying

(k0,0 + k0,1y + k0,2y
2)f0(y) +Ayf ′

0(y) = 0.

Since A 6= 0,

f0(y) = F0y
− k0,0

A exp

(
−2k0,1y + k0,2y

2

2A

)
, F0 ∈ R.

Hence, the conditions for f0(y) to be a polynomial are

k0,1 = k0,2 = 0, k0,0 = −mA, m ∈ N
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and then f0(y) = F0y
m. Studying the order one terms in x in equation (2.6)

we arrive to the new differential equation

Ayf ′
1(y) + (y −mA)f1(y) = F0y

m(m− k1,0 − k1,1y).

Thus

f1(y) = −F0k1,1y
m +

F0(m− k1,0)

A
yme−

y
A

∫ y

1

e
z
A

z
dz +Kyme−

y
A , K ∈ R.

Hence the only polynomial solution happens when K = 0 and k1,0 = m,
giving that f1(y) = −F0k1,1y

m.
Proceeding similarly to determine f2(y), the condition to be a polynomial

is k2,0 = k1,1B and

f2(y) =
F0k1,1(k1,1 +B)

2
ym.

For the next step, the condition is B(B + 1) = 0, and then

f3(y) = −F0k1,1(k1,1 +B)(k1,1 + 2B)

3!
ym.

Hence the system can have algebraic solutions, different of the coordinate
axes, only when either B = 0 or B = −1. As the case B = −1 is not
considered, it only remains to study what happens when B = 0.

If B = 0, by induction then we get

F (x, y) = F0y
m




∞∑

j=0

(−k1,1x)
j

j!


 = F0y

me−k1,1x,

which is never algebraic, but satisfies the corresponding equation (2.6). In-
deed, in this case F (x, y) is what it is usually called an exponential factor
of the system. �

Remark 4.6. In former theorem, as a consequence of the hypotheses of The-
orem A, we have excluded the study of case B = −1. Nevertheless, in this
case, it can be also proved that additionally we have x = 1, as an invariant
algebraic curve and that no more invariant algebraic curves exist.

Clearly, Theorem A follows by using all the results proved in this section.

5. A Volterra system

5.1. Deduction of the model. In mathematical ecology a family of nat-
ural models is given by the systems of the form

{
ẋ = x(a(x) − b)y,
ẏ = y(−c+ dx),

where x is the population density of the prey, y is the population density of
the predator and a(x) describes the dynamics of multiplication of the prey
in the absence of predators. The function considered in [3] is

a(x) =
ax(K − x)

K(N + x)
,
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where 0 < N ≪ K. By rescaling the variables we obtain a dimensionless
model of the form 




u̇ =
u2(1− u)

n+ u
− uv,

v̇ = γv(u−m),

where all the parameters γ, n,m are positive. Changing once more the time,
since n+ u is positive in the first quadrant, the phase portrait of the above
system coincides with the one of the polynomial system

{
u̇ = u2(1− u)− uv(n + u),
v̇ = γv(u−m)(n + u).

When γ = 1 we get the system (1.2) that we are studying along this paper.

5.2. On the number of limit cycles. First, in next proposition we collect
some results about local bifurcations and lower bounds for the number of
limit cycles of system (1.2). After that, for proving Theorem B we will follow
the same scheme that in the previous section.

Proposition 5.1. Consider system (1.2) in the first quadrant. Then:

(i) It does not have limit cycles when m ≥ 1.

(ii) The curve {m =
√
n2 + n−n} is an Andronov-Hopf bifurcation curve.

More concretely:
• If n < 1/8 an unstable limit cycle bifurcates from the origin for

m &
√
n2 + n− n,

• At (n,m) = (1/8, 1/4) there is a codimension two weak focus and
the family unfolds it,

• If n > 1/8 a stable limit cycle bifurcates from the origin for m .√
n2 + n− n.

(iii) It has at least one limit cycle when m <
√
n2 + n− n.

(iv) It has at least two limit cycles when n < 1/8 and m &
√
n2 + n− n.

(v) For each m < 1/4 there is some value ñ = ñ(m), satisfying ñ <
m2/(1−2m) for which the system has at least a semistable limit cycle.

Proof. (i) The critical points of system (1.2) are (0, 0), (1, 0) and P =
(m,m(1−m)/(n +m)). Moreover both axes are invariant by the flow.
Since when m ≥ 1, P is not in the open first quadrant then it is clear
that then the system does not have periodic orbits in this region.

(ii) The first Lyapunov quantity at the singular point P is given by the
divergence of the vector field at P ,

V1 =
m
(
n(1− 2m)−m2

)

m+ n
.

When n = m2/(1 − 2m), next Lyapunov quantities at P , whenever it has
sense and by using [6], are

V3 =
π

4

(1− 4m)√
m(1−m)2

√
1− 2m

, V5 = −64

81
π
√
2.

We note that at the point (n,m) = (1/8, 1/4) we have V1 = V3 = 0 and
V5 < 0. Recall that the stability of the weak focus is given by the sign of the
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first non-null Lyapunov constant. If we choose m = 1
4 − δ, n = − m(m2−ǫ)

2m2−m−ǫ
,

then the Lyapunov constants are

V1 = −ε < 0, V3 =
64πδ√

1− 4δ
√
2 + 8δ (3 + 4δ)2

> 0, V5 = −64

81
π
√
2 < 0.

Consequently, choosing 0 < ε ≪ δ ≪ 1, there are values of the parameters
for which system (1.2) has, at least, two hyperbolic limit cycles, the inner one
being unstable and the outer one being stable. In fact at the point (n,m) =
(1/8, 1/4) the system presents the complete unfolding of an Andronov-Hopf
bifurcation of codimension two on the Hopf curve, see for instance [16]. The
codimension one bifurcation appearing when V1 = 0, V3 6= 0, i.e. n 6= 1/8,
can be similarly treated.

(iii)-(v) When m < 1, the unstable separatix contained in the first quad-
rant of the saddle point at (1, 0) remains in the open triangle formed by the
two coordinate axes and the straight line

L :=

{
(x, y) : y =

(n+ 1)m− (n+ 2)

1 + n
(x− 1)

}
.

This can be easily seen by studying the vector field given by the system on L
and noticing that (n+1)m− (n+2) < 0. Therefore its ω-limit set has to be
non-empty. When the point P is unstable this limit set has to be a periodic
orbit. This happens when m <

√
n2 + n−n or when m =

√
n2 + n−n and

n < 1/8. Therefore (iii) follows.

To prove (iv), notice that for n < 1/8 and m &
√
n2 + n − n we have

already proved in (ii) that a small limit cycle is born from P and it is
unstable. Therefore, the ω-limit set of the separatrix of the saddle has to
be a second periodic orbit surrounding the unstable one.

Finally to prove (v), fixed any m = m∗, with 0 < m∗ < 1/4, we consider
the one-parameter family of vector fields Xn associated to (1.2). Notice the
following facts:

• By item (iv) we know that near the Andronov-Hopf curve, when
n . (m∗)2/(1 − 2m∗), the system Xn has at least two limit cycles
with opposite stabilities. For each m∗ we can take a value of n with
this property, say n∗ = n∗(m∗).

• When n = 0, X0 there are no limit cycles. This assertion follows
because after removing the line of critical points {x = 0}, it is a
quadratic system with two invariant straight lines. It is well-known
that these systems have no limit cycle. In fact this is also proved in
Proposition 2.2 (ii).

• For n ∈ [0, n∗], the Poincaré return map Πn is globally well defined
on the open vertical segment Jn joining the critical point P and
the x-axis. Moreover, by considering the displacement map Dn :=
Πn − Id, it can be seen that it does not have zeroes tending to the
boundaries of Jn when n ∈ [0, n∗]. Furthermore, for points near the
boundaries of Jn, Dn is always positive. This holds near P , because
it is an attracting focus and near the other boundary of Jn because,
as we have already proved in (iii)-(iv), the ω-limit set of the unstable
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separatrix of the saddle point, belonging to the first quadrant, also
crosses Jn.

We can define ñ as follows:

ñ := inf{n ∈ [0, n∗] : Dn has some zero in Jn}.
By its definition and the above properties, it holds that ñ > 0, Dñ ≥ 0 and
Dñ has at least one zero in Jñ. Furthermore, since Dñ is analytic and we
know its behaviour at the boundaries of Jñ, it has finitely many zeros in
Jñ (in fact exactly one if the conjecture of [3] is true). Clearly, each of the
zeros of Dñ corresponds to a semistable limit cycle of Xñ. Therefore item
(v) follows.

Finally notice that although system (1.2) with n > 0 and m = 0 does
not have periodic orbits in the first quadrant there are no critical points in
the open first quadrant) we can not use the same type of reasoning to the
family of vector fields which corresponds to fix n and vary m. The reason is
that when m = 0 there is a change in the phase portrait of the system. As
we have seen, this does not happen when n = 0. �

Theorem 5.2. Consider system (1.2) and assume that m ∈ (0, 1/2) and

m < min

(√
n2 + n− n,

2n

1 + 3n

)
=





2n

1 + 3n
, n ≤ 1

3 ,
√
n2 + n− n, n ≥ 1

3 .

Then it has exactly one periodic orbit in the first quadrant and it is a stable
limit cycle. The region of parameters for which the theorem applies is region
R1 in Figure 1.

Proof. By Proposition 5.1 we already know that under the hypotheses of
the theorem the system has at least one limit cycle. To prove its uniqueness
we will use again Theorem 2.3. For this case

g(x) = x(1− x), p(x) = x(n+ x), q(x) = (n−m)x+ x2,

γ = mn and K = 1. It is easy to see that our system satisfies all the
hypotheses of the theorem, except perhaps the one concerning the sign of
Φ. Let us study this function. It writes as

Φ(x) =
mx3 + n(3m− 2n− 2)x2 +mn(4n+ 1)x−mn2

(n+ x)3(m− x)2
.

It suffices to study the sign of

Φn,m(x) := mx3 + n(3m− 2n− 2)x2 +mn(4n+ 1)x−mn2

for x ∈ [0, 1] and m and n in the region considered. Notice that

Φn,m(0) = −nm2 < 0 and Φn,m(1) = (n+ 1)(3mn − 2n+m) < 0,

where in this last inequality we have used that n > m/(2− 3m). Moreover

dis(Φn,m(x), x) = −4(n+ 1)2mn3(28mn +m− 8n2 − 8n)(m2 + 2mn− n).

Since the factor 28mn + m − 8n2 − 8n does not vanish in our region of
parameters, arguing as in the proof of Theorem 4.3 we have proved that
Φn,m(x) ≤ 0 for x ∈ [0, 1] and our theorem follows. �
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Theorem 5.3. When n > 0 and

m ≥ max
(√

n2 + n− n,
(2n+ 1)2

4n2 + 8n+ 5

)
=





(2n + 1)2

4n2 + 8n+ 5
, n ≤

√
2−1
2 ,

√
n2 + n− n, n ≥

√
2−1
2 ,

system (1.2) does not have periodic orbits in the first quadrant. The region
of parameters for which the theorem applies is region R0 in Figure 1.

Proof. Recall that when m ≥ 1 there are no critical points in the open first
quadrant and so there are no periodic orbits. Therefore in the sequel we
will assume 0 < m < 1. We use again the criterion given in item (ii) of
Theorem 2.1. For our system

g0(x) = x(1− x), g1(x) = −n− x, h0(x) = (x−m)(x+ n), h1(x) ≡ 0

and I = (0, 1), because all the periodic orbits of the system have to be in
the strip (0, 1) × (0,+∞). Then

Sλ(x) := (1− λ)x3 + (2n(1− λ) +mλ)x2 + n((2m− n)λ− 1)x+mn2λ

and we need to find λ such that Sλ(x) does not change sign for x ∈ [0, 1].
Notice that

Sλ(0) = n2mλ, and Sλ(1) = (n+ 1)(λ(n + 1)(m− 1) + 1).

Thus, we need that λ(λ(m − 1)(n + 1) + 1) > 0 and hence λ has to be in
the interval In,m := (0, 1/(n + 1)(1 −m)). As in the proof of Theorem 4.4
we compute the following expression:

dn,m(λ) := dis(Sλ(x), x) =

− 4(n + 1)
[
(m+ n)3n2λ3 + c2λ

2 + c1λ− n3
]
,

where c1 and c2 are given polynomials depending on n,m. Then dn,m(0) > 0

and for λ = 1/((n + 1)(1 −m)),

dn,m(λ) =
n2
(
(4n2 + 8n + 5)m− (2n + 1)2

)
((3n+ 1)m− 2n)2

(n+ 1)2(−1 +m)3
.

Finally

s(n,m) : = dis(dn,m(λ), λ)

= −16mn9(n+ 1)6(m2 + 2mn− n)
(
(28n + 1)m− 8n(n + 1)

)3
.

We claim that for the values m and n of the statement1 there exists λ∗
n,m ∈

In,m for which dn,m(λ∗
n,m) = 0. From the claim, we know that the cu-

bic polynomial Sλ∗
n,m

(x) has a zero of multiplicity at least two and that

Sλ∗
n,m

(0)Sλ∗
n,m

(1) > 0. Then it is clear that Sλ∗
n,m

(x) does not change sign

in [0, 1] and the theorem follows.

1For the values of m and n in the boundary of the region R0, the value of λ∗
n,m can

also belong to the boundary of the interval In,m.
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Figure 3. A sketch of the four algebraic curves
C1, C2, C3, C4 and the connected components they define.

To end the proof it only remains to prove the above claim. To this end,
consider the four algebraic curves:

C1(n,m) = m2 + 2nm− n = 0, (the Hopf curve)

C2(n,m) = (4n2 + 8n+ 5)m− (2n+ 1)2 = 0,

C3(n,m) = (28n + 1)m− 8n(n+ 1) = 0,

C4(n,m) = (3n + 1)m− 2n = 0,

and set C := ∪4
i=1{(n,m) : m > 0, n > 0 , Ci(n,m) = 0}. Define its

complementary,

S := {(n,m) ∈ R2, : m > 0, n > 0} \ C.

Then, the number of zeroes of the function dn,m in the interval In,m only
depends on the connected component of S where the point (n,m) lies. In
other words, the change of the number of zeroes of dn,m in In,m can only
occur on C. The values (n,m) ∈ C, have to be treated separately. For the
sake of brevity we omit the details for these cases.

A carefully study shows that the set S has eleven connected components.
In Figure 3 it is drawn a sketch of the behavior of the four algebraic curves
and of the components of S. Comparing this figure with Figure 1 it is clear
that the plot of the curves Ci = 0 is not realistic. We only take into account
their relative positions and intersections. We proceed in this way because
the actual pictures determine very small regions which can not be seen in
a realistic figure. For instance, the smallest one, S11, has triangular shape,
its boundary has three smooth curves, one on each of the algebraic curves,
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and has three corners at:

p1,2 :=
(2−

√
2

2
,

√
2− 1

2

)
≃ (0.293, 0.207), p1,2 ∈ C1 ∩C2,

p1,3 :=
(1
4
,
1

8

)
= (0.25, 0.125) ∈ C1 ∩ C3,

p2,3 :=
(7 + 2

√
3

37
,

√
3− 1

4

)
≃ (0.283, 0.183), p2,3 ∈ C2 ∩ C3.

By picking one point on its interior, for instance (n,m) = (9/50, 281/1000),
it is easy to prove that dn,m(λ) has no roots in In,m and therefore our
criterion does not work for all the values in (n,m) ∈ S11.

On the other hand, a big unbounded connected component is region S1

in the above-mentioned figure,

S1 :=

{
(n,m) : n > 0,m > max

( (2n + 1)2

4n2 + 8n+ 5
,
8n(n+ 1)

28n+ 1

)}
.

A point in its interior is (n,m) = (1/2, 1/2) and I1/2,1/2 = (0, 4/3). Then

d1/2,1/2(λ) =
1

64
(−96λ3 + 261λ2 − 216λ + 48)

and this polynomial has a real root λ∗ ≃ 0.3538 ∈ I1/2,1/2. Hence for m =
n = 1/2, the function Sλ∗(x) is positive or zero in [0, 1]. This fact implies
that we have proved the non-existence of periodic orbits for all the values
(n,m) ∈ S1.

We do a similar study for the remaining nine regions. In short, we have
proved that only in six of them, S1,S2,S3,S4,S9 and S10, the function dn,m
has at least one zero in the interior of In,m. The union of these regions,
together with the corresponding boundaries between them, form the region
of parameters given in the statement. Hence the claim is proved. �
5.3. Non-algebraicity of the limit cycles.

Theorem 5.4. When n(n + 1)m 6= 0, the only invariant algebraic curves
for system (1.2),

{
ẋ = x(x(1 − x)− (n+ x)y),
ẏ = y(−mn+ (n−m)x+ x2),

are the coordinate axes.

Sketch of the proof. Following the same notation and steps as in the proof
of Theorem 4.5 we obtain that

f0(y) = F0y
− k0,0

nm exp

(
−2k0,1y + k0,2y

2

2nm

)
, F0 ∈ R.

Former expression is polynomial when

k0,1 = k0,2 = 0, k0,0 = −nmp, p ∈ N.
By continuing the same procedure, until third order terms in x, we obtain

the following set of necessary conditions to have an invariant algebraic curve:

k1,0 = (n−m)p, k2,0 =
np− k1,1

n
, n+ 1 = 0.

Hence, since we assume that n+ 1 6= 0, the proof finishes. �
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Remark 5.5. For system (1.2) we note that if n = −1 then, besides the own
axes, the unique invariant algebraic curve is the straight line x = 1. In this
case, we can proceed with the method given in the previous proof obtaining
that the invariant curve writes as

F (x, y) = F0y
p

∞∑

j=0

(
k1,1 + j − 1

j

)
xj = 0.

This curve is algebraic only when −k1,1 = q ∈ N and, in this case, it is
F (x, y) = F0y

p(1− x)q.

Theorem B is a direct consequence of all the results proved in this section.
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