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Abstract

We study periodic orbits of Hamiltonian differential systems with three de-
grees of freedom using the averaging theory. We have chosen the classical
integrable Hamiltonian system with the Hooke potential and we study peri-
odic orbits which bifurcate from the periodic orbits of the integrable system
perturbed with a non–autonomous potential.
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1. Introduction

In this paper we study the spatial motion of a particle of unitary mass
under the action of a central force with Hamiltonian given by

H0(x, y, z, px, py, pz) =
1

2

(
p2x + p2y + p2z

)
+ V0

(√
x2 + y2 + z2

)
,
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perturbed by the Hamiltonian

H(x, y, z, px, py, pz, t) = H0(x, y, z, px, py, pz) + εV (t, x, y, z), (1)

where ε is a small parameter and V (t, x, y, z) is a perturbation of the potential
eventually depending on the time t.

We consider a central force derived from a potential of the form

V0

(√
x2 + y2 + z2

)
= ±(x2 + y2 + z2)α/2, (2)

with α an integer. The Hamilton equations associated to Hamiltonian (1)
are

ẋ = px,

ẏ = py,

ż = pz,

ṗx = −∂
(
V0

(√
x2 + y2 + z2

)
+ εV (t, x, y, z)

)
/∂x,

ṗy = −∂
(
V0

(√
x2 + y2 + z2

)
+ εV (t, x, y, z)

)
/∂y,

ṗz = −∂
(
V0

(√
x2 + y2 + z2

)
+ εV (t, x, y, z)

)
/∂z,

(3)

where the dot denotes derivative with respect to the time t. We shall apply
the averaging theory for studying the periodic orbits of the Hamiltonian
system (3).

The averaging method (see for instance [11]) gives a quantitative relation
between the solutions of some non–autonomous periodic differential system
and the solutions of its autonomous averaged differential system, and in
particular allows to study the periodic orbits of the non–autonomous periodic
differential system in function of the periodic orbits of the averaged one, see
for more details [1, 3, 8, 9, 11, 12] and mainly section 2. Our aim is to apply
the averaging theory to one class of Hamiltonian systems (3) for studying
their periodic solutions. But the tools that we shall use are very general and
can be applied to other classes of Hamiltonian or differential systems.

Of course there is a long tradition in studying the periodic orbits of the
differential systems using the averaging method, see chapter 4 of [6], the book
[11], the chapter 11 of [12], the paper [5], and many others. In the paper
[5] they use the averaging method of second order for studying the peri-
odic orbits, but in that paper they studied a 2–dimensional non–autonomous
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Hamiltonian system using the transformation to action–angle coordinates,
and here we study 6–dimensional non–autonomous Hamiltonian systems. On
the other hand, this paper extends to Hamiltonian systems with three degrees
of freedom some results of [7] where the authors studied periodic orbits of
Hamiltonian systems with two degrees of freedom. We note that for applying
the averaging method to Hamiltonian systems in general it is not necessary
to write the unperturbed integrable Hamiltonian in action–angle coordinates.

The unique central forces coming from the central potentials of the form
(2) for which all bounded orbits are periodic are the Hooke’s force and the
Kepler’s force, that correspond to the potentials

k(x2 + y2 + z2), and − k√
x2 + y2 + z2

with k > 0, (4)

respectively. This result was proved by J. Bertrand in 1873, see [4].

We will apply the averaging theory to Hamiltonian systems (3) with the
Hooke potential V0(

√
x2 + y2 + z2) = k(x2 + y2 + z2) for studying which

periodic orbits of system (3) with ε = 0 can be continued to periodic orbits
of the same system with ε 6= 0 sufficiently small. The periodic orbits for
perturbed Kepler Hamiltonian systems with three degrees of freedom will be
studied in a future article.

Since generically the periodic orbits of Hamiltonian systems leave on
cylinders fulfilled of periodic orbits, and every one of the periodic orbits of one
of these cylinders belongs to a different level of the Hamiltonian (for more de-
tails see [2, 10]), we shall apply the averaging theory described in section 2 to
Hamiltonian systems (3) with potential V0(

√
x2 + y2 + z2) = k(x2+ y2+ z2)

restricted to a fixed level of the Hamiltonian. To work in a fixed level of the
Hamiltonian is necessary in order to apply the averaging theory for studying
periodic orbits (see Theorem 4), because the periodic orbits provided by the
averaging must be isolated in the set of all periodic orbits.

Consider the spatial motion of a particle of unitary mass under the action
of the Hooke potential V0(

√
x2 + y2 + z2) = (x2 + y2 + z2)/2 perturbed by

a non–autonomous potential εV (t, x, y, z) where ε is a small parameter and
V (t, x, y, z) is 2π–periodic in the variable t. In cartesian coordinates the
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Hamiltonian governing this motion is

H(x, y, z, px, py, pz, t) =
1

2

(
p2x + p2y + p2z

)
+

1

2

(
x2 + y2 + z2

)
+ εV (t, x, y, z). (5)

The corresponding Hamiltonian equations are

ẋ = px,

ẏ = py,

ż = pz,

ṗx = −x− ε∂V (t, x, y, z)/∂x,

ṗy = −y − ε∂V (t, x, y, z)/∂y,

ṗz = −z − ε∂V (t, x, y, z)/∂z.

(6)

The main result on the periodic orbits of the Hamiltonian system (6) is the
following one.

Theorem 1. For ε 6= 0 sufficiently small, h > 0 and every zero (x∗
0, y

∗
0, z

∗
0 ,

p∗x0
, p∗z0) of fk = fk(x0, y0, z0, px0 , pz0) for k = 1, 2, 3, 4, 5, where




f1

f2

f3

f4

f5




=

∫ 2π

0




−B sin t

± Apy0 +D sin t

py0 cos t− y0 sin t

−C sin t

B cos t

C cos t




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x= px0 sin t+ x0 cos t
y =±(py0 sin t+ y0 cos t)
z = pz0 sin t+ z0 cos t
px = px0 cos t− x0 sin t
pz = pz0 cos t− z0 sin t

py0
=±

√
2h− p2x0

− p2z0 − x2
0 − y20 − z20

dt,

with
A = −V (t, x, y, z)/(py0 cos t− y0 sin t),

B = −∂V (t, x, y, z)/∂x,

C = −∂V (t, x, y, z)/∂z,

D = B(px0 cos t− x0 sin t) + C(pz0 cos t− z0 sin t),
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satisfying that

J(x∗0, y
∗
0, z

∗
0 , p

∗
x0
, p∗z0) =

∂(f1, f2, f3, f4, f5)

∂(x0, y0, z0, px0 , pz0)

∣∣∣∣ x0 = x∗
0, y0 = y∗0 , z0 = z∗0 ,

px0
= p∗x0

, pz0 = p∗z0

6= 0 (7)

and

p∗y0 = ±
√
2h− p∗2x0

− p∗2z0 − x∗2
0 − y∗20 − z∗20 6= 0, (8)

there exists a 2π–periodic solution ϕ(t;x∗
0, y

∗
0, z

∗
0 , p

∗
x0
, p∗z0 , ε) of the Hamilto-

nian system (6) such that ϕ(0;x∗
0, y

∗
0, z

∗
0 , p

∗
x0
, p∗z0 , ε) → (x∗

0, y
∗
0, z

∗
0 , p

∗
x0
, p∗y0 , p

∗
z0
)

when ε → 0.

Remark 2. In Theorem 1 the signs + or − in ± must be used in the same
order than the sign of the determination of the square root of py. See equation
(13).

If we take z = pz = 0 and consider V (t, x, y) = V (t, x, y, 0) then Theorem
1 extends some results of [7].

For example an application of Theorem 1 is the next one.

Corollary 3. Consider the Hamiltonian system (6) with V (t, x, y, z) = (x−
x3 + z − z3) cos t. Then for ε 6= 0 sufficiently small the following statements
hold.

(a) For every h ∈ (4/9, 8/9] system (6) has at least 8 periodic orbits bi-
furcating from the periodic orbits of the Hamiltonian level H = h for
ε = 0.

(b) For every h ∈ (8/9, 4/3] system (6) has at least 40 periodic orbits bi-
furcating from the periodic orbits of the Hamiltonian level H = h for
ε = 0.

(c) For every h ∈ (4/3,+∞) system (6) has at least 52 periodic orbits
bifurcating from the periodic orbits of the Hamiltonian level H = h for
ε = 0.

The study of the periodic orbits for the perturbed Hooke Hamiltonian
systems is done in section 3. More precisely in that section it is proved
Theorem 1 and Corollary 3.
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2. Basic results

In this section we present the basic results from the averaging theory
that we shall need for proving the main result of this paper. The key tool for
proving the algorithm is the averaging theory. For a general introduction to
the averaging theory and related topics see the books [1, 9, 11, 12]. But the
results that we shall use are presented in what follows.

We consider the problem of the bifurcation of T–periodic solutions from
the differential system

ẋ(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (9)

with ε = 0 to ε 6= 0 sufficiently small. The functions F0, F1 : R × Ω → Rn

and F2 : R × Ω × (−ε0, ε0) → Rn appearing in (9), are C2 in their variables
and T–periodic in the first variable, and Ω is an open subset of Rn. One of
the main assumptions is that the unperturbed system

ẋ(t) = F0(t,x), (10)

has an open subset of Ω fulfilled of periodic solutions. A solution of this
problem is given in the following using the averaging theory.

Let x(t, z, ε) be the solution of system (9) such that x(0, z, ε) = z. We
write the linearization of the unperturbed system (10) along a periodic solu-
tion x(t, z, 0) as

y′ = DxF0(t,x(t, z, 0))y. (11)

In what follows we denote by Mz(t) some fundamental matrix of the linear
differential system (11).

We assume that there exists an open set W with Cl(W ) ⊂ Ω such that
for each z ∈ Cl(W ), x(t, z, 0) is T–periodic. The set Cl(W ) is isochronous for
the system (10), that is it is a set formed only by periodic orbits, all of them
having the same period T . Then an answer to the problem of the bifurcation
of T–periodic solutions from the periodic solutions x(t, z, 0) contained in
Cl(W ) is given in the next result.

Theorem 4. (Perturbations of an isochronous set) We assume that
there exists an open and bounded set W with Cl(W ) ⊂ Ω such that for each
z ∈ Cl(W ), the solution x(t, z, 0) is T–periodic, then we consider the function
F : Cl(W ) → Rn

F(z) =

∫ T

0

M−1
z (t, z, 0)F1(t,x(t, z))dt. (12)
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If there exists a ∈ W with F(a) = 0 and det ((dF/dz) (a)) 6= 0, then there
exists a T–periodic solution ϕ(t, ε) of system (9) such that ϕ(0, ε) → a as
ε → 0.

For a proof of Theorem 4 see Corollary 1 of [3].

3. Periodic orbits of the perturbed spatial Hooke Hamiltonian

In this section we shall prove Theorem 1 and Corollary 3.

Proof of Theorem 1. We want to apply Theorem 4 to the Hamiltonian sys-
tem (6). Since Theorem 4 needs that the periodic orbits of system (6) are
isolated in the set of all periodic orbits of the system, we must restrict our
study to every fixed Hamiltonian level, otherwise the set of periodic orbits
would not be isolated. Thus we consider a fixed Hamiltonian level h and we
restrict the Hamiltonian system (6) to this Hamiltonian level.

We isolate py in the Hamiltonian level

1

2
(p2x + p2y + p2z) +

1

2
(x2 + y2 + z2) + εV (t, x, y, z) = h,

and expand the obtained expression of py in power series of ε obtaining

py = ±
√

2h− p2x − p2z − x2 − y2 − z2∓

ε
V (t, x, y, z)√

2h− p2x − p2z − x2 − y2 − z2
+O(ε2). (13)

Therefore system (6) restricted to the Hamiltonian level H(x, y, z, px, py,
pz, t) = h becomes

ẋ = px,

ẏ = ±
√
2h− p2x − p2z − x2 − y2 − z2∓

ε
V (t, x, y, z)√

2h− p2x − p2z − x2 − y2 − z2
+O(ε2),

ż = pz,

ṗx = −x− ε
∂V (t, x, y, z)

∂x
,

ṗz = −z − ε
∂V (t, x, y, z)

∂z
.

(14)
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We will apply the averaging theory described in Section 2 for studying
the periodic orbits of system (14). More precisely we shall analyze which
periodic orbits of system (14) with ε = 0 can be continued to periodic orbits
of system (14) with ε 6= 0 sufficiently small.

For simplicity, in what follows we develop the proof of Theorem 1 only
for the positive determination of the square root of py, that is for

py =
√
2h− p2x − p2z − x2 − y2 − z2−

ε
V (t, x, y, z)√

2h− p2x − p2z − x2 − y2 − z2
+O(ε2).

The same arguments can be applied to the negative determination.

The general solution of system (14) with ε = 0 in the Hamiltonian level
H(x, y, z, px, py, pz) = h and with initial conditions x(0) = x0, y(0) = y0,
z(0) = z0, px(0) = px0 and pz(0) = pz0 is

x(t) = px0 sin t+ x0 cos t,

y(t) = py0 sin t+ y0 cos t,

z(t) = pz0 sin t+ z0 cos t,

px(t) = px0 cos t− x0 sin t,

pz(t) = pz0 cos t− z0 sin t,

(15)

where

py0 =
√

2h− p2x0
− p2z0 − x2

0 − y20 − z20 . (16)

All these periodic solutions form a five dimensional open set of periodic
solutions with period 2π in the Hamiltonian level H(x, y, z, px, py, pz) = h.
So system (14) with ε sufficiently small satisfies the assumptions of Theorem
4.
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We write system (14) into the form (9)

ẋ = F0,1(x, y, z, px, pz) + εF1,1(x, y, z, px, pz) +O(ε2),

ẏ = F0,2(x, y, z, px, pz) + εF1,2(x, y, z, px, pz) +O(ε2),

ż = F0,3(x, y, z, px, pz) + εF1,3(x, y, z, px, pz) +O(ε2),

ṗx = F0,4(x, y, z, px, pz) + εF1,4(x, y, z, px, pz) +O(ε2),

ṗz = F0,5(x, y, z, px, pz) + εF1,5(x, y, z, px, pz) +O(ε2),

where F0 = (F0,1, F0,2, F0,3, F0,4, F0,5) is

F0,1 = px,

F0,2 =
√

2h− p2x − p2z − x2 − y2 − z2,

F0,3 = pz,

F0,4 = −x,

F0,5 = −z,

and F1 = (F1,1, F1,2, F1,3, F1,4, F1,5) is

F1,1 = 0,

F1,2 = − V (t, x, y, z)√
2h− p2x − p2z − x2 − y2 − z2

,

F1,3 = 0,

F1,4 = −∂V (t, x, y, z)

∂x
,

F1,5 = −∂V (t, x, y, z)

∂z
.

(17)

The periodic solution x(t, z, 0) of system (9) with ε = 0 now is the periodic
solution (x(t), y(t), z(t), px(t), pz(t)) given by (15) of system (14) with initial
conditions z = (x0, y0, z0, px0 , pz0). After an easy but long computation the
fundamental matrix Mz(t) of the differential system (11) such that Mz(0) is
the identity matrix of R5 is

9



Mz(t) =




cos t 0 0 sin t 0

−x0 sin t

py0

py0
cos t− y0 sin t

py0

−z0 sin t

py0

−px0
sin t

py0

−pz0 sin t

py0

0 0 cos t 0 sin t

− sin t 0 0 cos t 0

0 0 − sin t 0 cos t




. (18)

We note that py0 must be different from zero in order that the matrix Mz(t)
be well defined. This is the reason that in the statement of Theorem 1 we
have the assumption p∗y0 6= 0. In fact this is a technical restriction that would
be able to be avoided working with another fundamental matrix, but here
we do not take care of this.

By Theorem 4 we must study the zeros (x0, y0, z0, px0 , pz0) in the set

W = {(x0, y0, z0, px0 , pz0) ∈ R5 : 0 < x2
0 + y20 + z20 + p2x0

+ p2z0 < R},

where R > 0 is an arbitrary constant, of the system

F(x0, y0, z0, px0 , pz0) = (f1, f2, f3, f4, f5) (x0, y0, z0, px0 , pz0) = 0,

where according to (12) if we denote fk = fk(x0, y0, z0, px0 , pz0) we have




f1
f2
f3
f4
f5



=

∫ 2π

0
M−1

z (t)




F1,1

F1,2

F1,3

F1,4

F1,5




∣∣∣∣∣∣∣∣∣∣
x= px0 sin t+ x0 cos t
y = py0 sin t+ y0 cos t
z = pz0 sin t+ z0 cos t
px = px0 cos t− x0 sin t
pz = pz0 cos t− z0 sin t

py0 =
√
2h− p2x0

− p2z0 − x2
0 − y20 − z20

dt,

(19)

where F1,k = F1,k(x, y, z, px, pz) for k = 1, 2, 3, 4, 5 are as in (17).

Note that in (19) only F1,2(x, y, z, px, pz) depends on the variables px
and pz through the expression

√
2h− p2x − p2z − x2 − y2 − z2. But when we

restrict the integrant function of (19) on the periodic solution of system
(14) with ε = 0, that is on x = px0 sin t + x0 cos t, y = py0 sin t + y0 cos t,
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z = pz0 sin t+z0 cos t, px = px0 cos t−x0 sin t and pz = pz0 cos t−z0 sin t, we get
that

√
2h− p2x − p2z − x2 − y2 − z2 = py0 cos t − y0 sin t. Now doing an easy

computation, using (18) and (19), we get the expression of (f1, f2, f3, f4, f5)
given in the statement of Theorem 1. Hence Theorem 4 completes the proof
of Theorem 1.

Proof of Corollary 3. We apply Theorem 1 to our Hamiltonian system (6)
with

V (t, x, y, z) = (x− x3 + z − z3) cos t.

Again, for simplicity, we work only with the positive determination of
the square root of py. The same arguments can be applied to the negative
determination.

Since

A =
(x3 − x+ z3 − z) cos t

py0 cos t− y0 sin t
, B = (3x2 − 1) cos t, C = (3z2 − 1) cos t

we obtain after some long computations that the functions fk = fk(x0, y0, z0,
px0 , pz0) are

f1 = −3π

2
px0x0,

f2 =
π

4
(
p2y0 + y20

)3
( (

x3
0 +

(
9p2x0

− 4
)
x0 + z0

(
9p2z0 + z20 − 4

))
p5y0+

3y0
(
−5p3x0

+ (3x2
0 + 4) px0 + pz0

(
−5p2z0 + 3z20 + 4

))
p4y0+

6y20
(
x3
0 − 3p2x0

x0 + z30 − 3p2z0z0
)
p3y0−

2y30
(
5p3x0

+ (9x2
0 − 8) px0 + pz0

(
5p2z0 + 9z20 − 8

))
p2y0−

y40
(
3x3

0 +
(
3p2x0

− 4
)
x0 + z0

(
3p2z0 + 3z20 − 4

))
py0−

y50
(
3p3x0

+ (3x2
0 − 4) px0 + pz0

(
3p2z0 + 3z20 − 4

)) )
,

f3 = −3π

2
pz0z0,

f4 =
π

4

(
3p2x0

+ 9x2
0 − 4

)
,

f5 =
π

4

(
3p2z0 + 9z20 − 4

)
,

(20)
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where py0 =
√

2h− p2x0
− p2z0 − x2

0 − y20 − z20 . The determinant (7) is written
as

J =
81π5

(
p2x0

− 3x2
0

) (
p2z0 − 3z20

)

64
(
p2y0 + y20

)4
(
3pz0

(
5p2z0 − 3z20 − 4

)
p6y0−

6y0
(
x3
0 + 4x0 + z0

(
−15p2z0 + z20 + 4

) )
p5y0 + 3pz0y

2
0

(
−15p2z0 + 33z20 + 4

)
p4y0 − 4y30

(
− 9x3

0 + 4x0+

z0
(
15p2z0 − 9z20 + 4

) )
p3y0 + pz0y

4
0

(
− 15p2z0−

39z20 + 28
)
p2y0 + 6p2x0

x0y0
(
15p4y0 − 10y20p

2
y0
− y40

)
py0−

2y50
(
3x3

0 − 4x0 + z0
(
3p2z0 + 3z20 − 4

) )
py0 + 3p3x0

(
5p6y0−

15y20p
4
y0
− 5y40p

2
y0
− y60

)
+ px0

(
− 3 (3x2

0 + 4) p6y0+

3 (33x2
0 + 4) y20p

4
y0
+ (28− 39x2

0) y
4
0p

2
y0
+ (4− 3x2

0) y
6
0

)
+

pz0y
6
0

(
−3p2z0 − 3z20 + 4

) )
,

(21)

where again py0 =
√

2h− p2x0
− p2z0 − x2

0 − y20 − z20 .

We say that a zero (x∗
0, y

∗
0, z

∗
0 , p

∗
x0
, p∗z0) of fk for k = 1, 2, 3, 4, 5, is admis-

sible if it satisfies (7), or equivalently J 6= 0 and py∗0 6= 0, see (21) and (8),
respectively.

Note that the functions f1, f3, f4 and f5 in (20) are independent of y0.
Thus in order to obtain the zeros (x∗

0, y
∗
0, z

∗
0 , p

∗
x0
, p∗z0) of fk for k = 1, 2, 3, 4, 5,

we compute the zeros of f1, f3, f4 and f5 and later the zeros of f2. By a simple
calculation we have the following zeros (x∗

0, z
∗
0 , p

∗
x0
, p∗z0) of fk for k = 1, 3, 4, 5:

(
0, 0,

2√
3
,− 2√

3

)
,

(
0, 0,− 2√

3
,
2√
3

)
,

(
2

3
,−2

3
, 0, 0

)
,

(
−2

3
,
2

3
, 0, 0

)
, (22)

(
−2

3
,−2

3
, 0, 0

)
,

(
2

3
,
2

3
, 0, 0

)
, (23)
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(
0,−2

3
,− 2√

3
, 0

)
,

(
0,

2

3
,
2√
3
, 0

)
,

(
−2

3
, 0, 0,− 2√

3

)
,

(
2

3
, 0, 0,

2√
3

)
, (24)

(
0,

2

3
,− 2√

3
, 0

)
,

(
0,−2

3
,
2√
3
, 0

)
,

(
−2

3
, 0, 0,

2√
3

)
,

(
2

3
, 0, 0,− 2√

3

)
, (25)

(
0, 0,− 2√

3
,− 2√

3

)
,

(
0, 0,

2√
3
,
2√
3

)
. (26)

In what follows we analyze the above five sets of zeros separately.

Case 1. Substituting the values of (x∗
0, z

∗
0 , p

∗
x0
, p∗z0) obtained in (22) into the

expression of f2 in (20) and taking into account (16) we have f2(y0, h) = 0
for all values of y0. Thus the non vanishing condition (7) is not satisfied.

Case 2. Substituting the values of (x∗
0, z

∗
0 , p

∗
x0
, p∗z0) obtained in (23) into the

expression of f2 in (20) and taking into account (16) we have

f2(y0, h) = ±2π
√
−9y20 + 18h− 8 (162y40 − 99(9h− 4)y20 + 8(4− 9h)2)

9(9h− 4)3
.

In order that the function f2(y0, h) be real we need that h > 4/9. From the
above expression of f2 we obtain the following 4 admissible zeros (x∗

0, y
∗
0, z

∗
0 ,

p∗x0
, p∗z0) of fk for k = 1, 2, 3, 4, 5

s1,2 =


∓2

3
,−

√(
11−

√
57
)
(9h− 4)

6
,∓2

3
, 0, 0


 ,

s3,4 =


∓2

3
,

√(
11−

√
57
)
(9h− 4)

6
,∓2

3
, 0, 0


 .

(27)

For the above zeros si the determinant (21) is given by

J(si) = ±
3π5

√
114

(
7
√
57− 45

)

9h− 4
,

while (8) is given by

p∗y0(si) =

√(√
57− 3

)
(9h− 4)

6
,

13



i = 1, 2, 3, 4. Applying Theorem 1 and taking into account the negative
determination of the square root of py the proof of item (a) of Corollary 3 is
completed.

Case 3. Substituting the values of (x∗
0, z

∗
0 , p

∗
x0
, p∗z0) obtained in (24) into the

expression of f2 in (20) and taking into account (16) we have

f2(y0, h) = ±π
√

−9y20 + 18h− 16

9(9h− 8)3

[
(
162y40 − 99 (9h− 8) + 8 (9h− 8)2

)
+

27
√
3y0

(√
−9y20 + 18h− 16

(
−6y20 + 9h− 8

))
]
.

Again in order that the function f2(y0, h) be real we need that h > 8/9. From
the above expression of f2 we obtain 8 admissible zeros (x∗

0, y
∗
0, z

∗
0 , p

∗
x0
, p∗z0) of

fk for k = 1, 2, 3, 4, 5, denoted by

s5,6 =

(
0, y∗01,∓

2

3
,∓ 2√

3
, 0

)
, s7,8 =

(
∓2

3
, y∗01, 0, 0,∓

2√
3

)
,

s9,10 =

(
0, y∗02,∓

2

3
,∓ 2√

3
, 0

)
, s11,12 =

(
∓2

3
, y∗02, 0, 0,∓

2√
3

)
,

(28)

where y∗01 and y∗02 are given by

y∗01 = −

√√√√73(9h− 8)

504
− λ(h)

2
− 1

2

√
η(h)

λ(h)
− γ(h) + 2 σ(h), (29)

y∗02 =

√√√√73(9h− 8)

504
− λ(h)

2
+

1

2

√
η(h)

λ(h)
− γ(h) + 2 σ(h), (30)

with

λ(h) =
√

γ(h) + σ(h), σ(h) =
457(9h− 8)2

63504
, γ(h) =

α(h)

1102248 3
√
2
+
β(h)

α(h)
,

β(h) = 24
3
√
2(9h− 8)4, α(h) = 972(9h− 8)2

3

√
1375 + 27

√
2473,

η(h) =
545(9h− 8)3

296352
.
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For the zeros in (28) the determinant (21) is given by

J(s5,6,7,8) = ∓ 243π5

2(9h− 8)3
√

ν(h)

(
− 3(µ(h))5/2 + 6

√
3ν(h)(µ(h))2+

3ν(h)(µ(h))3/2 − 45
√
3(ν(h))3/2µ(h) + 26(ν(h))2

√
µ(h)+

9
√
3(ν(h))5/2

)
, (31)

µ(h) =
73(9h− 8)

504
− λ(h) + τ(h)

2
, ν(h) =

13(9h− 8)

168
+

λ(h) + τ(h)

2
,

τ(h) =

√
σ(h)− γ(h)− η(h)

4 λ(h)
,

J(s9,10,11,12) = ∓ 243π5

2(9h− 8)3
√
ψ(h)

(
3(χ(h))5/2 + 6

√
3ψ(h)(χ(h))2−

3ψ(h)(χ(h))3/2 − 45
√
3(ψ(h))3/2χ(h)− 26(ψ(h))2

√
χ(h)+

9
√
3(ψ(h))5/2

)
, (32)

χ(h) =
73(9h− 8)

504
+

ξ(h)− λ(h)

2
, ψ(h) =

13(9h− 8)

168
+

λ(h)− ξ(h)

2
,

ξ(h) =

√
2σ(h)− γ(h)− η(h)

4 λ(h)
,

while the values of p∗y0 in (8) are given by

p∗y0(s5,6,7,8) =

√√√√13(9h− 8)

168
+

λ(h)

2
+

1

2

√
− η(h)

4λ(h)
+ 2σ(h)− γ(h), (33)

p∗y0(s9,10,11,12) =

√√√√13(9h− 8)

168
+

λ(h)

2
− 1

2

√
− η(h)

4λ(h)
+ 2σ(h)− γ(h), (34)

and λ, σ, γ, η are as above.
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Case 4. Substituting the values of (x∗
0, z

∗
0 , p

∗
x0
, p∗z0) obtained in (25) into the

expression of f2 in (20) and taking into account (16) we have

f2(y0, h) = ±π
√
−9y20 + 18h− 16

9(9h− 8)3

[
(
162y40 − 99 (9h− 8) + 8 (9h− 8)2

)
+

27
√
3y0

(√
−9y20 + 18h− 16

(
6y20 − 9h+ 8

))
]
.

Again we also need that h > 8/9. From the above expression of f2 we obtain
8 admissible zeros (x∗

0, y
∗
0, z

∗
0 , p

∗
x0
, p∗z0) of fk for k = 1, 2, 3, 4, 5, denoted by

s13,14 =

(
0, y∗03,∓

2

3
,± 2√

3
, 0

)
, s15,16 =

(
±2

3
, y∗03, 0, 0,∓

2√
3

)
,

s17,18 =

(
0, y∗04,∓

2

3
,± 2√

3
, 0

)
, s19,20 =

(
±2

3
, y∗04, 0, 0,∓

2√
3

)
,

(35)

where y∗03 = −y∗01 and y∗04 = −y∗02, y
∗
01 and y∗02 are given in (29) and (30),

respectively. For the zeros in (35) the determinant (21) is given by

J(s13,14,15,16) = J(s5,6,7,8), J(s17,18,19,20) = J(s9,10,11,12),

where J(s5,6,7,8) and J(s9,10,11,12) are given in (31) and (32), respectively. The
values of p∗y0 in (8) are given by

p∗y0(s13,14,15,16) = p∗y0(s5,6,7,8), p∗y0(s17,18,19,20) = p∗y0(s9,10,11,12),

where p∗y0(s5,6,7,8) and p∗y0(s9,10,11,12) are given in (33) and (34), respectively.

From the cases 3 and 4, applying Theorem 1 and taking into account
the negative determination of the square root of py the proof of item (b) of
Corollary 3 is completed.

Case 5. Substituting the values of (x∗
0, z

∗
0 , p

∗
x0
, p∗z0) obtained in (26) into the

expression of f2 in (20) and taking into account (16) we have

f2(y0, h) = ±2
√
3πy0 (6y

4
0 − 7(3h− 4)y20 + 2(4− 3h)2)

(3h− 4)3
.
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The existence of p∗y0 implies that h > 4/3. By a simple calculation we have
the following 6 admissible solutions

s21,22 =

(
0, 0, 0,∓ 2√

3
,∓ 2√

3

)
,

s23,24 =

(
0,−

√
3h− 4

2
, 0,∓ 2√

3
,∓ 2√

3

)
,

s25,26 =

(
0,

√
3h− 4

2
, 0,∓ 2√

3
,∓ 2√

3

)
.

(36)

For these zeros the determinant (21) is given by

J(s21,22) = ±36π5
√
3

3h− 4
, J(s23,24,25,26) = ±18π5

√
3

3h− 4
,

while (8) can be written as

p∗y0(s21,22) =

√
2(3h− 4)

3
, p∗y0(s23,24,25,26) =

√
3h− 4

6
.

Applying Theorem 1 and taking into account the negative determination of
the square root of py the proof of item (c) of Corollary 3 is completed.
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