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In this paper we study the integrability of the
Muthuswamy–Chua system

x′ = y, y′ = −x

3
+

y

2
− yz2

2
, z′ = y − αz − yz.

For α = 0 we characterize all its generalized ratio-
nal first integrals, which contains the Darboux type
first integrals. For α ̸= 0 we show that the system
has no Darboux type first integrals.

1. Introduction and statement of the main
results

[Muthuswamy and Chua, 2010] proposed the sim-
plest electronic circuit producing chaotic attractors.
This circuit contains a linear passive inductor, a lin-
ear passive capacitor and a nonlinear active mem-
ristor, and it can be described by the differential
system

x′ = y,

y′ = −x

3
+

y

2
− yz2

2
,

z′ = y − αz − yz,

(1)

for any value of α ∈ R, where the prime denotes
derivative with respect the variable t. Here, as
in [Ginoux et al., 2010], this differential system is
written in a slightly modified form because the
third equation is not z′ = −y − αz + yz as in
[Muthuswamy and Chua, 2010] but rather z′ = y −
αz − yz. The nonlinearity is inverted and thus the
orientation of the attractor in the (x, y) plane is
rotated by π. Hence there is no topologically dif-
ference between these two attractors. A topologi-
cal characterization of this system and its compar-
ison with the Rössler-like attractors was given in
[Ginoux et al., 2010].

We define the vector field X associated to (1)
as

X = y
∂

∂x
+

(
− x

3
+

y

2
− yz2

2

) ∂

∂y
+(y−αz −yz)

∂

∂z
.

Let U be an open subset in R3 such that R3 \U
has zero Lebesgue measure. We say that a non-
constant real function H = H(x, y, z): R3 → R, is a
first integral if H(x(t), y(t), z(t)) is constant for all
values of a solution (x(t), y(t), z(t)) of X contained
in U , i.e., XH|U = 0.
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The existence of a first integral for a differen-
tial system in R3 allows to reduce its study in one
dimension. This is the main reason to look for first
integrals.

Two functions f1(x, y, z) and f2(x, y, z) are said
to be independent if their gradients are linearly in-
dependent vectors for all (x, y, z) ∈ R3 except per-
haps for a set of zero Lebesgue measure. If the vec-
tor field X has two independent first integrals H1

and H2, we say that it is completely integrable. In
this case, the orbits of X are contained in the curves
{H1(x, y, z) = h1}∩{H2(x, y, z) = h2}, where h1, h2

vary in R.

We define a generalized rational function as the
quotient of two analytic functions. The following is
our main result for system (1) with α = 0.

Theorem 1.1. The unique generalized rational
first integrals of system (1) with α = 0 are gen-
eralized rational functions in the variable ex(1− z).

Theorem 1.1 is proved in Section 2.

Now we work with α ̸= 0. One of the best
tools to look for first integrals is the Darboux theory
of integrability. Now we shall introduce its basic
notions. Let C[x, y, z] be the ring of all polynomials
with coefficients in C.

We say that f ∈ C[x, y, z] is a Darboux polyno-
mial of the vector field X if there exists a polyno-
mial k ∈ C[x, y, z] such that Xf = kf . The polyno-
mial k = k(x, y, z) is called the cofactor of f . It is
easy to show that the cofactor of a Darboux polyno-
mial of system (1) has degree at most 2. Note that
we look for complex Darboux polynomials in real
differential systems. The reason is that frequently
the complex structure forces the existence of real
first integrals, and sometimes if we only work with
reals we cannot detect all the real first integrals.

If f ∈ C[x, y, z] is a Darboux polynomial, then
f(x, y, z) = 0 is an invariant algebraic surface for
the differential system (1), i.e. if an orbit has a
point on the surface f(x, y, z) = 0 all the orbit is
contained in it.

An exponential factor F (x, y, z) of the vec-
tor field X is an exponential function of the
form exp(g/h) with g and h coprime polynomi-
als in C[x, y, z] and satisfying XF = LF for
some L ∈ C[x, y, z] with degree at most 2.

The exponential factors appear when some Dar-
boux polynomial has multiplicity larger than one,
for more details see [Christopher et al., 2007] and
[Llibre and Zhang, 2009a].

A first integral of system (1) is called of Dar-
boux type if it is a first integral of the form

fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q ,

where f1, . . . , fp are Darboux polynomials and
F1, . . . , Fq are exponential factors.

The next theorem is the main result for system
(1) with α ̸= 0, and it shows the nonexistence of
first integrals of Darboux type.

Theorem 1.2. When α ̸= 0 system (1) has no first
integrals of Darboux type.

Theorem 1.2 is proved in Section 4.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we use the following result
which is due to [Cong et al., 2011].

Theorem 2.1. Assume that the differential system
(1) has p as a singular point and let λ1, λ2, λ3 be the
eigenvalues of the linear part of system (1) at p.
Then the number of functionally independent gen-
eralized rational first integrals of system (1) is at
most the dimension of the minimal vector subspace
of R3 containing the set

{(k1, k2, k3) ∈ Z3 : k1λ1 + k2λ2 + k3λ3 = 0,
(k1, k2, k3) ̸= (0, 0, 0)}.

Proof of Theorem 1.1. We consider system (1) with
α = 0, that is

ẋ = y, ẏ = −x

3
+

y

2
− yz2

2
, ż = y − yz. (2)

It is easy to check that

H = x + ln(1 − z)

is a first integral of system (2). Therefore, K =
eH = ex(1 − z) is a generalized rational function.
To conclude the proof of the theorem we shall show
that system (2) has no other generalized rational
first integrals. To prove this we will use Theorem
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2.1. First we note that the singular points of system
(2) are of the form (0, 0, z) with z ∈ R. We compute
the eigenvalues λ1, λ2, λ3 of the Jacobian matrix of
system (2) on these singular points and we get

λ1 = 0, λ2,3 =
1

12
(3−3z2∓

√
−39 + 9z2(z2 − 2)).

Therefore k1λ1 + k2λ2 + k3λ3 = 0 is equivalent to

k2(3 − 3z2 −
√

−39 + 9z2(z2 − 2))+

k3(3 − 3z2 +
√

−39 + 9z2(z2 − 2)) = 0,

or in other words

k2

k3
= −3 − 3z2 +

√
−39 + 9z2(z2 − 2)

3 − 3z2 −
√

−39 + 9z2(z2 − 2)
. (3)

It is clear that the left-hand side of (3) is a rational
number (once that k2, k3 ∈ Z), and that choosing
z in a convenient way the right-hand side of (3) is
irrational. Therefore (3) cannot hold for this con-
venient choice of z. Hence for this special singular
point (0, 0, z), the dimension of the minimal vector
subspace of R3 containing the set

{(k1, k2, k3) ∈ Z3 : k1λ1 + k2λ2 + k3λ3 = 0,
(k1, k2, k3) ̸= (0, 0, 0)}.

is clearly one, generated by (k1, 0, 0). Thus it fol-
lows from Theorem 2.1 that system (2) can only
have one independent generalized rational first in-
tegral, which must be a function of H. This com-
pletes the proof of the theorem.

3. Auxiliary results

In the proof of Theorem 1.2 we will use the
the following well known result on the Dar-
boux theory of integrability, see for instance
[Dumortier et al., 2006; Chapter 8].

Theorem 3.1. Suppose that a polynomial vector
field X defined in Rn of degree m admits p Darboux
polynomials fi with cofactors Ki for i = 1, . . . , p,
and q exponential factors Fj = exp(gj/hj) with co-
factors Lj for j = 1, . . . , q. If there exist λi, µj ∈ C
not all zero such that

p∑

i=1

λiKi +

q∑

j=1

µjLj = 0, (4)

then the following real (multivalued) function of
Darboux type

fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q , (5)

substituting fλi
i by |fi|λi if λi ∈ R, is a first integral

of the vector field X.

For a proof of the next result see [Llibre &
Zhang, 2009a, 2009b].

Proposition 3.2. The following statements hold.

(a) If eg/h is an exponential factor for the poly-
nomial differential system (1) and h is not a
constant polynomial, then h = 0 is an invari-
ant algebraic surface.

(b) Eventually eg can be an exponential factor,
coming from the multiplicity of the infinite in-
variant plane.

The proof of the next result can be found in
[Christopher & Llibre, 2000].

Lemma 3.3. Let f be a polynomial and f =
s∏

j=1

f
αj

j its decomposition into irreducible factors in

C[x, y, z]. Then f is a Darboux polynomial of sys-
tem (1) if and only if all the fj are Darboux poly-
nomials of system (1). Moreover, if K and Kj are

the cofactors of f and fj, then K =

s∑

j=1

αjKj.

We note that in view of Lemma 3.3 to study
the Darboux polynomials of system (1) it is enough
to study the irreducible ones.

4. Proof of Theorem 1.2

To prove Theorem 1.2 we first study the existence
of polynomial first integrals.

Proposition 4.1. System (1) has no polynomial
first integrals.

Proof. Let F = F (x, y, z) be a polynomial first in-
tegral of system (1). Then it satisfies

y
∂F

∂x
+

(
− x

3
+

y

2
− yz2

2

)∂F

∂y
+(y−αz−yz)

∂F

∂z
= 0.

(6)
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We write F as powers in the variable z in the form

F (x, y, z) =
n∑

j=0

Fj(x, y)zj , where each Fj is a poly-

nomial in the variables x, y. Computing the coeffi-
cient in (6) of zn+2 we obtain

−y

2

∂Fn

∂y
= 0 that is Fn = Fn(x).

Now, computing the coefficient in (6) of zn+1 we
obtain

−y

2

∂Fn−1

∂y
= 0 that is Fn−1 = Fn−1(x).

Finally, computing the coefficient in (6) of zn we
get

−y

2

∂Fn−2

∂y
+ y

dFn

dx
− (α + y)nFn = 0.

That is, if n ̸= 0, Fn = Fn(x) must be divisible
by y, in contradiction with the fact that Fn is a
polynomial in the variable x. Therefore, for n ̸= 0
we must have Fn = 0. Thus, F = F0(x, y). Now,
computing the coefficient in (6) of z2 we obtain

−y

2

∂F0

∂y
= 0 that is F0 = F0(x),

and again by (6) we obtain

y
dF0

dx
= 0 that is F0 = C0 ∈ R,

in contradiction with the fact that F is a polynomial
first integral of system (1). This concludes the proof
of the proposition.

Now we will study the existence of Darboux
polynomials with nonzero cofactor. Note that the
Darboux polynomial with zero cofactor are the
polynomial first integrals. We recall that a Darboux
polynomial of system (1) is a nonconstant polyno-
mial f ∈ C[x, y, z] such that

y
∂f

∂x
+

(
− x

3
+

y

2
− yz2

2

)∂f

∂y
+(y−αz−yz)

∂f

∂z
= kf,

(7)
for some polynomial k ∈ C[x, y, z] called the cofac-
tor. Since the degree of system (1) is tree we have
that the degree of k can be at most two, that is, k
is of the form

k = a0 + a1x + a2y + a3z + a4x
2 + a5xy

+a6xz + a7y
2 + a8yz + a9z

2,
(8)

where ai ∈ C for i = 0, . . . , 9.

Proposition 4.2. System (1) has no Darboux
polynomials with nonzero cofactor.

Proof. Let f be a Darboux polynomial of system
(1) with cofactor k given in (8). First we claim
that a1 = a3 = a4 = a5 = a6 = a7 = a8 = 0 and
a9 = −m/2, where m is a nonnegative integer.

Now we prove the claim. We write f as sum of

its homogeneous parts as follows f =
n∑

j=0

fj(x, y, z),

where each fj is a homogeneous polynomial in its
variables. Without loss of generality we can assume
that fn ̸= 0 and n ≥ 1. Computing the terms of
degree n + 2 in (7) we have

−y

2
z2 ∂fn

∂y
= (a4x

2+a5xy+a6xz+a7y
2+a8yz+a9z

2)fn.

The general solution of this linear differential equa-
tion is of the form

fn = Kn(x, z) exp
(

− 2a5x

z2
y − 2a8

z
y − a7

z2
y2

)

y
−

2a4x
2

z2
− 2a6x

z y−2a9 ,

where Kn is an arbitrary function in the variables
x, z. Since fn must be a polynomial we get that
a4 = a5 = a6 = a7 = a8 = 0 and a9 = −m/2,
where m is a nonnegative integer. Therefore

fn = Knym, (9)

where Kn = Kn(x, z) is an arbitrary polynomial in
x, z. Now computing the terms of degree n + 1 in
(7) we obtain

−y

2
z2 ∂fn−1

∂y
− yz

∂fn

∂z
=

−m

2
z2fn−1 + (a1x + a2y + a3z)fn,

that is

−y

2
z2 ∂fn−1

∂y
− yz

dKn

dz
ym =

−m

2
z2fn−1 + (a1x + a2y + a3z)Knym.

Solving this linear differential equation we obtain

fn−1 = Kn−1y
m − 2ym

z2

(
a2Kny+

dKn

dz
y + (a1x + a3z)Kn log y

)
,

(10)
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where Kn−1 = Kn−1(x, z) is an arbitrary function
in x, z. Since fn−1 must be a polynomial and Kn ̸=
0 (otherwise fn = 0) we conclude that a1 = a3 = 0.
Hence, the claim is proved.

Now we make the change of variables

x = X, y = µ−2Y, z = µ−1Z, t = µ2τ,

then the Muthuswamy–Chua system becomes

Ẋ = Y,

Ẏ = −Y Z2

2
+ µ2 Y

2
− µ4 X

3
,

Ż = −Y Z + µY − αµ2Z,

(11)

where the dot denotes derivative with respect to the
variable τ . Set F (X, Y, Z) = µnf(X, µ−2Y, µ−1Z)
and K(X, Y, Z) = µ2k(X,µ−2Y, µ−1Z), where as
we considered above n is the highest weight degree
in the weight homogeneous components of f in the
variables (x, y, z) with weight degrees (0, 2, 1). As-
sume that

F =

n∑

i=0

µiFi(X,Y, Z)

where Fi is a weight homogenous polynomial in
X, Y and Z with weight degree n − i for i =
0, 1, . . . , n. Note that in particular

Fj(X, Y, Z) = µnfn−j(x, y, z), (12)

for j = 0, . . . , n. From the definition of Darboux
polynomial we have that

Y

n∑

i=0

µi ∂Fi

∂X
+

(
− Y Z2

2
+ µ2 Y

2
− µ4 X

3

) n∑

i=0

µi ∂Fi

∂Y

+( − Y Z + µY − αµ2Z)

n∑

i=0

µi ∂Fi

∂Z
=

(
a2Y − m

2
Z2 + µ2a0

) n∑

i=0

µiFi.

Equating the terms with µi for i = 0, 1 we get

L[F0] = (a2Y − m

2
Z2)F0,

L[F1] = (a2Y − m

2
Z2)F1 − Y

∂F0

∂Z
,

(13)

where L is the linear partial differential operator of
the form

L = Y
∂

∂X
− 1

2
Y Z2 ∂

∂Y
− Y Z

∂

∂Z
.

The characteristic equations associated to the linear
partial differential operator are

dX

dZ
= − Y

Y Z
= − 1

Z
,

dY

dZ
=

Y Z2

2Y Z
=

Z

2
.

This system has the general solution

e1 = ZeX and e2 = Y − Z2

4
,

where e1 and e2 are constants of integration. Ac-
cording to this, we introduce the change of variables

u = ZeX , v = Y − Z2

4
, w = X. (14)

Its inverse transformation is

Z = ue−w, Y = v +
u2e−2w

4
, X = w. (15)

Under the changes (14) and (15), the first equation
in (13) becomes the following ordinary differential
equation (for fixed u, v):

(
v+

u2e−2w

4

)∂F̄0

∂w
=

(
a2(v+

v2e−2w

4
)−m

2
u2e−2w

)
F̄0,

where F̄0 is F0 written in terms of u, v and w. In
what follows we always use the notation Ḡ to de-
note G(x, y, z) written in terms of u, v, w. The last
equation has the general solution

F̄0 = K̄0(u, v)ea2w
(
v +

u2e−2w

4

)m
,

where K̄0 is an arbitrary smooth function in u and
v. So,

F0 = F̄0 = ea2XY mK0

(
ZeX , Y − Z2

4

)
.

Since F0 must be a weight homogeneous polynomial
of weight-degree n, we must have a2 = −l for some
nonnegative integer l and

F0 = c0Z
lY mP0

(
Y − Z2

4

)
,

where P0 is a polynomial in the variable Y − Z2/4
and c0 ∈ C \ {0}. Since the weight degree of Y −
Z2/4 is 2, we get that

F0 = c0Z
lY m

(
Y − Z2

4

)p
, l + 2m + 2p = n. (16)
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Now from (9), (12) and (16) we obtain

p = 0, Kn = c0z
l and fn = c0z

lym, F0 = c0Z
lY m.

Note that from (10) we get that

fn−1 = Kn−1y
m − 2lc0y

m+1

z2

(
− zl + zl−1

)
. (17)

Now, substituting F0 into the second equation of
(13) we get that

L[F1] =
(

− lY − m

2
Z2)F1 − c0lz

l−1ym+1.

Using again the change of variables (14) and (15)
and working as we did for F0 we get that

(
v +

u2e−2w

4

)∂F̄1

∂w
=

(
− l(v +

v2e−2w

4
) − m

2
u2e−2w

)
F̄1

−c0lu
l−1e−(l+1)w

(
v +

u2e−2w

4

)m+1
.

Integrating this equation with respect to w we get

F1 = −c0lY
mZ l−1 + e−lXY mK1

(
ZeX , Y − Z2

4

)
.

Note that since F1 must be a polynomial of degree
n − 1, proceeding as we did for F0 we have that

e−lXY mK1

(
ZeX , Y − Z2

4

)
= Y mZ lP1

(
Y − Z2

4

)
,

where P1 is a polynomial in the variable Y − Z2/4.
Note that F1 has weight degree 2m+ l+2q where q
is the degree of P1 with respect to Y − Z2/4. Since
F1 has degree 2m + 2l − 1 it follows that P1 = 0.
Thus

F1 = −c0lY
mZ l−1.

Now from this equation, equations (12), (17) and
the fact that c0 ̸= 0 we get

l = 0, Kn = c0, fn = c0y
m, fn−1 = 0.

Therefore, a2 = 0. Now computing the terms of
degree n in (7) we obtain

−y

2
z2 ∂fn−2

∂y
+ m

(
− x

3
+

y

2

)
c0y

m−1 =

−m

2
z2fn−2 + a0c0y

m.

Solving it

fn−2 = ymKn−2 +
c0y

m

z2

(2mx

3y
+ (m − 2a0) log y

)
,

where Kn−2 = Kn−2(x, z) is an arbitrary function
in x, z. Since fn−2 must be a polynomial and c0 ̸= 0
we get that m = 0 and a0 = m/2 = 0. There-
fore, since a9 = −m/2 we conclude that ai = 0
for i = 0, . . . , 9 and thus k = 0, in contradiction
with the fact that f is a Darboux polynomial with
nonzero cofactor. This concludes the proof of the
proposition.

An exponential factor of system (1) is a func-
tion f = exp(h/g) satisfying (7), where h, g ∈
C[x, y, z] are coprime polynomials.

Proposition 4.3. The unique exponential factors,
modulo constants, of system (1) are

ex, ex2
, ez and ez2−4y

with cofactors

y, 2xy, y−yz−αz and
4

3
x−2y+2yz−2αz2,

respectively.

Proof. Let F = exp(g/h) be an exponential factor
of the Muthuswamy–Chua system with cofactor L,
where g, h ∈ C[x, y, z] with (g, h) = 1. Then from
the definition of exponential factor and in view of
Propositions 3.2, 4.1 and 4.2 we have that h is a
constant that we can take h = 1. Thus F = exp(g),
where g ∈ C[x, y, z]. Then, g satisfies

y
∂g

∂x
+

(
− x

3
+

y

2
− yz2

2

)∂g

∂y
+

(y − αz − yz)
∂g

∂z
= L,

(18)

where L = a0+a1x+a2y+a3z+a4x
2+a5xy+a6xz+

a7y
2 + a8yz + a9z

2. We write g as a polynomial in
the variable z in the form

g(x, y, z) =
n∑

j=0

gj(x, y)zj ,

where each gj is a polynomial in the variables x, y.
We first assume n ≥ 3. Computing the coefficient
in (18) of zn+2 we obtain

−y

2

∂gn

∂y
= 0 that is gn = gn(x).

Now computing the coefficient in (18) of zn+1 we
obtain

−y

2

∂gn−1

∂y
= 0 that is gn−1 = gn−1(x).

6



Finally, computing the coefficient in (18) of zn we
get

−y

2

∂gn−2

∂y
+ y

dgn

dx
− (α + y)ngn = 0.

Then gn = gn(x) must be divisible by y, in con-
tradiction with the fact that gn is a polynomial in
the variable x. Therefore n < 3 and we write h as
g = g0(x, y) + g1(x, y)z + g2(x, y)z2, where gi are
polynomials in x, y for i = 0, 1, 2. Imposing that g
satisfies (18) and computing the coefficients of zj ,
that we call Aj for j = 0, 1, 2, 3, 4 in (18) we get

A1 =
1

6

(
−6a0 − 6a1x − 6a4x

2 − 6a2y − 6a5xy−

6a7y
2 + 6yg1 + (3y − 2x)

∂g0

∂y
+ 6y

∂g0

∂x

)
,

A2 =
1

6
(−6a3 − 6a6x − 6a8y − 6(y + α)g1+

12yh2 + (3y − 2x)
∂g1

∂y
+ 6y

∂g1

∂x

)
,

A3 =
1

6

(
−6a9 − 12(y + α)g2 − 3y

∂g0

∂y
+

(3y − 2x)
∂g2

∂y
+ 6y

∂g2

∂x

)
,

A4 = −1

2
y
∂g1

∂y
,

A5 = −1

2
y
∂g2

∂y
.

From conditions A4 = A5 = 0 we get that g1(x, y) =
g1(x) and g2(x, y) = g2(x). Now the equation for
A2 becomes

A2 = −6(a3 +a6x+αg1)−6y
(
a8 +g1 −2g2 − dg1

dx

)
,

and setting A2 = 0 we obtain

g1 = − 1

α
(a3+a6x) and g2 =

1

2α
(a8α+a6−a3−a6x).

Furthermore, condition A3 becomes

A3 =
1

2α
(2a3(y + α) + a6((2x − 3)y + 2(x − 1)α)

−2α(a9 + a8(y + α)) − yα
∂g0

∂y
,

and thus, from A3 = 0 we get

g0 =
1

α
(y(2a3 + a6(2x − 3) − 2a8α)−

2α(−a3 + a6 + a9 − a6x + a8α) log y
+αG0(x).

Since g0 must be a polynomial we have

a6 = 0, a3 = a9 + a8α and g0 =
2a9

α
y +G0(x).

Now imposing these conditions into the relation
A1 = 0 we obtain

−2a9x − 3(a0 + a1x + a4x
2+

y(a2 + a8 + a5x + a7y))α+

3yα
dG0

dx
= 0,

which yields

G0 = K0 +
a4x

3

3y
+

x

y
(a0 + (a2 + a8)y + a7y

2)+

x2

6αy
(2a9 + 3αa1 + 3αa5y).

Since G0 must be a polynomial in the variable x we
get

a4 = 0, a0 = 0, a9 = −3

2
a1 and a7 = 0,

and hence G0 = K0 + (a2 + a8)x + a5x
2/2. More-

over since we are searching the exponential factors
modulo constants we can set K0 = 0. In summary

g =
2a9

α
y + (a2 + a8)x +

a5

2
x2+

(3a1

2
− a8

)
z +

3a1

4
z2

= a2x +
a5

2
x2 + a8(x − z)+

a1

(
− 3y +

3z

2
+

3z2

4

)
.

Note that modulo multiplicative constants, the ex-
ponential factors are ex, ex2

, ez and ez2−4y. Know-
ing the exponential factors we can compute eas-
ily their cofactors, obtaining the ones given in the
statement of the proposition. This completes the
proof of the proposition.

Proof of Theorem 1.2. It follows from Theorem 3.1
that the Muthuswamy–Chua system (1) has a first
integral of Darboux type if and only if there ex-
ist λi, µj ∈ C not all zero such that equation
(4) is satisfied, where p, q are the number of Dar-
boux polynomials and the number of exponential
factors, respectively. Furthermore, Ki, Lj are the
cofactors of Darboux polynomials and exponen-
tial factors, respectively. It follows from Proposi-
tions 4.1 and 4.2 that the Muthuswamy–Chua sys-
tem has no Darboux polynomials, and by Proposi-
tion 4.3 we have that there are 4 cofactors of the
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form L1 = y, L2 = 2xy, L3 = y − yz − αz and
L4 = 4x/3 − 2y + 2yz − 2αz2. So equation (4) is
equivalent to

µ1y + 2µ2xy + µ3(y − yz − αz)+

µ4

(4

3
x − 2y + 2yz − 2αz2

)
= 0.

Solving this equation we obtain that µ1 = µ2 =
µ3 = µ4 = 0. This completes the proof of the theo-
rem.
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