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Abstract. The paper addresses the problem of bifurcation of periodic solutions
from a normally nondegenerate family of periodic solutions of ordinary differen-
tial equations under perturbations. The approach to solve this problem can be
described as transforming (by a Lyapunov-Schmidt reduction) the initial system
into one which is in the standard form of averaging, and subsequently apply-
ing the averaging principle. This approach encounters a fundamental problem
when the perturbation is only Lipschitz (nonsmooth) as we do not longer have
smooth Lyapunov-Schmidt projectors. The situation of Lipschitz perturbations
has been addressed in the literature lately and the results obtained conclude the
existence of the bifurcated branch of periodic solutions. Motivated by recent
challenges in control theory, we are interested in the uniqueness problem. We
achieve this in the case when the Lipschitz constant of the perturbation obey a
suitable estimate.

1. Introduction

In [25] Malkin studied the bifurcation of T -periodic solutions in the n–dimensional
T -periodic systems of the form

(1.1) ẋ = f(t, x) + εg(t, x, ε),

where both functions f and g are sufficiently smooth and ε > 0 is small. It
is assumed in [25] that the unperturbed system (namely (1.1) with ε = 0) has
a family of T -periodic solutions, denoted x(·, ξ(h)), whose initial conditions are
given by a smooth function ξ : Rk → Rn. In these settings the adjoint linearized
differential system

(1.2) u̇ = − (Dxf(t, x(t, ξ(h))))∗ u

has k linearly independent T -periodic solutions u1(·, h), . . . , uk(·, h), thus the geo-
metric multiplicity of the Floquet multiplier +1 of (1.2) is at least k for each h ∈ Rk.
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Assuming, in addition, that the algebraic multiplicity1 of +1 is exactly k (thus the
geometric one is also k), Malkin proved [25] that if the bifurcation function

M(h) =

T∫

0




⟨u1(τ, h), g(τ, x(τ, ξ(h)), 0)⟩
...

⟨uk(τ, h), g(τ, x(τ, ξ(h)), 0)⟩


dτ

has a simple zero h0 ∈ Rk, then for any ε > 0 sufficiently small, system (1.1) has
a unique T -periodic solution xε such that xε(0) → ξ(h0) as ε → 0. Here simple
zero means that M(h0) = 0 and the Jacobian determinant of M at h0 is nonzero.
As usual ⟨·, ·⟩ denotes the inner product in Rn. Moreover, Malkin related the
asymptotic stability of the solution xε with the eigenvalues of the Jacobian matrix
DM(h0). The same result has been proved independently in Loud [23].
Since then, this result has been refined and developed in various directions, and the
problem itself has been treated from different perspectives, some of them leading
to other expressions of the bifurcation function [8, 11, 16, 18].
In the hypothesis that only the geometric multiplicity of the multiplier +1 of (1.2)
is k, an expression for the bifurcation function M is given in Rhouma–Chicone [28].
The mentioned property has been termed normal nondegeneracy of the manifold
ξ(Rn).

In this paper (Theorems 2 and 3 below are our main results) we prove bifurcation
of isolated branches from normally nondegenerate ξ(Rn) assuming only Lipschitz
continuity for the perturbation g, and continuity of the Lipschitz constant of the
map z 7→ g(t, z+ζ, ε)−g(t, z, 0) with respect to its entries. This condition, denoted
below by (A9), has its roots in Glover-Lazer-McKenna [12] and has recently proved
its effectiveness in semi-linear perturbation problems [5, 7]. We are aware that less
regular perturbations g has been already considered in the literature, where a
topological degree method is employed to prove the existence of bifurcation (see
e.g. Fečkan [11] and Kamenskii-Makarenkov–Nistri [16]). However, our paper
seems to be the first contribution that takes advantage of the Lipschitz continuity
of g to achieve uniqueness of the bifurcating branch of periodic solutions.

Our interest in Lipschitz differential equations is motivated by applications in con-
trol and optimization. In optimization, Lipschitz ingredients come from variational
inequalities constraining a differential equation (see e.g. [30]). In control, Lips-
chitz right-hand sides often appear in so-called dithered systems. Applicability
of averaging and relevant co-dimension 2 bifurcations in these systems are yet to
be justified (see [26] and discussion in the more recent paper [14]). Stability of
solutions of differential equations with Lipschitz right-hand sides is quite well un-
derstood and goes back to Lasota-Strauss [15] and can also be achieved based on
the Clarke Implicit Function Theorem [9]. This paper represents the next natural

1λ∗ is a Floquet multiplier of the T -periodic linear system (1.2) if it is an eigenvalue of U(T, h),
where U(t, h) is a fundamental matrix solution of this system. The Floquet multiplier λ∗ has
gometric multiplicity k when the dimension of the kernel of U(T, h) − λ∗In×n is k, while its
algebraic multiplicity is counted as a root of the algebraic equation det (U(T, h) − λIn×n) = 0.
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step in the development of the perturbation theory for this class of differential
equations. This theory has been pioneered by Glover-Lazer -McKenna in [12] and
recently put in a more general context by Buica-Llibre-Makarenkov [7] (where the
unperturbed systems were assumed Hamiltonian or linear).

In order to prove our main result we extend the Lyapunov-Schmidt reduction
method (see [8]) to the case of nonsmooth Lipschitz functions and derive suitable
estimates for the dependence of the Lipschitz constant of the implicit function
on state variables and parameter ε. In addition, we need to discover new Lips-
chitz analogues of the smooth dependence of the solution of system (1.1) on the
parameter and the initial condition.

The paper is organized as follows. In the next section we summarize our notations.
In Section 3 we generalize the Lyapunov–Schmidt reduction method for nonsmooth
functions. In Section 4 we prove Theorem 2 and the main result of the paper,
Theorem 3.

2. Notations

The following notations will be used throughout this paper.

Let n,m, k ∈ N, k ≤ n, i ∈ N ∪ {0}.

We denote the projection onto the first k coordinates by π : Rn → Rk, and the one
onto the last n − k coordinates by π⊥ : Rn → Rn−k.

We denote by In×n the identity n × n matrix, while 0n×m denotes the null n × m
matrix. For an n × n matrix A we denote by A∗ the adjoint of A, that in the case
the matrix is real reduces to the transpose.

We consider a norm in Rn denoted by ∥ · ∥. Let Ψ be an n × n real matrix. Then
∥Ψ∥ denotes the operator norm, i.e. ∥Ψ∥ = sup∥ξ∥=1 ∥Ψξ∥.

Let ξ ∈ Rn and Z ⊂ Rn compact, then we denote by ρ(ξ, Z) = minζ∈Z ∥ξ − ζ∥ the
distance between ξ and Z. For δ > 0 and z ∈ Rn the ball in Rn centered in z of
radius δ will be denoted by Bδ(z).

For a subset U ⊂ Rn we denote by int(U), U and co U its interior, closure and
closure of the convex hull, respectively.

We denote by Ci(Rn, Rm) the set of all continuous and i times continuously differ-
entiable functions from Rn into Rm.

Let F ∈ C0(Rn, Rn) be a function that does not have zeros on the boundary of
some open bounded set U ⊂ Rn. Then d(F ,U) denotes the Brouwer topological
degree of F on U (see [3] or [21, Ch. 1, § 3]).

For F ∈ C1(Rn, Rm), DF denotes the Jacobian matrix of F . If Rn = Rk × Rn−k

and α ∈ Rk, β ∈ Rn−k, then DαF(·, β) denotes the Jacobian matrix of F(·, β). For
F ∈ C2(Rn, R), HF denotes the Hessian matrix of F , i.e. the Jacobian matrix of
the gradient of F .
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Let δ > 0 be sufficiently small. With o(δ) we denote a function of variable δ such
that o(δ)/δ → 0 as δ → 0, while O(δ) denotes a function of δ such that O(δ)/δ is
bounded as δ → 0. Besides this classical notations, we introduce now õ(δ) for a
function of variable δ such that õ(δ) → 0 as δ → 0. Here the functions o, O or õ
may depend also on other variables, but the above properties hold uniformly when
these variables lie in a fixed bounded region.

We say that the function Q : Rn × Rm → Rm is locally uniformly Lipschitz with
respect to its first variable if for each compact K ⊂ Rn × Rm there exists L > 0
such that ∥Q(z1, λ) − Q(z2, λ)∥ ≤ L∥z1 − z2∥ for all (z1, λ), (z2, λ) ∈ K.

For any Lebesgue measurable set M ⊂ [0, T ] we denote by mes(M) the Lebesgue
measure of M .

3. Lyapunov-Schmidt reduction method for nonsmooth Lipschitz
functions

If the continuously differentiable function P : Rn → Rn vanishes on some set
Z ⊂ Rn, then sufficient conditions for the existence of zeros near Z of the perturbed
function

(3.3) F (z, ε) = P (z) + εQ(z, ε), z ∈ Rn, ε > 0 small enough

can be expressed in terms of the restrictions to Z of the functions z 7→ DP (z)
and z 7→ Q(z, 0). Roughly speaking, this is what is known in the literature as the
Lyapunov-Schmidt reduction method, as it is presented for instance in [8, 4] or
[21, §24.8]. In these references it is assumed that Q is a continuously differentiable
function. We show in this section that this last assumption can be weaken. The
following theorem is the main result of this section and generalizes a theorem of
[4].

Theorem 1. Let P ∈ C1(Rn, Rn), let Q ∈ C0(Rn × [0, 1], Rn) be locally uniformly
Lipschitz with respect to its first variable, and let F : Rn × [0, 1] → Rn be given by
(3.3). Assume that P satisfies the following hypotheses.

(A1) There exist an invertible n × n matrix S, an open ball V ⊂ Rk with k ≤ n,
and a function β0 ∈ C1(V , Rn−k) such that P vanishes on the set Z =
∪

α∈V

{
S

(
α

β0(α)

)}
.

(A2) For any z ∈ Z the matrix DP (z)S has in its upper right corner the null
k× (n−k) matrix and in the lower right corner the (n−k)× (n−k) matrix
∆(z) with det (∆(z)) ̸= 0.

For any α ∈ V we define

(3.4) Q̂(α) = πQ

(
S

(
α

β0(α)

)
, 0

)
.

Then the following statements hold.
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(C1) For any sequences (zm)m≥1 from Rn and (εm)m≥1 from [0, 1] such that zm →
z0 ∈ Z, εm → 0 as m → ∞ and F (zm , εm) = 0 for any m ≥ 1, we have

Q̂ (πS−1z0) = 0.

(C2) If Q̂ : V → Rk is such that Q̂(α) ̸= 0 for all α ∈ ∂V and d
(
Q̂, V

)
̸= 0,

then there exists ε1 > 0 sufficiently small such that for each ε ∈ (0, ε1] there
exists at least one zε ∈ Rn with F (zε, ε) = 0 and ρ(zε,Z) → 0 as ε → 0.

In addition we assume that there exists α0 ∈ V such that Q̂(α0) = 0, Q̂(α) ̸= 0 for

all α ∈ V \ {α0} and d
(
Q̂, V

)
̸= 0, and we denote z0 = S

(
α0

β0(α0)

)
. Moreover

we also assume:

(A3) P is twice differentiable in the points of Z, and for each i ∈ 1, k and z ∈ Z
the Hessian matrix HPi(z) is symmetric.

(A4) There exists δ1 > 0 and LQ̂ > 0 such that

||Q̂(α1) − Q̂(α2)|| ≥ LQ̂||α1 − α2|| for all α1, α2 ∈ Bδ1(α0).

(A5) For δ > 0 sufficiently small we have that

∥πQ (z1 + ζ, ε) − πQ (z1, 0) − πQ (z2 + ζ, ε) + πQ (z2, 0)∥ ≤
õ(δ)∥z1 − z2∥,

for all z1, z2 ∈ Bδ(z0) ∩ Z, ε ∈ [0, δ] and ζ ∈ Bδ(0).

Then the following conclusion holds.

(C3) There exists δ2 > 0 such that for each ε ∈ (0, ε1] there is exactly one
zε ∈ Bδ2(z0) with F (zε, ε) = 0. Moreover zε → z0 as ε → 0.

We note that a map that satisfy (A4) is usually called dilating map (cf. [1]).
For proving Theorem 1 we shall use the following version of the Implicit Function

Theorem.

Lemma 1. Let P ∈ C1(Rn, Rn) and let Q ∈ C0(Rn×[0, 1], Rn) be locally uniformly
Lipschitz with respect to its first variable. Assume that P satisfies the hypotheses
(A1) and (A2) of Theorem 1. Then there exist δ0 > 0, ε0 > 0 and a function
β : V × [0, ε0] → Rn−k such that

(C4) π⊥F

(
S

(
α

β(α, ε)

)
, ε

)
= 0 for all α ∈ V and ε ∈ [0, ε0].

(C5) β(α, ε) = β0(α) + εµ(α, ε) where µ : V × (0, ε0] → Rn−k is bounded. More-
over for any α ∈ V and ε ∈ [0, ε0], β(α, ε) is the only zero of

π⊥F

(
S

(
α
·

)
, ε

)
in Bδ0(β0(α)) and β is continuous in V × [0, ε0].

In addition if P is twice differentiable in the points of Z, then

(C6) there exists Lµ > 0 such that ∥µ(α1, ε) − µ(α2, ε)∥ ≤ Lµ∥α1 − α2∥ for all
α1, α2 ∈ V and ε ∈ (0, ε0].
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Proof. (C4) Let F̃ : Rk × Rn−k × [0, 1] → Rn be defined by

F̃ (α, β, ε) = F

(
S

(
α
β

)
, ε

)
,

and let P̃ , Q̃ and ∆̃ be defined in a similar way. Now the assumptions (A1) and

(A2) become P̃ (α, β0(α)) = 0 and, respectively, the matrix DP̃ (α, β0(α)) has in
its upper right corner the null k × (n − k) matrix and in the lower right corner the

(n − k) × (n − k) invertible matrix ∆̃(α, β0(α)) for any α ∈ V . Then

F̃ (α, β0(α), 0) = 0 for any α ∈ V ,

and

(3.5) det
(
Dβ

(
π⊥F̃

)
(α, β0(α), 0)

)
= det

(
∆̃(α, β0(α))

)
̸= 0 for any α ∈ V .

It follows from (3.5) that there exists a radius δ > 0 such that

(3.6) π⊥F̃ (α, β, 0) ̸= 0 for any β ∈ Bδ(β0(α))\ {β0(α)} , α ∈ V .

The relations (3.5) and (3.6) give (see [21, Theorem 6.3])

d(π⊥F̃ (α, ·, 0), Bδ(β0(α))) = sign
(
det(∆̃(α, β0(α))

)
̸= 0, α ∈ V .

Hence, by the continuity of the topological degree with respect to parameters (using
the compactness of V ) there exists ε(δ) > 0 such that

d(π⊥F̃ (α, ·, ε), Bδ(β0(α))) ̸= 0 for any ε ∈ [0, ε(δ)], α ∈ V .

This assures the existence of β(α, ε) ∈ Bδ(β0(α)) such that conclusion (C4) holds
with δ0 = δ and ε0 = ε(δ0).

Without loss of generality we can consider in the sequel that ε(δ) → 0 as δ → 0.
The value of the radius δ eventually may decrease in a finite number of steps during
this proof (consequently, also the value of ε(δ)). Sometimes we decrease only the
value of ε(δ), letting δ maintaining its value. Without explicitly mentioning it,
finally, in the statement of the lemma, we replace δ0 by the least value of the
radius δ and ε0 by ε(δ).

(C5) Since P and β0 are C1 and V is bounded, there exists η > 0 such that the

invertible matrix ∆ defined by (A2) satisfies ||∆̃(α, β0(α))|| ≥ 2η for all α ∈ V .

Using again that P is C1 and ∆̃(α, β0(α)) = Dβ

(
π⊥P̃

)
(α, β0(α)) , we obtain that

the radius δ > 0 found before at (C4) can be decreased, if necessary, in such a way

that ||∆̃(α, β0(α))−Dβ

(
π⊥P̃

)
(α, β)|| ≤ η for all β ∈ Bδ (β0(α)) and α ∈ V . Then

||Dβ

(
π⊥P̃

)
(α, β)|| ≥ η for all β ∈ Bδ (β0(α)), α ∈ V . Applying the generalized

Mean Value Theorem (see [9, Proposition 2.6.5]) to the function π⊥P̃ (α, ·), we
obtain

(3.7) ||π⊥P̃ (α, β1) − π⊥P̃ (α, β2)|| ≥ η||β1 − β2||, β1, β2 ∈ Bδ(β0(α)), α ∈ V .
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We take MQ > 0 such that ||Q̃(α, β(α, ε), ε)|| ≤ MQ for all α ∈ V and ε ∈ [0, ε0].
Using (3.7) we obtain for all α ∈ V and ε ∈ [0, ε(δ)]

0 = ||π⊥P̃ (α, β(α, ε)) − π⊥P̃ (α, β0(α)) + επ⊥Q̃(α, β(α, ε), ε)||
≥ η||β(α, ε) − β0(α)|| − εMQ .

From these last relations, denoting m = MQ/η, we deduce that

(3.8) ∥µ(α, ε)∥ ≤ m for all α ∈ V , ε ∈ (0, ε(δ)].

We choose LQ > 0 such that

(3.9) ||Q̃(α2, β2, ε) − Q̃(α1, β1, ε)|| ≤ LQ (||α2 − α1|| + ||β2 − β1||) ,

for all β1, β2 ∈ Bδ0(β0(V )), α1, α2 ∈ V , ε ∈ [0, ε0]. We decrease δ > 0 in such a way
that η − εLQ > 0 for any ε ∈ [0, ε(δ)].

Let α ∈ V , ε ∈ [0, ε(δ)] and assume that β(α, ε) and β2 are two zeros of

π⊥F

(
S

(
α
·

)
, ε

)
in Bδ(β0(α)). Taking into account (3.7) and (3.9), we obtain

0 = ||π⊥P̃ (α, β2) − π⊥P̃ (α, β(α, ε)) +

επ⊥Q̃(α, β2, ε) − επ⊥Q̃(α, β(α, ε), ε)||
≥ (η − εLQ)||β2 − β(α, ε)||.

Since η − εLQ > 0 for any ε ∈ [0, ε(δ)] we deduce from this last relation that β2

and β(α, ε) must coincide.

We prove in the sequel the continuity of the function β : V ×[0, ε(δ)] → Rn−k. Let
(α1, ε1) ∈ V × [0, ε(δ)] be fixed and (α, ε) ∈ V × [0, ε(δ)] be in a small neighborhood

of (α1, ε1). Consider LP > 0 such that ||P̃ (α1, β) − P̃ (α, β)|| ≤ LP ||α1 − α|| for
all α1, α ∈ V and β ∈ Bδ0(β0(V )). We diminish ε(δ) > 0, if necessary, and we
consider α so close to α1 that β(α, ε) ∈ Bδ(β0(α1)). Then using (3.7) and (3.9) we
obtain

0 = ||π⊥P̃ (α1, β(α1, ε1)) − π⊥P̃ (α, β(α, ε)) +

ε1π
⊥Q̃(α1, β(α1, ε1), ε1) − επ⊥Q̃(α, β(α, ε), ε)||

≥ η||β(α1, ε1) − β(α, ε)|| − LP ||α1 − α|| −
||ε1π

⊥Q̃(α1, β(α1, ε1), ε1) − επ⊥Q̃(α, β(α, ε), ε)||
and

−||ε1π
⊥Q̃(α1, β(α1, ε1), ε1) − επ⊥Q̃(α, β(α, ε), ε)||

≥ −ε1LQ||α1 − α|| − ε1LQ||β(α1, ε1) − β(α, ε)|| −
||ε1π

⊥Q̃(α, β(α, ε), ε1) − επ⊥Q̃(α, β(α, ε), ε)||.
Combining these last two relations we obtain

(η − ε1LQ)||β(α1, ε1) − β(α, ε)|| ≤ (LP + ε1LQ)||α1 − α|| +

||ε1π
⊥Q̃(α, β(α, ε), ε1) − επ⊥Q̃(α, β(α, ε), ε)|| ,
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from where it follows easily that β(α, ε) → β(α1, ε1) when (α, ε) → (α1, ε1).

(C6) We define Φ(α, ξ) = π⊥P̃ (α, β0(α) + ξ) for all α ∈ V and ξ ∈ Rn−k. From
(3.7) we have that

(3.10) ||Φ(α, ξ1) − Φ(α, ξ2)|| ≥ η||ξ1 − ξ2|| for all α ∈ V , ξ1, ξ2 ∈ Bδ(0).

Since P̃ (α, β0(α)) = 0 for all α ∈ V , we have that Φ(α, ξ) = π⊥P̃ (α, β0(α) + ξ) −
π⊥P̃ (α, β0(α)) and that

DαΦ(α, ξ) = Dα

(
π⊥P̃

)
(α, β0(α) + ξ) − Dα

(
π⊥P̃

)
(α, β0(α)) +

[
Dβ

(
π⊥P̃

)
(α, β0(α) + ξ) − Dβ

(
π⊥P̃

)
(α, β0(α))

]
Dβ0(α).

From this expression, using that P̃ is twice differentiable in (α, β0(α)) and β0 is
C1, we obtain for some LΦ > 0 that the radius δ can be eventually decreased in a
such way that

||DαΦ(α, ξ)|| ≤ LΦ||ξ|| for all α ∈ V , ξ ∈ Bδ(0).

Hence using the Mean Value Inequality we have

(3.11) ||Φ(α1, ξ) − Φ(α2, ξ)|| ≤ Lϕ||ξ|| · ||α1 − α2|| for all α1, α2 ∈ V , ξ ∈ Bδ(0).

Now we use (3.10) with ξ1 = εµ(α1, ε), ξ2 = εµ(α2, ε) diminishing ε(δ), if necessary,
in order that ξ1, ξ2 ∈ Bδ(0) for all α1, α2 ∈ V and ε ∈ (0, ε(δ)]. Using also (C5),
(3.8) and (3.11) we obtain

(3.12)
||π⊥P̃ (α1, β(α1, ε)) − π⊥P̃ (α2, β(α2, ε))|| = ||Φ(α1, ξ1) − Φ(α2, ξ2)||
≥ η||ξ1 − ξ2|| − LΦ||ξ1|| · ||α1 − α2||
≥ ηε||µ(α1, ε) − µ(α2, ε)|| − LΦmε||α1 − α2|| ,

for all α1, α2 ∈ V and ε ∈ (0, ε(δ)]. Also using (3.9) we have

(3.13)
||π⊥Q̃(α1, β(α1, ε), ε) − π⊥Q̃(α2, β(α2, ε), ε)|| ≤
≤ εLQ||µ(α1, ε) − µ(α2, ε)|| + LQ(1 + Lβ0)||α1 − α2|| ,

for all α1, α2 ∈ V and ε ∈ (0, ε(δ)], where Lβ0 is the Lipschitz constant of β0 in V .

By definition of β(α, ε) we have π⊥P̃ (αi, β(αi, ε)) + επ⊥Q̃(αi, β(αi, ε), ε) = 0 for
i ∈ 1, 2. Using (3.12) and (3.13) we obtain

0 ≥ ε[η − εLQ] · ||µ(α1, ε) − µ(α2, ε)|| − ε[LΦm + LQ(1 + Lβ0)] · ||α1 − α2|| ,

for all α1, α2 ∈ V and ε ∈ (0, ε(δ)]. Therefore µ : V × (0, ε(δ)] → Rn−k satisfies
(C6) with Lµ = [LΦm + LQ(1 + Lβ0)]/[η − ε(δ)LQ]. Hence all the conclusions hold
with δ0 = δ and ε0 = ε(δ).

�
We remark that (C4) and the uniqueness part of (C5) can be obtained by means

of the Lipschitz generalization of the Inverse Function Theorem (see e.g. [19,
Theorem 5.3.8]), but we provide a different proof because the inequalities (3.7)
and (3.8) are used for proving the rest of (C5) and (C6).
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Proof of Theorem 1. Let δ0, ε0, β(α, ε) and µ(α, ε) be as in Lemma 1. We

consider the notations F̃ , P̃ and Q̃ like in the proof of Lemma 1.

(C1) Let the sequences (zm)m≥1 from Rn and (εm)m≥1 from [0, 1] be such that
zm → z0 ∈ Z, εm → 0 as m → ∞ and F (zm, εm) = 0 for any m ≥ 1. We
define α0 ∈ Rk, the sequences (αm)m≥1 from Rk and (βm)m≥1 from Rn−k by z0 =

S

(
α0

β0(α0)

)
and zm = S

(
αm

βm

)
. Then we have that α0 = lim

m→∞
αm, β0(α0) =

lim
m→∞

βm and there exists m0 ∈ N such that βm ∈ Bδ0(β0(αm)) and εm ∈ [0, ε0] for

all m ≥ m0. Therefore, since F (zm, εm) = 0, Lemma 1 implies βm = β(αm, εm) for

any m ≥ m0. Since πP̃ (αm, β0(αm)) = 0 and Dβ(πP̃ )(αm, β0(αm)) = 0, we obtain

that lim
m→∞

1

εm

πP̃ (αm, β(αm, εm)) = 0. Hence

0 = lim
m→∞

1

εm

πF̃ (αm, β(αm, εm), εm)

= lim
m→∞

[
1

εm

πP̃ (αm, β(αm, εm)) + πQ̃(αm, β(αm, εm), εm)

]
= Q̂(α0)

from where (C1) follows.

(C2) Using (C4) of Lemma 1, we note that it is enough to prove the existence

of at least one zero in V of the function α 7→ πF̃ (α, β(α, ε), ε) for each ε ∈ (0, ε1]
where ε1 with 0 < ε1 ≤ ε0 has to be found. This will follow from the claim that

the Brouwer topological degree d
(

1
ε
πF̃ (·, β(·, ε), ε), V

)
̸= 0 for ε ∈ (0, ε1]. Now

we prove this claim. Since β(α, ε) = β0(α) + εµ(α, ε) with µ : V × (0, ε0] → Rn−k

a bounded function, πP̃ (α, β0(α)) = 0 and Dβ(πP̃ )(α, β0(α)) = 0, we have

lim
ε→0

1

ε
πP̃ (α, β(α, ε)) = 0.

Therefore

lim
ε→0

1

ε
πF̃ (α, β(α, ε), ε) = lim

ε→0

[
1

ε
πP̃ (α, β(α, ε)) + πQ̃(α, β(α, ε), ε)

]
= Q̂(α).

Using the continuity of the Brouwer degree with respect to the parameter ε, and

taking into account that, by hypothesis, d(Q̂, V ) ̸= 0, for each ε ∈ (0, ε1] there
exists ε1 > 0 sufficiently small such that

d

(
1

ε
πF̃ (·, β(·, ε), ε), V

)
= d(Q̂, V ) ̸= 0.

Hence the claim is proved. Then for each ε ∈ (0, ε1] there exists αε ∈ V such that

πF̃ (αε, β(αε, ε), ε) = 0 and, moreover, using also (C4) of Lemma 1, we have that

F̃ (αε, β(αε, ε), ε) = 0. Denoting zε = S

(
αε

β(αε, ε)

)
we have that F (zε, ε) = 0.
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From the definitions of zε and Z, and the continuity of β, it follows easily that
ρ(zε,Z) → 0 as ε → 0.

(C3) Since α0 ∈ V is an isolated zero of Q̂, applying the topological degree
arguments like in (C2) for V that shrinks to {α0}, we obtain the existence of αε

such that αε → α0 as ε → 0, and πF̃ (αε, β(αε, ε), ε) = 0 for any ε ∈ (0, ε1]. Hence

zε = S

(
αε

β(αε, ε)

)
and z0 = S

(
α0

β0(α0)

)
∈ Z are such that F (zε, ε) = 0 and

zε → z0 as ε → 0.
In order to prove that zε is the unique zero of F (·, ε) in a neighborhood of z0,

we define

r1(α, ε) =
1

ε
πP̃ (α, β(α, ε)), r2(α, ε) = πQ̃(α, β(α, ε), ε) − πQ̃(α, β0(α), 0),

for all α ∈ V and ε ∈ (0, ε1], and we study the Lipschitz properties with respect
to α of these two functions.

Since P̃ (α, β0(α)) = 0 for all α ∈ V , by taking the derivative with respect to α
we obtain

(3.14) Dα

(
πP̃

)
(α, β0(α)) + Dβ

(
πP̃

)
(α, β0(α))Dβ0(α) = 0 for all α ∈ V .

Assumption (A2) assures that Dβ

(
πP̃

)
(α, β0(α)) = 0 for all α ∈ V . Taking

the derivative with respect to α, we have

(3.15) Dβα

(
πP̃

)
(α, β0(α)) + Dββ

(
πP̃

)
(α, β0(α))Dβ0(α) = 0 for any α ∈ V .

For any α ∈ V and ξ ∈ Rn−k we define Φ(α, ξ) = πP̃ (α, β0(α) + ξ). Taking into
account the relations (3.14) and (3.15) and that, by hypothesis (A3) we have that

Dβα

(
πP̃

)
(α, β0(α)) = Dαβ

(
πP̃

)
(α, β0(α)), we obtain

DαΦ(α, ξ) = Dα

(
πP̃

)
(α, β0(α) + ξ) + Dβ

(
πP̃

)
(α, β0(α) + ξ)Dβ0(α) −

Dα

(
πP̃

)
(α, β0(α)) − Dβ

(
πP̃

)
(α, β0(α))Dβ0(α) −

Dαβ

(
πP̃

)
(α, β0(α))ξ − Dββ

(
πP̃

)
(α, β0(α))Dβ0(α)ξ.

From this last equality, using that Dα

(
πP̃

)
and, respectively, Dβ

(
πP̃

)
are differ-

entiable at (α, β0(α)), we deduce that DαΦ(α, ξ) = o(ξ) for all α ∈ V and ξ ∈ Rn−k

with ||ξ|| sufficiently small. Hence the mean value inequality assures that

||Φ(α1, ξ) − Φ(α2, ξ)|| ≤ o(ξ)||α1 − α2|| for all α1, α2 ∈ V .

In the last inequality we replace ξ = εµ(α1, ε) (where µ is given by Lemma 1). We

use that DξΦ(α, 0) = DβπP̃ (α, β0(α)) = 0 for any α ∈ V , and that µ is Lipschitz
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with respect to α ∈ V . Then we obtain, considering that ε1 is small enough, for
all ε ∈ (0, ε1]

||Φ(α1, εµ(α1, ε)) − Φ(α2, εµ(α2, ε))|| ≤ o(ε)||α1 − α2|| for all α1, α2 ∈ V.

Now coming back to our notations and recalling that β(α, ε) = β0(α) + εµ(α, ε),
we obtain for ε ∈ (0, ε1]

(3.16) ||r1(α1, ε) − r1(α2, ε)|| ≤ o(ε)

ε
||α1 − α2|| for all α1, α2 ∈ V .

We will prove that a similar relation holds for the function r2. First we note
that the hypothesis (A5) and the fact that Q is locally uniformly Lipschitz with
respect to the first variable imply that

(3.17)
∥πQ (z1 + ζ1, ε) − πQ (z1, 0) − πQ (z2 + ζ2, ε) + πQ (z2, 0)∥ ≤

õ(δ)∥z1 − z2∥ + LQ∥ζ1 − ζ2∥,

for all z1, z2 ∈ Bδ(z0) ∩ Z, ε ∈ [0, δ] and ζ1, ζ2 ∈ Bδ(0). We diminish δ1 > 0

given in (A4) and ε1 > 0 in such a way that δ1 ≤ δ, ε1 ≤ δ, S

(
α

β0(α)

)
∈

Bδ(z0) and S

(
0k×1

εµ(α, ε)

)
∈ Bδ(0) for any α ∈ Bδ1(α0), ε ∈ (0, ε1]. Replacing

zi = S

(
αi

β0(αi)

)
, ζi = S

(
0k×1

εµ(αi, ε)

)
, i ∈ 1, 2 in (3.17) we obtain that

||r2(α1, ε) − r2(α2, ε)|| ≤
≤ õ(δ) ( ||α1 − α2|| + ||β0(α1) − β0(α2)|| ) + εLQ||µ(α1, ε) − µ(α2, ε)|| ,

for all α1, α2 ∈ Bδ1(α0) and ε ∈ (0, ε1]. By hypothesis, β0 is C1 in V and, by
Lemma 1 (conclusion (C6)), (α, ε) 7→ µ(α, ε) is Lipschitz with respect to α ∈ V
(with a Lipschitz constant that does not depend on ε). Hence for δ1, ε1 ≤ δ small
enough,

(3.18) ||r2(α1, ε) − r2(α2, ε)|| ≤ õ(δ)||α1 − α2||, α1, α2 ∈ Bδ1(α0), ε ∈ (0, ε1].

Therefore we have proved that r1 and r2 satisfy the Lipschitz conditions (3.16)
and, respectively, (3.18). In what follows we define some constant δ2 > 0, and
after we prove that it is the one that satisfies the requirements of (C3).

We diminish δ1 > 0 in such a way that there exists δ3 > 0 such that δ3 ≤ δ0 and
Bδ3(β0(α0)) ⊂ ∩

α∈Bδ1
(α0)

Bδ0(β0(α)). We choose δ2 > 0 so small that S−1(Bδ2(z0)) ⊂

Bδ1(α0) × Bδ3(β0(α0)). We diminish ε1 > 0, if necessary, such that zε ∈ Bδ2(z0)
for any ε ∈ (0, ε1]. For any ε ∈ (0, ε1] we claim that zε is the only zero of F (·, ε) in
Bδ2(z0). Assume by contradiction that there exists ε2 ∈ (0, ε1] such that zε2 and
z2 are two different zeros of F (·, ε2) in Bδ2(z0). Denoting α2 = πS−1z2 and β2 =
π⊥S−1z2 we have that β2 ∈ Bδ0(β0(α2)). By (C5) of Lemma 1, since β2 is a zero of

π⊥F

(
S

(
α2

·

)
, ε2

)
(using the notations introduced before, π⊥F̃ (α2, ·, ε2)), we
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must have that β2 = β(α2, ε2). Therefore αε2 and α2 are two different zeros of

πF̃ (·, β(·, ε2), ε2) in Bδ1(α0). We have the identity

1

ε
πF̃ (α, β(α, ε), ε) = Q̂(α) + r1(α, ε) + r2(α, ε) for all α ∈ V , ε ∈ (0, ε1].

We denote r(α, ε) = r1(α, ε)+r2(α, ε). Then assumption (A4), properties (3.16)
and (3.18) give

0 = ||Q̂(αε2) − Q̂(α2) + r(αε2 , ε2) − r(α2, ε2)|| ≥ (LQ̂ − o(ε2)/ε2 − õ(δ))||αε2 − α2||.
Since ε1 > 0 and δ > 0 are sufficiently small and 0 < ε2 ≤ ε1, the constant
(LQ̂−o(ε2)/ε2−õ(δ)) must be positive and, consequently, αε2 and α2 must coincide.
Hence also zε2 and z2 must coincide and we conclude the proof.

�

4. Bifurcation of T -periodic solutions from T -periodic families in
differential equations with nonsmooth Lipschitz right-hand

sides

In this section we consider the problem of existence and uniqueness of T -periodic
solutions for the T -periodic differential system

(4.19) ẋ = f(t, x) + εg(t, x, ε) ,

where f ∈ C2(R×Rn, Rn) and g ∈ C0(R×Rn×[0, 1], Rn) are T -periodic in the first
variable and g is locally uniformly Lipschitz with respect to its second variable.
For z ∈ Rn we denote by x(·, z, ε) the solution of (4.19) such that x(0, z, ε) = z.
We consider the situation when the unperturbed system

(4.20) ẋ = f(t, x) ,

has a non-degenerate (in a sense that will be precised below) family of T -periodic
solutions. The main tool for the proof of our main result is Theorem 1. We will
show that the assumptions of Theorem 1 can be expressed in terms of the function
g and of the solutions of the linear differential system

(4.21) ẏ = Dxf(t, x(t, z, 0))y.

Indeed we have the following theorem, which generalizes a related result by Roseau
and improves it with the uniqueness of the periodic solution. The above mentioned
result by Roseau is proved in a shorter way in [4]. Here we will use the same main
ideas from [4] to prove the next result.

Theorem 2. Assume that f ∈ C2(R × Rn, Rn) and g ∈ C0(R × Rn × [0, 1], Rn)
are T -periodic in the first variable, and that g is locally uniformly Lipschitz with
respect to the second variable. Suppose that the unperturbed system (4.20) satisfies
the following conditions.

(A6) There exist an invertible n × n real matrix S, an open ball V ⊂ Rk with
k ≤ n, and a C1 function β0 : V → Rn−k such that any point of the set



LIPSCHITZ GENERALIZATION OF MALKIN-LOUD RESULT 13

Z =
∪

α∈V

{
S

(
α

β0(α)

)}
is the initial condition of a T -periodic solution of

(4.20).
(A7) For each z ∈ Z there exists a fundamental matrix solution Y (·, z) of

(4.21) such that Y (0, z) is C1 with respect to z and such that the matrix
(Y −1(0, z) − Y −1(T, z)) S has in the upper right corner the null k × (n− k)
matrix, while in the lower right corner has the (n − k) × (n − k) matrix
∆(z) with det(∆(z)) ̸= 0.

We define the function G : V → Rk by

G(α) = π

∫ T

0

Y −1

(
t, S

(
α

β0(α)

))
g

(
t, x

(
t, S

(
α

β0(α)

)
, 0

)
, 0

)
dt.

Then the following statements hold.

(C7) For any sequences (φm)m≥1 from C0(R, Rn) and (εm)m≥1 from [0, 1] such
that φm(0) → z0 ∈ Z, εm → 0 as m → ∞ and φm is a T -periodic solution
of (4.19) with ε = εm for any m ≥ 1, we have that G(πS−1z0) = 0.

(C8) If G(α) ̸= 0 for any α ∈ ∂V and d(G, V ) ̸= 0, then there exists ε1 > 0
sufficiently small such that for each ε ∈ (0, ε1] there is at least one T -
periodic solution φε of system (4.19) such that ρ(φε(0),Z) → 0 as ε → 0.

In addition we assume that there exists α0 ∈ V such that G(α0) = 0, G(α) ̸= 0 for

all α ∈ V \ {α0} and d(G, V ) ̸= 0, and we denote z0 = S

(
α0

β0(α0)

)
. Moreover

we also assume:

(A8) There exists δ1 > 0 and LG > 0 such that

||G(α1) − G(α2)|| ≥ LG||α1 − α2||, for all α1, α2 ∈ Bδ1(α0),

(A9) For δ > 0 sufficiently small there exists Mδ ⊂ [0, T ] Lebesgue measurable
with mes(Mδ) = õ(δ) such that

||g(t, z1 + ζ, ε) − g(t, z1, 0) − g(t, z2 + ζ, ε) + g(t, z2, 0)|| ≤ õ(δ)||z1 − z2|| ,

for all t ∈ [0, T ] \ Mδ and for all z1, z2 ∈ Bδ(z0), ε ∈ [0, δ] and ζ ∈ Bδ(0).

Then the following conclusion holds.

(C9) There exists δ2 > 0 such that for any ε ∈ (0, ε1], φε is the only T -periodic
solution of (4.19) with initial condition in Bδ2(z0). Moreover φε(0) → z0

as ε → 0.

To prove the theorem we need three preliminary lemmas that are interesting by
themselves. For example, in Lemma 3 we prove the existence of the derivative
(in ε = 0) with respect to some parameter denoted ε of the solution of some
initial value problem without assuming that the system is C1. We also study the
properties of this derivative.
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Lemma 2. Let f ∈ C2(Rn, Rn) and K1, K2 be compact subsets of Rn. Then the
following inequality holds for all x0

1, x
0
2 ∈ K1, y1, y2 ∈ K2 and ε ∈ [0, 1].

(4.22) ||f(x0
1+εy1)−f(x0

1)−f(x0
2+εy2)+f(x0

2)|| ≤ O(ε)||x0
1−x0

2||+O(ε)||y1−y2|| .
In addition for m > 0 sufficiently small and u1, u2, v1, v2 ∈ Bm(0) ⊂ Rn we have

(4.23)

||f (x0
1 + v1 + εy0

1 + εu1) − f (x0
1 + v1) − εf ′(x0

1)y
0
1−

f (x0
2 + v2 + εy0

2 + εu2) + f (x0
2 + v2) + εf ′(x0

2)y
0
2|| ≤

[o(ε) + εO(m)] ||x0
1 − x0

2|| + O(ε)||v1 − v2||+
[o(ε) + εO(m)] ||y0

1 − y0
2|| + O(ε)||u1 − u2|| .

Proof. We define Φ(x0, y, ε) = f(x0 + εy) − f(x0) for all x0 ∈ coK1, y ∈ coK2

and ε ∈ [0, 1]. Relation (4.22) follows from the mean value inequality applied to
Φi with i ∈ 1, n and the following estimations.

∂Φi

∂x0
(x0, y, ε) = (fi)

′(x0 + εy) − (fi)
′(x0) = O(ε) and

∂Φi

∂y
(x0, y, ε) = ε(fi)

′(x0 + εy) = O(ε).

In order to prove relation (4.23) we define

Φ(x0, v, y0, u, ε) = f(x0 + v + εy0 + εu) − f(x0 + v) − εf ′(x0)y0 ,

for all x0 ∈ coK1, y0 ∈ coK2, u, v ∈ Bm(0) and ε ∈ [0, 1]. We apply again the mean
value inequality to the components Φi, i ∈ 1, n, using the following estimations.

∂Φi

∂x0
(x0, v, y0, u, ε) = (fi)

′(x0 + v + εy0 + εu) − (fi)
′(x0 + v) − ε(fi)

′′(x0)y0

= o(ε) + ε(fi)
′′(x0 + v)u

+ ε
[
(fi)

′′(x0 + v) − (fi)
′′(x0)

]
y0

= o(ε) + εO(m) + εo(m)/m = o(ε) + εO(m),

∂Φ

∂v
(x0, v, y0, u, ε) = (fi)

′(x0 + v + εy0 + εu) − (fi)
′(x0 + v) = O(ε),

∂Φi

∂y0
(x0, v, y0, u, ε) = ε(fi)

′(x0 + v + εy0 + εu) − ε(fi)
′(x0)

= ε(fi)
′(x0 + v + εy0 + εu) − ε(fi)

′(x0 + v)

+ ε(fi)
′(x0 + v) − ε(fi)

′(x0)

= o(ε) + εO(m),

∂Φ

∂u
(x0, v, y0, u, ε) = ε(fi)

′(x0 + v + εy0 + εu) = O(ε) .

2
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Lemma 3. We consider f ∈ C2(R × Rn, Rn) and g ∈ C0(R × Rn × [0, 1], Rn) a
locally uniformly Lipschitz function with respect to the second variable. For z ∈ Rn

and ε ∈ [0, 1], we denote by x(·, z, ε) the unique solution of

ẋ = f(t, x) + εg(t, x, ε) , x(0) = z,

and by y(t, z, ε) = [x(t, z, ε) − x(t, z, 0)] /ε (here ε ̸= 0 ). We assume that for a
given T > 0 there exist a compact set K ⊂ Rn with nonempty interior and δ > 0
such that x(t, z, ε) is well-defined for all t ∈ [0, T ], z ∈ K and ε ∈ [0, δ]. Then the
following statements hold.

(C10) There exists y(t, z, 0) = lim
ε→0

y(t, z, ε) being the solution of the initial value

problem

ẏ(t) = Dxf(t, x(t, z, 0))y + g(t, x(t, z, 0), 0) , y(0) = 0.

The above limit holds uniformly with respect to (t, z) ∈ [0, T ] × K.
(C11) The functions x, y : [0, T ] × K × [0, δ] → Rn are continuous and uniformly

Lipschitz with respect to their second variable.
(C12) In addition if there exists z0 ∈ int(K) such that assumption (A9) of Theo-

rem 2 holds with the same small δ > 0 as above, then

||y(t, z1 + ζ, ε) − y(t, z1, 0) − y(t, z2 + ζ, ε) + y(t, z2, 0)|| ≤ õ(δ)||z1 − z2|| ,
for all t ∈ [0, T ], z1, z2 ∈ Bδ(z0), ε ∈ [0, δ] and ζ ∈ Bδ(0).

Proof. (C10) We define f̃(t, z, ε) =
f(t, x(t, z, ε)) − f(t, x(t, z, 0))

x(t, z, ε) − x(t, z, 0)
for ε ̸= 0 and

f̃(t, z, 0) = Dxf(t, x(t, z, 0)). In this way we obtain the continuous function f̃ :
[0, T ] × K × [0, δ] → Rn. For ε ̸= 0, using the definitions of x(t, z, ε) and y(t, z, ε)
we deduce immediately that y(0, z, ε) = 0 and also that

(4.24) ẏ(t, z, ε) = f̃(t, x(t, z, ε))y(t, z, ε) + g(t, x(t, z, ε), ε).

Passing to the limit as ε → 0, we obtain that y(·, z, 0) is the solution of the
given initial value problem. Hence (4.24) holds also for ε = 0. Since the right
hand side of (4.24) is given by a continuous function, we have that the limit
y(t, z, 0) = lim

ε→0
y(t, z, ε) holds uniformly with respect to (t, z) ∈ [0, T ] × K.

(C11) The facts that the functions x, y : [0, T ]×K × [0, δ] → Rn are continuous,
and that x is Lipschitz with respect to its second variable can be obtained as a
corollary of the general theorem on the dependence of the solutions of an ordinary
differential equation on the parameters (see [2, Lemma 8.2]).

It remains to prove that y : [0, T ] × K × [0, δ] → Rn is uniformly Lipschitz with
respect to its second variable.

There exist compact subsets K1 and K2 of Rn such that x(t, z, ε) ∈ K1 and
y(t, z, ε) ∈ K2 for all (t, z, ε) ∈ [0, T ] × K × [0, δ].

Moreover the representation x(s, z, ε) = x(s, z, 0) + εy(s, z, ε) allows to use
Lemma 2, relation (4.22) with x0

1 = x(s, z1, 0), x0
2 = x(s, z2, 0), y1 = y(s, z1, ε),
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y2 = y(s, z2, ε) in order to obtain

∥f(t, x(t, z1, ε)) − f(t, x(t, z1, 0)) − f(t, x(t, z2, ε)) + f(t, x(t, z2, 0))∥ ≤
O(ε)∥x(t, z1, 0) − x(t, z2, 0)∥ + O(ε)∥y(t, z1, ε) − y(t, z2, ε)∥,

for all t ∈ [0, T ], z ∈ K and ε ∈ [0, δ]. This last inequality and the fact that g is
locally uniformly Lipschitz, used together with the representation

y(t, z, ε) =
1

ε

t∫

0

[f(s, x(s, z, ε)) − f(s, x(s, z, 0))] ds +

t∫

0

g(s, x(s, z, ε), ε)ds,

imply that

∥y(t, z1, ε) − y(t, z2, ε)∥ ≤ õ(δ)

t∫

0

∥y(s, z1, ε) − y(s, z2, ε)∥ ds

+õ(δ)

t∫

0

∥x(s, z1, ε) − x(s, z2, ε)∥ ds,

for all t ∈ [0, T ], z1, z2 ∈ K and ε ∈ [0, δ].
We use now the fact that the function x(t, z, ε) is Lipschitz with respect to z and
we deduce

∥y(t, z1, ε) − y(t, z2, ε)∥ ≤ õ(δ) ∥z1 − z2∥ + õ(δ)

t∫

0

∥y(s, z1, ε) − y(s, z2, ε)∥ ds.

Applying Grönwall lemma (see [13, Lemma 6.2] or [10, Ch. 2, Lemma § 11]) we
finally have for all t ∈ [0, T ], z1, z2 ∈ K, ε ∈ [0, δ], ||y(t, z1, ε) − y(t, z2, ε)|| ≤
õ(δ) ∥z1 − z2∥.

(C12) First we note that assumption (A9) of Theorem 2 and the fact that g
is locally uniformly Lipschitz with respect to the second variable assure that the
following relation holds

(4.25)
||g(t, z1 + ζ1, ε) − g(t, z1, 0) − g(t, z2 + ζ2, ε) + g(t, z2, 0)|| ≤
≤ õ(δ)||z1 − z2|| + õ(δ)||ζ1 − ζ2||,

for all t ∈ [0, T ]\Mδ, z1, z2 ∈ Bδ(z0), ε ∈ [0, δ] and ζ1, ζ2 ∈ Bδ(0). We introduce the

notations v(t, z, ζ) = x(t, z+ζ, 0)−x(t, z, 0), ζ̃(s, z, ζ, ε) = v(s, z, ζ)+εy(s, z+ζ, ε)
and u(t, z, ζ, ε) = y(t, z + ζ, ε) − y(t, z, 0). Since the function x(·, ·, 0) is C1, v is
Lipschitz with respect to z on [0, T ]×K ×Bδ(0) with some constant õ(δ), we have

u(t, z, ζ, ε) = y(t, z + ζ, ε) − y(t, z, 0)

=
1

ε

∫ t

0

[f(s, x(s, z + ζ, ε)) − f(s, x(s, z + ζ, 0)) − εDxf(s, x(s, z, 0))y(s, z, 0)] ds

+

∫ t

0

[g(s, x(s, z + ζ, ε), ε) − g(s, x(s, z, 0), 0)] ds.
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Our aim is to estimate a Lipschitz constant with respect to z of the function u on
[0, T ] × Bδ(z0) × Bδ(0) × [0, δ]. We will apply Lemma 2, relation (4.25), the fact
that g is locally uniformly Lipschitz, and using the following decompositions and
estimations that hold for (s, z, ζ, ε) ∈ [0, T ] × Bδ(z0) × Bδ(0) × [0, δ],

x(s, z + ζ, ε) = x(s, z, 0) + v(s, z, ζ) + εy(s, z, 0) + εu(s, z, ζ, ε),

x(s, z + ζ, 0) = x(s, z, 0) + v(s, z, ζ),

x(s, z + ζ, ε) = x(s, z, 0) + ζ̃(s, z, ζ, ε),

||v(t, z, ζ)|| ≤ õ(δ), ||u(t, z, ζ, ε)|| ≤ õ(δ), ||ζ̃(s, z, ζ, ε)|| ≤ δõ(δ),

we obtain

||u(t, z1, ζ, ε) − u(t, z2, ζ, ε)|| ≤
1

ε

∫ t

0

[o(ε) + εõ(δ)] ||x(s, z1, 0) − x(s, z2, 0)|| + O(ε)||v(s, z1, ζ) − v(s, z2, ζ)|| +

[o(ε) + εõ(δ)] ||y(s, z1, 0) − y(s, z2, 0)|| + O(ε)||u(s, z1, ζ, ε) − u(s, z2, ζ, ε)||ds +∫

(0,t)\Mδ

õ(δ)||x(s, z1, 0) − x(s, z2, 0)|| + õ(δ)||ζ̃(s, z1, ζ, ε) − ζ̃(s, z2, ζ, ε)||ds +

õ(δ)||z1 − z2||.
Now we use that some Lipschitz constants with respect to z for the functions x and
y on [0, T ]×Bδ(z0)×[0, δ] are õ(δ), while for the functions v on [0, T ]×Bδ(z0)×[0, δ]

and ζ̃ on [0, T ] × Bδ(z0) × Bδ(0) × [0, δ] are õ(δ), and finally we obtain that

||u(t, z1, ζ, ε) − u(t, z2, ζ, ε)|| ≤

õ(δ)||z1 − z2|| + õ(δ)

∫ t

0

||u(t, z1, ζ, ε) − u(t, z2, ζ, ε)||ds .

The conclusion follows after applying the Grönwall inequality.
�

Lemma 4. We consider the C1 function Y acting from Rn into the space of n×n

matrices, the C2 function P̃ : Rn → Rn and z∗ ∈ Rn such that P̃ (z∗) = 0. We

denote P : Rn → Rn the C1 function given by P (z) = Y (z)P̃ (z) for all z ∈ Rn.

Then DP (z∗) = Y (z∗)DP̃ (z∗), P is twice differentiable in z∗ and, for each i ∈ 1, n,
the Hessian matrix HPi(z∗) is symmetric.

Proof. We have DP (z) =

(
∂Y

∂z1

(z)P̃ (z), ...,
∂Y

∂zn

(z)P̃ (z)

)
+ Y (z)DP̃ (z) for all

z ∈ Rn. From this it follows the formula for DP (z∗) since P̃ (z∗) = 0.

In order to prove that P is twice differentiable in z∗, taking into account the

above expression of DP , it is enough to prove that for each i ∈ 1, n, z 7→ ∂Y

∂zi

(z)P̃ (z)

and z 7→ Y (z)DP̃ (z) are differentiable in z∗. The last map is C1, hence it remains
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to prove the differentiability only for the first one. We fix i ∈ 1, n. From the
relation

∂Y

∂zi

(z∗ + h)P̃ (z∗ + h) − ∂Y

∂zi

(z∗)P̃ (z∗) =

∂Y

∂zi

(z∗ + h)
(
P̃ (z∗ + h) − P̃ (z∗)

)
=

∂Y

∂zi

(z∗ + h)DP̃ (z∗) + o(h),

we deduce that z 7→ ∂Y

∂zi

(z)P̃ (z) is differentiable in z∗ and that

D

(
∂Y

∂zi

· P̃

)
(z∗) =

∂Y

∂zi

(z∗)DP̃ (z∗).

In order to prove that the Hessian matrix HPi(z∗) is symmetric, for every j, k ∈
{1, ..., n} we must prove that

∂2Pi

∂zj∂zk

(z∗) =
∂2Pi

∂zk∂zj

(z∗).

We denote by Yi(z) the i-th row of the n × n matrix Y (z). For all z ∈ Rn we have

∂Pi

∂zj

(z) = Yi(z)
∂P̃

∂zj

(z) +
∂Yi

∂zj

(z)P̃ (z).

Then

∂2Pi

∂zj∂zk

(z∗) =
∂Yi

∂zk

(z∗)
∂P̃

∂zj

(z∗) + Yi(z∗)
∂2P̃

∂zj∂zk

(z∗) +
∂Yi

∂zj

(z∗)
∂P̃

∂zk

(z∗) .

Since P̃ is C2 it is easy to check the symmetry of this last relation with respect to
(j, k). �

Proof of Theorem 2. We need to study the zeros of the function z 7→ x(T, z, ε)−
z , or equivalently of

F (z, ε) = Y −1(T, z)(x(T, z, ε) − z).

The function F is well defined at least for any z in some small neighborhood of Z
and any ε ≥ 0 sufficiently small. We will apply Theorem 1. We denote

P (z) = Y −1(T, z) (x(T, z, 0) − z) , Q(z, ε) = Y −1(T, z)y(T, z, ε),

where y(t, z, ε) = [x(t, z, ε) − x(t, z, 0)]/ε, like in Lemma 3. Hence F (z, ε) =
P (z) + εQ(z, ε).

The fact that f is C2 assures that the function z 7→ x(T, z, 0) is also C2 (see [27,
Ch. 4, § 24]). Since (see [10, Ch. III, Lemma § 12]) (Y −1(·, z))

∗
is a fundamental

matrix solution of the system

u̇ = −(Dxf(t, x(t, z, 0), 0))∗u ,

and f is C2, we have that the matrix function (t, z) 7→ (Y −1(t, z))
∗
is C1. Therefore

the matrix function (t, z) 7→ Y −1(t, z), and consequently also the function P are
C1.
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By Lemma 3 we now conclude that Q is continuous, locally uniformly Lipschitz
with respect to z, and

(4.26) Q(z, 0) =

∫ T

0

Y −1(s, z)g(s, x(s, z, 0), 0)ds.

Since, by our hypothesis (A6), x(·, z, 0) is T -periodic for all z ∈ Z we have that
x(T, z, 0) − z = 0 for all z ∈ Z, and consequently P (z) = 0 for all z ∈ Z. This
means that hypothesis (A1) of Theorem 1 holds. Moreover applying Lemma 4 we
have that

DP (z) = Y −1(T, z)

(
∂x

∂z
(T, z, 0) − In×n

)
for any z ∈ Z,

and P satisfies hypothesis (A3) of Theorem 1. But (∂x/∂z) (·, z, 0) is the normal-
ized fundamental matrix of the linearized system (4.21) (see [20, Theorem 2.1]).
Therefore (∂x/∂z) (t, z, 0) = Y (t, z)Y −1(0, z), and we can write

(4.27) DP (z) = Y −1(0, z) − Y −1(T, z) for any z ∈ Z.

Using our hypothesis (A7) we see that also assumption (A2) of Theorem 1 is
satisfied. From the definition of G and relation (4.26) we have that

G(α) = πQ

(
S

(
α

β0(α)

)
, 0

)
.

That is, the function denoted in Theorem 1 by Q̂ is here G, and it satisfies the hy-
potheses of Theorem 1. Moreover, note that when G satisfies (A8) then assumption
(A4) of Theorem 1 is fulfilled.

(C7) Follows from (C1) of Theorem 1.

(C8) Follows from (C2) of Theorem 1.

(C9) In order to prove the uniqueness of the T -periodic solution, it remains only
to check (A5) of Theorem 1. For doing this we show that the function (z, ζ, ε) ∈
Bδ(z0) × Bδ(0) × [0, δ] 7→ Q(z + ζ, ε) − Q(z, 0) is Lipschitz with respect to z with
some constant õ(δ). We write

Q(z + ζ, ε) − Q(z, 0) = Y −1(T, z + ζ) [y(T, z + ζ, ε) − y(T, z, 0)] +[
Y −1(T, z + ζ) − Y −1(T, z)

]
y(T, z, 0) .

It is known that for proving that a sum of two functions is Lipschitz with some
constant of order õ(δ), it is enough to prove that each function is Lipschitz with
such constant; while in order to prove that a product of two functions is Lipschitz
with some constant õ(δ), it is sufficient to prove that both functions are Lipschitz
and only one of them is bounded by some constant õ(δ) and Lipschitz with respect
to z with some constant õ(δ).

By Lemma 3 we know that the function z ∈ Bδ(z0) 7→ y(T, z, 0) is Lipschitz. The
fact that z 7→ Y −1(T, z) is C1 assures that (z, ζ) ∈ Bδ(z0)×Bδ(0) 7→ Y −1(T, z + ζ)
is Lipschitz with respect to z.
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From Lemma 3 we have that the function

(z, ζ, ε) ∈ Bδ(z0) × Bδ(0) × [0, δ] 7→ y(T, z + ζ, ε) − y(T, z, 0)

is bounded by some constant õ(δ) and Lipschitz with some constant õ(δ). Since
z 7→ Y −1(T, z) is C1, the same is true for the function

(z, ζ) ∈ Bδ(z0) × Bδ(0) 7→
[
Y −1(T, z + ζ) − Y −1(T, z)

]
.

Hence Q satisfies (A5) of Theorem 1 and the conclusion holds.
�

By using Theorem 2 we can finally prove the following Lipschitz analogue of the
results by Malkin [25], Loud [23] and Rhouma-Chicone [28].

Theorem 3. Assume that f ∈ C2(R × Rn, Rn) and g ∈ C0(R × Rn × [0, 1], Rn)
are T -periodic in the first variable, and that g is locally uniformly Lipschitz with
respect to the second variable. Assume that the unperturbed system (4.20) satisfies
the following conditions.

(A10) There exists an open ball U ⊂ Rk with k ≤ n and a function ξ ∈ C1(U, Rn)
such that for any h ∈ U the n × k matrix Dξ(h) has rank k and ξ(h) is the
initial condition of a T -periodic solution of (4.20).

(A11) For each h ∈ U the linear system (4.21) with z = ξ(h) has the Floquet
multiplier +1 with the geometric multiplicity equal to k.

Let u1(·, h), . . . , uk(·, h) be linearly independent T -periodic solutions of the adjoint
linear system

(4.28) u̇ = − (Dxf(t, x(t, ξ(h), 0)))∗ u,

such that u1(0, h), . . . , uk(0, h) are C1 with respect to h and define the function
M : U → Rk (called the Malkin’s bifurcation function) by

M(h) =

T∫

0




⟨u1(s, h), g(s, x(s, ξ(h), 0), 0)⟩
...

⟨uk(s, h), g(s, x(s, ξ(h), 0), 0)⟩


 ds.

Then the following statements hold.

(C13) For any sequences (φm)m≥1 from C0(R, Rn) and (εm)m≥1 from [0, 1] such
that φm(0) → ξ(h0) ∈ ξ(U), εm → 0 as m → ∞ and φm is a T -periodic
solution of (4.19) with ε = εm, we have that M(h0) = 0.

(C14) If M(h) ̸= 0 for any h ∈ ∂U and d(M,U) ̸= 0, then there exists ε1 > 0
sufficiently small such that for each ε ∈ (0, ε1] there is at least one T -
periodic solution φε of system (4.19) such that ρ(φε(0), ξ(U)) → 0 as ε → 0.

In addition we assume that there exists h0 ∈ U such that M(h0) = 0, M(h) ̸= 0
for all h ∈ U \ {h0} and d(M, U) ̸= 0. Moreover we assume that hypothesis (A9)
of Theorem 2 holds with z0 = ξ(h0) and that

(A12) There exists δ1 > 0 and LM > 0 such that

||M(h1) − M(h2)|| ≥ LM ||h1 − h2||, for all h1, h2 ∈ Bδ1(h0).
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Then the following conclusion holds.

(C15) There exists δ2 > 0 such that for any ε ∈ (0, ε1], φε is the only T -periodic
solution of (4.19) with initial condition in Bδ2(z0). Moreover φε(0) → ξ(h0)
as ε → 0.

Remark 1. The existence of k linearly independent T -periodic solutions of the
adjoint linear system (4.28) follows by hypothesis (A10) (see e.g. [10, Ch. III, § 23,
Theorem 2]). Indeed, we have that yi(t, h) = Dzx(t, ξ(h), 0)Dhi

ξ(h) for i ∈ 1, k are
solutions of (4.21) and they are linearly independent on the base of (A10). The
assertion follows by the fact that a linear system and its adjoint have the same
number of linearly independent solutions. Moreover, hypothesis (A11) assures that
there is no other T -periodic solution to (4.21) linearly independent of these.

Remark 2. When the function g is of class C1 and the zero h0 of M is simple,
all the hypotheses on g of the above theorem and the hypothesis (A12) on M are
automatically satisfied.

Proof. We apply Theorem 2. For the moment we describe the set Z that appear in
hypothesis (A6) as Z =

∪
h∈U

{ξ(h)} . First we find the matrix S such that hypothesis

(A7) holds. In order to achieve this, for each z ∈ Z we denote by U(t, z) some
fundamental matrix solution of (4.28) that has in its first k columns the T -periodic
solutions u1, . . . , uk and such that z 7→ U(0, z) is C1. Then the first k columns
of the matrix U(0, z) − U(T, z) are null vectors. The matrix Y (t, z) such that
Y −1(t, z) = [U(t, z)]∗ is a fundamental matrix solution of (4.21), i.e. of the system
(z = ξ(h) ∈ Z)

(4.29) ẏ = Dxf(t, x(t, ξ(h), 0))y.

Then the first k lines of the matrix Y −1(0, z) − Y −1(T, z) are null vectors. Since
the Floquet multiplier 1 of (4.21) has geometric multiplicity k we have that the
matrix Y −1(0, z)−Y −1(T, z) has range n−k. Hence this matrix has n−k linearly
independent columns. We claim that there exists an invertible matrix S such that
the matrix (Y −1(0, z) − Y −1(T, z)) S has in the first k lines null vectors and in the
lower right corner some (n − k) × (n − k) invertible matrix ∆(z). With this we
prove that (A7) holds. In order to justify the claim we note first that whatever the
matrix S would be, the first k lines of (Y −1(0, z) − Y −1(T, z)) S are null vectors.
Now we choose an invertible matrix S such that its last (n−k) columns are vectors
of the form

ei =




0(i−1)×1

1
0(n−i)×1


 , i ∈ 1, n

distributed in such a way that the n−k linearly independent columns of Y −1(0, z)−
Y −1(T, z) become the last n − k columns of (Y −1(0, z) − Y −1(T, z)) S. Now it is
easy to see that the (n − k) × (n − k) matrix from the lower right corner of
(Y −1(0, z) − Y −1(T, z)) S is invertible.
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Now we come back to prove (A6). By taking the derivative with respect to h ∈ U
of ẋ(t, ξ(h)) = f(t, x(t, ξ(h))) we obtain that Dξx(·, ξ(h)) · Dξ(h) is a matrix solu-
tion for (4.29). But x(·, ξ(h)) is T -periodic for any h ∈ U, therefore Dξx(·, ξ(h)) ·
Dξ(h) is T -periodic. This fact assures that each column of Dξ(h) is the initial
condition of some T -periodic solution of (4.29) and these T periodic solutions are
the columns of Y (t, ξ(h))Y −1(0, ξ(h))Dξ(h). Then Y (T, ξ(h))Y −1(0, ξ(h))Dξ(h) =
Dξ(h), that further gives [Y −1(0, ξ(h)) − Y −1(T, ξ(h))] SS−1Dξ(h) = 0. Hence the
columns of S−1Dξ(h) belong to the kernel of [Y −1(0, ξ(h)) − Y −1(T, ξ(h))] S. Since
(A7) holds we have that the kernel of [Y −1(0, ξ(h)) − Y −1(T, ξ(h))] S contains vec-
tors whose last n−k components are null. We deduce that there exists some k ×k
matrix, denoted by Ψ, such that

(4.30) S−1Dξ(h) =

(
Ψ

0(n−k)×k

)
.

Since by the assumption (A10) the matrix Dξ(h) has rank k and S−1 is invertible,
we have that the matrix S−1Dξ(h) should also have rank k, that is only possible if

(4.31) detΨ ̸= 0.

We fix some h∗ ∈ U and we denote α∗ = πS−1ξ(h∗). Using (4.30) and (4.31), and
applying the Implicit Function Theorem we have that there exists an open ball,

neighborhood of α∗, denoted V ⊂ Rk, and a C1 function h̃ : V → U such that

(4.32) πS−1ξ(h̃(α)) = α for any α ∈ V .

Now we define the C1 function β0 : V → Rn−k as β0(α) = π⊥S−1ξ(h̃(α)). Note

that S

(
α

β0(α)

)
= ξ(h̃(α)). Hence the assumption (A6) of Theorem 2 is satisfied

with S, V and β0 defined as above.
The bifurcation function G defined in Theorem 2 can be written using our no-

tations as

(4.33) G(α) = π

T∫

0

Y −1(s, ξ(h̃(α)))g(s, x(s, ξ(h̃(α)), 0))ds.

Since Y −1(s, ξ(h)) = [U(t, h)]∗ (see the beginning of the proof) we have that in the
first k lines of Y −1(s, ξ(h)) are the vectors (u1(s, h))∗, ... , (un(s, h))∗ and so

G(α) =

T∫

0




⟨
u1(s, h̃(α)), g(s, x(s, ξ(h̃(α)), 0), 0)

⟩

...⟨
uk(s, h̃(α)), g(s, x(s, ξ(h̃(α)), 0), 0)

⟩


 ds.

From here one can see that there is the following relation between G and the
Malkin bifurcation function M ,

(4.34) G(α) = M
(
h̃(α)

)
for any α ∈ V .

(C13) Follows from (C7) of Theorem 2.
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(C14) Without loss of generality (we can diminish U, if necessary) we can con-

sider that h̃ is a homeomorphism from V onto U and taking into account that C
is an invertible matrix by [21, Theorem 26.4] we have

deg(G, V ) = deg(M,U).

Thus (C14) follows applying conclusion (C8) of Theorem 2.

(C15) We need only to prove assumption (A8) of Theorem 2 provided that our
hypothesis (A12) holds. First, taking the derivative of (4.32) with respect to α and

using (4.30), we obtain that Dh̃(α∗) = Ψ−1, hence it is invertible and, moreover,

Lh = ∥Dh̃(α∗)∥/2 ̸= 0. We have that there exists δ > 0 sufficiently small such that

∥Dh̃(α) − Dh̃(α∗)∥ ≤ Lh for all α ∈ Bδ(α∗). Using the generalized Mean Value
Theorem (see [9, Proposition 2.6.5]), we have that

||h̃(α1) − h̃(α2)|| ≥ Lh||α1 − α2|| for all α1, α2 ∈ Bδ(α0).

Since C is invertible, M satisfies (A10) and (4.34), we deduce that G satisfies
hypothesis (A8) of Theorem 2.

�

5. Conclusions

In this paper we provide a perturbation result about the unique response of a
normally nondegenerate family of periodic solutions to a Lipschitz perturbation g.
Despite possible nondifferentiability of g we succedeed to construct suitable pro-
jectors that reduced the dimension of the analysis to the dimension of this family.
This suggests that, under the conditions of Theorem 3, the manifold of the fixed
points of the Poincaré map of the unperturbed system can be locally transformed
into an invariant manifold of the Poincaré map of the perturbed system. This fact
is well known for smooth differential equations (see e.g. Wiggins [31]), but we do
not know whether or not the latter is completely correct in the case where g is
only Lipschitz. Positive answer to this question could allow to access asymptotic
stability of periodic solutions given by Theorem 3.

Another question that this paper raises is whether assumption (A9) implies con-

tinuous differentiability of the bifurcation fuction Q̂, so that (A12) is just the
requirement for the derivative of the bifurcation function M to have all its eigen-
values in the left-half plane. This is the case in particular examples, but in general
the answer is unknown to us.
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