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Abstract. The aim of this paper is to study the periodic orbits of the
generalized van der Waals Hamiltonian system. The tool for studying such
periodic orbits is the averaging theory. Moreover, for this Hamiltonian
system we provide information on its C1 non–integrability, i.e., on the
existence of a second first integral of class C1.

1. Introduction and statement of the main results

We study the generalized van der Waals problem given by the Hamiltonian

(1) H =
1

2
(P 2

1 + P 2
2 + P 2

3 ) − 1√
Q2

1 + Q2
2 + Q2

3

+ (Q2
1 + Q2

2 + β2Q2
3),

depending on the parameter β ∈ R. This Hamiltonian is a generalization of
the Hamiltonian which studies the classical dynamics of a hydrogen atom in
the presence of uniform magnetic and quadrupolar electric field. Doing some
restrictions the motion of the system is described by a Hamiltonian system
with two degrees of freedom. For more details see [6, 7, 8, 9] and the references
quoted therein.

Particular cases connected with problems of physical interest are β = 0 the
Zeeman effect, and β =

√
2 which corresponds to the Van der Waals effect,

see Elipe et al. [4] and references therein. For the values β2 = 1/4, 1, 4 the
Hamiltonian system is integrable, see Farrelly et al. [5] and Ferrer et al. [3, 12].

Introducing the canonical change of coordinates given by the cylindrical
coordinates Q1 = R cos θ, Q2 = R sin θ, Q3 = Z the Hamiltonian (1) becomes

(2) H =
1

2
(P 2

R +
P 2

θ

R2
+ P 2

Z) − 1√
R2 + Z2

+ (R2 + β2Z2).

Since the momentum Pθ is a first integral of the Hamiltonian system asso-
ciated to the Hamiltonian (2), this Hamiltonian system can be reduced to a
system with two degrees of freedom. The dynamics of the so called polar prob-
lem (see Elipe [4]) is considered when Pθ = 0. In this case the Hamiltonian (2)
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reduces to

(3) H =
1

2
(P 2

R + P 2
Z) − 1√

R2 + Z2
+ (R2 + β2Z2),

Our main objective will be to prove analytically the existence of periodic
solutions of the Hamiltonian system associated to the Hamiltonian (3), and
as a corollary to provide information about the C1–non integrability of such
Hamiltonian system.

In this work we shall use as a main tool the averaging method of first order
to find analytically periodic orbits of the Hamiltonian system associated to
the Hamiltonian (2) with Pθ = 0. See the appendix for more details on the
averaging theory, see also some recent applications of this method to other
Hamiltonian systems like the ones studied in [10, 11]. One of the main difficul-
ties in practice for applying the averaging method is to express the differential
system into the normal form for applying the averaging theory, see the appen-
dix. The use of adequate variables in each situation can allow the application
of the averaging theory for finding periodic orbits.

For the Hamiltonian system associated to the Hamiltonian (2) with Pθ = 0
we have the following results.

Theorem 1. For every h < 0 the Hamiltonian system associated to the gen-
eralized van der Waals Hamiltonian H with Pθ = 0 given by (3) has a periodic
solution in the energy level H = h +

√
−2/h if β /∈ {±2, ±1/2}. Moreover,

this periodic solution is linear stable if β ∈ (−∞, −2) ∪ (−1/2, 1/2) ∪ (2, ∞),
and unstable if β ∈ (−2, −1/2) ∪ (2, 1/2).

Using the periodic orbits found in Theorem 1 we study the C1 non–integrability
in the Liouville–Arnold sense of the polar generalized van der Waals Hamilto-
nians.

Theorem 2. For the generalized van der Waals Hamiltonian H with Pθ = 0
given by (3) and β /∈ {±2, ±1/2} its associated Hamiltonian system cannot
have a C1 second first integral G such that the gradients of H and G are linearly
independent at each point of the periodic orbits found in Theorem 1.

Many times the study of the periodic orbits of a Hamiltonian system is made
numerically. In general to prove analytically the existence of periodic solutions
of a Hamiltonian system is a very difficult task, many times impossible to
do. Here, with the averaging theory we reduce this difficult problem for the
Hamiltonian system associated to the Hamiltonian (3) to find the zeros of a
non–linear system of two equations and two unknowns. We must mention
that the averaging theory for finding periodic solutions in general does not
provide all the periodic solutions of the system. For more information about
the averaging theory see the Appendix and the references quoted there.

The way that in this article we study the periodic orbits of a Hamiltonian
system, is very general and can be applied to arbitrary Hamiltonian systems.
Theorem 5 of the Appendix due to Poincaré gives the information about the
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existence of a C1 second first integral obtained once we know some periodic
orbits of a Hamiltonian system. This tool works for an arbitrary Hamiltonian
system.

We remark that there are very good theories for studying the existence of a
second meromorphic first integral in a Hamiltonian system like, Ziglin’s theory
[17] and the Morales–Ramis’s theory [13], but as far as we know the unique
result about the existence of a second C1 first integral is the one due to Poincaré
used in this paper.

The rest of the paper is dedicated to prove the previous two theorems.

2. Proof of the results

Proof of Theorem 1. The Hamiltonian (3) can be written as

(4) H =
1

2
(P 2

1 + P 2
2 ) − 1√

Q2
1 + Q2

2

+ (Q2
1 + β2Q2

2).

To avoid the difficulties due to the collision (i.e. Q1 = Q2 = 0) we do the
Levi–Civita regularization, doing the change of variables in the positions given
by (

Q1

Q2

)
=

(
q1 −q2

q2 q1

)(
q1

q2

)
,

then the induced change in the conjugate momenta is
(

P1

P2

)
=

2

q2
1 + q2

2

(
q1 −q2

q2 q1

)(
p1

p2

)
.

To complete the regularization it is necessary to rescale the time t taking as the
new time τ through dτ = 4dt/(q2

1 + q2
2). We apply these changes of variables

to the energy level of the Hamiltonian H = h with h < 0, and we introduce
the new Hamiltonian

(5) H∗ =
1

4
(q2

1 + q2
2)(H−h),

i.e.

H∗ =
1

2

(
p2
1 + p2

2

)
− h

2

q2
1 + q2

2

2
+

1

4

(
q2
1 + q2

2

)
((q2

1 − q2
2)

2 + 4β2q2
1q

2
2).

We note that we choose h < 0 because the Kepler problem given by the
Hamiltonian

H =
1

2
(P 2

1 + P 2
2 ) − 1√

Q2
1 + Q2

2

,

has its periodic orbits in the negative energy levels, and for small values of Q1

and Q2 the Hamiltonian (3) is close to the Kepler one.
If we do the canonical change of variables (q1, q2, p1, p2) → (x, y, X, Y ) given

by

q1 = 2c1/4x, q2 = 2c1/4y, p1 = 2c3/4X, p2 = 2c3/4Y,
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with c = −h/2 > 0 we obtain the regularized Hamiltonian

(6) H∗
1 =

1

2
(X2 + Y 2 + x2 + y2) + 4

(
x2 + y2

)
((x2 − y2)2 + 4β2x2y2).

Doing the rescaling (x, y,X, Y ) → (µx, µy, µX, µY ) and the denoting by
ε = µ4 the Hamiltonian (6) becomes

(7) H∗
2 =

1

2
(X2 + Y 2 + x2 + y2) + ε4

(
x2 + y2

)
((x2 − y2)2 + 4β2x2y2).

Finally doing the non–canonical change of variables

x = R1 cos θ1, X = R1 sin θ1, y = R2 cos(θ1 + θ2), Y = R2 sin(θ1 + θ2),

the Hamiltonian (7) becomes the first integral

(8)
H∗

3 =
1

2
(R2

1 + R2
2) + ε

(
R2

1 cos2 θ1 + R2
2 cos2(θ1 + θ2)

)(
R4

1 cos4 θ1

+2R2
1R

2
2(2β2 − 1) cos2(θ1 + θ2) cos2 θ1 + R4

2 cos4(θ1 + θ2)
)
.

of the following equations of motion

Ṙ1 = −ε8R1

(
3R4

1 cos4 θ1 + 2R2
1R

2
2

(
4β2 − 1

)
cos2 (θ1 + θ2) cos2 θ1

+R4
2(4β2 − 1) cos4 (θ1 + θ2)

)
sin θ1 cos θ1,

θ̇1 = −1 − ε8
(
3R4

1 cos4 θ1 + 2R2
1R

2
2(4β

2 − 1) cos2(θ1 + θ2) cos2 θ1

+R4
2

(
4β2 − 1

)
cos4 (θ1 + θ2)

)
cos2 θ1,

Ṙ2 = −ε8R2

(
R4

1

(
4β2 − 1

)
cos4 θ1 + 2R2

1R
2
2

(
4β2 − 1

)
cos2 (θ1 + θ2) cos2 θ1

+3R4
2 cos4 (θ1 + θ2)

)
sin (θ1 + θ2) cos(θ1 + θ2),

θ̇2 = ε8
(
3R4

1 cos6 θ1 − R2
1

(
R2

1 − 2R2
2

) (
4β2 − 1

)
cos2 (θ1 + θ2) cos4 θ1

+R2
2

(
R2

2 − 2R2
1

) (
4β2 − 1

)
cos4 (θ1 + θ2) cos2 θ1 − 3R4

2 cos6 (θ1 + θ2)
)
.

Taking the variable θ1 as the new time these four differential equations
reduce to the three equations

R′
1 = ε8R1

(
3R4

1 cos4 θ1 + 2R2
1R

2
2

(
4β2 − 1

)
cos2 (θ1 + θ2) cos2 θ1

+R4
2(4β2 − 1) cos4 (θ1 + θ2)

)
sin θ1 cos θ1 + O(ε2),

R′
2 = ε8R2

(
R4

1

(
4β2 − 1

)
cos4 θ1 + 2R2

1R
2
2

(
4β2 − 1

)
cos2 (θ1 + θ2) cos2 θ1

+3R4
2 cos4 (θ1 + θ2)

)
sin (θ1 + θ2) cos(θ1 + θ2) + O(ε2),

θ′
2 = −ε8

(
3R4

1 cos6 θ1 − R2
1

(
R2

1 − 2R2
2

) (
4β2 − 1

)
cos2 (θ1 + θ2) cos4 θ1

+R2
2

(
R2

2 − 2R2
1

) (
4β2 − 1

)
cos4 (θ1 + θ2) cos2 θ1 − 3R4

2 cos6 (θ1 + θ2)
)

+O(ε2),

where the prime denotes derivative with respect to θ1.
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Substituting the variable R2 =
√

2h∗ − R2
1 + O(ε) isolated from the first

integral level H∗
3 = h∗ > 0 into the previous three differential equations we

obtain a new reduction to the following two differential equations:
(9)

R′
1 = ε8

√
2h∗ − R2

1 cos (θ1 + θ2)
(
R4

1

(
4β2 − 1

)
cos4 θ1−

2R2
1

(
R2

1 − 2h∗) (4β2 − 1
)
cos2 (θ1 + θ2) cos2 θ1+

3
(
R2

1 − 2h∗)2 cos4 (θ1 + θ2)
)

sin (θ1 + θ2) + O(ε2)

= εF11(R1, θ2, θ1) + O(ε2),

θ′
2 = −ε8

(
3R4

1 cos6 θ1 + R2
1

(
4h∗ − 3R2

1

) (
4β2 − 1

)
cos2 (θ1 + θ2) cos4 θ1+(

3R4
1 − 8h∗R2

1 + 4h∗2
) (

4β2 − 1
)
cos4 (θ1 + θ2) cos2 θ1−

3
(
R2

1 − 2h∗)2 cos6 (θ1 + θ2)
)

+ O(ε2)

= εF12(R1, θ2, θ1) + O(ε2).

For ε ̸= 0 sufficiently small this differential system is in the normal form (16)
for applying to it the averaging theory described in Theorem 3. So using the
notation of Theorem 3 we have

f11 =
1

2π

∫ 2π

0
F11(R1, θ2, θ1)dθ1 = 2h∗R2

1

√
2h∗ − R2

1(4β
2 − 1) sin 2θ2,

f12 =
1

2π

∫ 2π

0
F12(R1, θ2, θ1)dθ1 = −4h∗(h∗ − R2

1)(6β2 − 9 + (4β2 − 1) cos 2θ2).

Solving the system f11(R1, θ2) = f12(R1, θ2) = 0 we get the solutions
(R∗

1, θ
∗
2) given by

(10)
(

0, ±1

2
arccos

3(2β2 − 3)

1 − 4β2

)
if and only if β ∈ [−2, −1] ∪ [1, 2],

(11) (
√

h∗, 0), (
√

h∗, π),

(12)
(√

h∗,
π

2

)
,

(√
h∗,

3π

2

)
,

(13)
(√

2h∗, ±1

2
arccos

3(2β2 − 3)

1 − 4β2

)
if and only if β ∈ [−2, −1] ∪ [1, 2].

If we compute the determinant

(14) det

(
∂(f1

1 , f2
1 )

∂(R1, θ2)

∣∣∣∣
(R1,θ2)=(R∗

1 ,θ∗
2)

)
̸= 0,

on the solutions (10), (11), (12) and (13) we obtain respectively

0,
−320h∗4(β2 − 1)(4β2 − 1),
64h∗4(β2 − 4)(4β2 − 1),

∞ if (β2 − 1)(β2 − 4) ̸= 0.
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By Theorem 3 only the solutions (11), (12) and (13) provide periodic so-
lutions of the differential system (9) when the corresponding determinant is
non–zero. We note that the solutions in (11) (respectively (12)) define a unique
periodic orbit, both orbits are different but their projection into the plane
(x, X) is a circle of radius

√
h∗ and into the plane (y, Y ) also is a circle of ra-

dius
√

h∗. The solutions in (13) define the same periodic orbit which projected
into the plane (x, X) is a circle of radius

√
2h∗ and into the plane (y, Y ) is

projected into the origin.
Now we shall study what of these three periodic solutions of the differential

system (9) provide periodic solutions for the van der Waals Hamiltonian system
with Hamiltonian (3).

The equality (5) writes as

1 =

√
−h

2
cos2 θ1(H − h),

1 =

√
−h

2
(H − h),

1 =
√

−2h cos2 θ1(H − h),

evaluated on the periodic solutions of the differential system (9) provided by
(11), (12) and (13) respectively. Therefore, only the periodic solution of the
differential system (9) given by (12) becomes a solution for the van der Waals
Hamiltonian system associated to the Hamiltonian H given by (3), because it
is the unique such that the Hamiltonian H is constant on it taken the value
h +

√
−2/h, recall that h < 0.

Since the eigenvalues of the Jacobian matrix which appears in (14) are

(15) ±8(h∗)2
√

(β2 − 4)(1 − 4β2),

by Theorem 3(c) it follows that the periodic solution given by (12) is linear
stable if β ∈ (−∞, −2)∪(−1/2, 1/2)∪(2, ∞), and unstable if β ∈ (−2, −1/2)∪
(2, 1/2). This completes the proof of the theorem. �
Proof of Theorem 2. By Theorem 1 we know that the generalized van der
Waals Hamiltonian system (3) at the energy levels h+

√
−2/h for all h < 0 has

a periodic solution if β /∈ {±2,±1/2} whose eigenvalues (15) or multipliers are
different from 1 almost for all h, see for more details the part of the appendix
between the two theorems that it contains. Hence, by Theorem 5 the proof of
the theorem follows. �

3. Appendix

Now we shall present the basic results from averaging theory that we need
for proving the results of this paper.

The next theorem provides a first order approximation for the periodic so-
lutions of a periodic differential system, for the proof see Theorems 11.5 and
11.6 of Verhulst [16].
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Consider the differential equation

(16) ẋ = εF1(t, x) + ε2R(t, x, ε), x(0) = x0,

with x ∈ D where D is an open subset of Rn, and t ≥ 0. Moreover we assume
that F1(t, x) is T periodic in t. Separately we consider in D the averaged
differential equation

(17) ẏ = εf1(y), y(0) = x0, ,

where

f1(y) =
1

T

∫ T

0
F1(t, y)dt.

Under certain conditions, see the next theorem, equilibrium solutions of the
averaged equation turn out to correspond with T–periodic solutions of equation
(17).

Theorem 3. Consider the two initial value problems (16) and (17). Suppose:
(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x2 are defined, continuous

and bounded by an independent constant ε in [0, ∞)×D and ε ∈ (0, ε0].
(ii) F1 is T–periodic in t (T independent of ε).
(iii) y(t) belongs to D on the interval of time [0, 1/ε].
Then the following statements hold.
(a) For t ∈ [0, 1/ε] we have that x(t) − y(t) = O(ε), as ε → 0.
(b) If p is a singular point of the averaged equation (17) and

det

(
∂f1

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T–periodic solution φ(t, ε) of equation (16) such that
φ(0, ε) → p as ε → 0.

(c) The stability or instability of the periodic solution φ(t, ε) is given by
the stability or instability of the singular point p of the averaged system
(17). In fact, the singular point p has the stability behavior of the
Poincaré map associated to the periodic solution φ(t, ε).

We point out the main facts in order to prove Theorem 3(c), for more details
see section 6.3 and 11.8 in [16]. Suppose that φ(t, ε) is a periodic solution of
(16) corresponding to y = p an equilibrium point of the averaged system (17).
Linearizing equation (16) in a neighborhood of the periodic solution φ(t, ε) we
obtain a linear equation with T -periodic coefficients

(18) ẋ = εA(t, ε)x, A(t, ε) =
∂

∂x
[F (1(t, x) − F2(t, x, ε)]|x=φ(t,ε).

We introduce the T -periodic matrices

B(t) =
∂F1

∂x
(t, p), B1 =

1

T

∫ T

0
B(t)dt, C(t) =

∫ t

0
(B(s) − B1)ds.
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From Theorem 3 we have

lim
ε→0

A(t, ε) = B(t),

and it is clear that B1 is the matrix of the linearized averaged equation. The
matrix C has average zero. The near identity transformation

(19) x 7−→ y = (I − εC(t))x,

permits to write (18) as

(20) ẏ = εB1y + ε[A(t, ε) − B(t)]y + O(ε2).

Notice that A(t, ε) − B(t) → 0 as ε → 0, and also the characteristic exponents
of equation (20) depend continuously on the small parameter ε. It follows
that, for ε sufficiently small, if the determinant of B1 is not zero, then 0 is not
an eigenvalue of the matrix B1 and then it is not a characteristic exponent of
(20). By the near-identity transformation we obtain that system (18) has not
multipliers equal to 1.

We shall summarize some facts on the Liouville–Arnold integrability theory
for Hamiltonian systems and on the theory of periodic orbits of differential
equations, for more details see [1] and subsection 7.1.2 of [2], respectively.
Here we only present these results for Hamiltonian systems of two degrees of
freedom.

A Hamiltonian system with Hamiltonian H of two degrees of freedom is
called integrable in the sense of Liouville–Arnold if it has a first integral G
independent of H (i.e. the gradient vectors of H and G are independent in
all the points of the phase space except perhaps in a set of zero Lebesgue
measure), and in involution with H (i.e. the parenthesis of Poisson of H and
G is zero).

A flow defined on a subspace of the phase space is complete if its solutions
are defined for all time.

Now are ready for stating the Liouville–Arnold’s Theorem restricted to
Hamiltonian systems of two degrees of freedom.

Theorem 4 (Lioville–Arnold). Suppose that a Hamiltonian system with two
degrees of freedom defined on the phase space M has its Hamiltonian H and the
function G as two independent first integrals in involution. If Ihc = { p ∈ M :
H(p) = h and C(p) = c} ̸= ∅ and (h, c) is a regular value of the map (H, G),
then the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the flow of
the Hamiltonian system.

(b) If the flow on a connected component I∗
hc of Ihc is complete, then I∗

hc is
diffeomorphic either to the torus S1 × S1, or to the cylinder S1 × R, or
to the plane R2. If I∗

hc is compact, then the flow on it is always complete
and I∗

hc ≈ S1 × S1.
(c) Under the hypothesis (b) the flow on I∗

hc is conjugated to a linear flow
either on S1 × S1, on S1 × R, or on R2.
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For an autonomous differential system, one of the multipliers is always 1,
and its corresponding eigenvector is tangent to the periodic orbit.

A periodic orbit of an autonomous Hamiltonian system always has two mul-
tipliers equal to one. One multiplier is 1 because the Hamiltonian system is
autonomous, and the other has again value 1 due to the existence of the first
integral given by the Hamiltonian.

Theorem 5 (Poincaré). If a Hamiltonian system with two degrees of freedom
and Hamiltonian H is Liouville–Arnold integrable, and G is a second first
integral such that the gradients of H and G are linearly independent at each
point of a periodic orbit of the system, then all the multipliers of this periodic
orbit are equal to 1.

Theorem 5 is due to Poincaré [15], see also [14]. It gives us a tool to study
the non Liouville–Arnold integrability, independently of the class of differen-
tiability of the second first integral. The main problem for applying this result
in a negative way is to find periodic orbits having multipliers different from 1.
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