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Abstract. We prove that the Kirchoff’s equations either are completely integrable, or
have at most four functionally independent polynomial first integrals.

1. Introduction and statement of the main results

Given a system of ordinary differential equations depending on parameters in general
is very difficult to recognize for which values of the parameters the equations have first
integrals because there are no satisfactory methods to answer this question.

In this paper we study the first integrals of the Kirchoff’s differential equations in R6

depending on six parameters which provide a model of an ellipsoidal rigid body submerged
in an ideal fluid, that is, they are derived under the assumption that the rigid body is
ellipsoidal and it is submerged in an infinitely large volume of irrotational, incompress-
ible, inviscid fluid that is at rest at infinity. Under circumstances in which viscous effects
are small, it is common to use these equations to describe the dominant dynamics of an
underwater vehicle which is ellipsoidal.

The Kirchoff’s differential equations appeared by first time in the book of Kirchoff [9].
These differential equations have been studied previously for several authors as Kozlov
and Onishchenko [11, 12, 13], Holmes, Jenkins and Leonard [8], see moreover the list of
references in these articles about this problem. Many different aspects of the motion of the
rigid body governed by the Kirchoff’s differential equations where studied in those papers,
but the question of its completely integrability using only polynomial first integrals was not
considered yet. Here we provide an answer to this question.

The motion of the rigid body has been considered from many other different points of
view, for instance many people study the motion of the rigid body fixed at a point, then
we get the classical Suslov [14], Chaplygin [3] and Veselov–Veselova [15] problems for the
rigid body or generalizations of these problems by Dragovic, Gajic and Jovanovic [6], and
many other models non–considered in this work, see for more details on the rigid body the
book of Kozlov [10].

Let p = (p1, p2, p3) and π = (π1, π2, π3) be the linear and angular momentum vectors.
Choosing the axes of the body-fixed frame to coincide with the principal axis of the ellipsoid,
this yields that the so-called added mass matrix is diagonal, i.e. M = diag (m1,m2,m3)
and the so-called added inertia matrix is diagonal, i.e. I = diag (I1, I2, I3). We recall that
each mass and inertia term is the sum of a component due to the body and a component
due to the fluid.
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Under these conditions, it was proved in [8] that Kirchoff’s equations have the form:

ṗ1 =
1

I3
p2π3 − 1

I2
p3π2,

ṗ2 =
1

I1
p3π1 − 1

I3
p1π3,

ṗ3 =
1

I2
p1π2 − 1

I1
p2π1,

π̇1 =
( 1

I3
− 1

I2

)
π2π3 +

( 1

m3
− 1

m2

)
p2p3,

π̇2 =
( 1

I1
− 1

I3

)
π3π1 +

( 1

m1
− 1

m3

)
p3p1,

π̇3 =
( 1

I2
− 1

I1

)
π1π2 +

( 1

m2
− 1

m1

)
p1p2.

(1)

They are defined in R6. Note that these differential equations depend on six parameters Ii

and mi for i = 1, 2, 3 and that due to physical constraints they are all positive.

It is well-known (see [1, 2, 4, 5, 8] and the references therein) that the Kirchoff equations
(1) have always the following three polynomial first integrals of degree two:

H1 =
1

2

3∑

i=1

1

Ii
π2

i +
1

2

3∑

i=1

1

mi
p2

i , H2 =

3∑

i=1

piπi, H3 =

3∑

i=1

p2
i ,

which are functionally independent for i = 1, 2, 3.

Given U an open set of R6, we say that a real function H : U → R non-constant on any
open subset of U is a first integral if it is constant on every solution of system (1) contained
in U .

The first integrals H1, . . . , Hr are functionally independent if the r × 6 matrix



∂H1/∂p1 · · · ∂H1/∂π3
... · · · ...

∂Hr/∂p1 · · · ∂Hr/∂π3


 (p, π)

has rank r at all points (p, π) ∈ R6 where they are defined with the exception (perhaps) of
a zero Lebesgue measure set.

One additional fourth polynomial first integral of degree two functionally independent
of the first three is known for the Kirchoff equation if the parameters satisfy the following
condition:

(2) m1I1(m3 − m2) + m2I2(m1 − m3) + m3I3(m2 − m1) = 0.

In this case it has the first integral

H4 = (I1 − I3)(I1 − I2)p
2
1 + I1I3(I1 − I2)π

2
2 + (I1 − I3)I1I2π

2
3.

Here and in what follows to simplify notation we will denote

αi =
1

Ii
, βi =

1

mi
, xi = pi, xi+3 = πi, i = 1, 2, 3.



INTEGRABILITY OF KIRCHOFF’S EQUATIONS 3

In these new notation we write system (1) as

ẋ1 = α3x2x6 − α2x3x5 = P1(x1, x2, x3, x4, x5, x6),

ẋ2 = α1x3x4 − α3x1x6 = P2(x1, x2, x3, x4, x5, x6),

ẋ3 = α2x1x5 − α1x2x4 = P3(x1, x2, x3, x4, x5, x6),

ẋ4 = (α3 − α2)x5x6 + (β3 − β2)x2x3 = P4(x1, x2, x3, x4, x5, x6),

ẋ5 = (α1 − α3)x6x4 + (β1 − β3)x3x1 = P5(x1, x2, x3, x4, x5, x6),

ẋ6 = (α2 − α1)x4x5 + (β2 − β1)x1x2 = P6(x1, x2, x3, x4, x5, x6).

(3)

We note that condition (2) in this new variables becomes

(4) α2α3(β2 − β3) + α1α2(β1 − β2) + α1α3(β3 − β1) = 0.

By definition the Kirchoff’s equations are completely integrable in an open set U if they
have 5 first integrals functionally independent in U .

Our first result on the integrability of the Kirchoff equations is the next one.

Theorem 1. The Kirchoff’s equations satisfying condition (2) are completely integrable.

The proof of Theorem 1 is given in section 2.

We define the associated vector field X to the differential system (3) as

X =
6∑

i=1

Pi(x1, x2, x3, x4, x5, x6)
∂

∂xi
.

A non–constant polynomial F ∈ C[x] is a Darboux polynomial of the vector field X if there
exists a polynomial K ∈ C[x] called the cofactor of F such that XF = KF . We say that
F is a proper Darboux polynomial if its cofactor is not identically zero, i.e., if F is not a
polynomial first integral of X .

Given the involution σ : C6 → C6 (i.e. a diffeomorphism such that σ2 is the identity)
defined by

σ(x1, x2, x3, x4, x5, x6) = (−x1, −x2, x3,−x4, −x5, x6)

and a function F : C6 → C we define F σ : C6 → C as F σ = σ∗F = F ◦ σ. We say that F is
σ-antisymmetric if F σ = −F .

Theorem 2. Consider F a proper Darboux polynomial of the vector field X with cofactor
K. If K is σ-antisymmetric then H = FF σ is a polynomial first integral of X .

When m1 = m2 = m3, i.e., β1 = β2 = β3 and I1 ̸= I2 and I3 ̸= I2 (i.e. α1 ̸= α2 and
α3 ̸= α2), then the differential system (3) has the proper Darboux polynomial

x4 −
√

α3 − α2√
α2 − α1

x6 with cofactor K = −
√

(α3 − α2)(α2 − α1)x5.

Note that Kσ = σ∗(K) =
√

(α3 − α2)(α2 − α1)x5 = −K and thus K is σ-antisymmetric.
Then by Theorem 2 system X has the polynomial first integral

H = FF σ = Fσ∗(F ) = −
(
x4 −

√
α3 − α2√
α2 − α1

x6

)(
x4 +

√
α3 − α2√
α2 − α1

x6

)

= −x2
4 +

α3 − α2

α2 − α1
x2

6.

The proof of Theorem 2 is given in section 3.



4 J. LLIBRE AND C. VALLS

The main result of this paper goes in the direction of trying to characterize the polynomial
first integrals of (3).

Theorem 3. The Kirchoff’s equations either satisfy condition (2), or have at most four
functionally independent polynomial first integrals.

Theorem 3 is proved in section 4.

We remark that from the proof of Theorem 3, the result of Theorem 3 can be stated for
local analytic first integrals instead of polynomial first integrals.

2. Proof of Theorem 1

The following result is due to Jacobi. For a proof in a more general setting see Theorem
2.7 of [7].

Theorem 4. Consider an analytic differential system in Rn of the form

(5)
dx

dt
= ẋ = P (x), x = (x1, . . . , xn) ∈ Rn,

with P (x) = (P1(x), . . . , Pn(x)). Assume that

n∑

i=1

∂Pi

∂xi
= 0 (i.e. it has zero divergence)

and that it admits n−2 first integrals, Ii(x) = ci with i = 1, . . . , n−2 functionally indepen-
dent. These integrals define, up to a relabeling of the variables, an invertible transformation
mapping from (x1, . . . , xn) to (c1, . . . , cn−2, xn−1, xn) given by

yi = Ii(x), i = 1, . . . , n − 2, yn−1 = xn−1, yn = xn.

Let ∆ be the Jacobian of the transformation

∆ = det




∂x1I1 ∂x2I1 · · · ∂xn−2I1

∂x1I2 ∂x2I2 · · · ∂xn−2I2
...

...
. . .

...
∂x1In−2 ∂x2In−2 · · · ∂xn−2In−2


 .

Then system (5) admits an extra first integral given by

In−1 =

∫
1

∆̃

(
P̃n dxn−1 − P̃n−1 dxn),

where the tilde denotes the quantities expressed in the variables (c1, . . . , cn−2, xn−1, xn).
Moreover this first integral is functionally independent with the previous n−2 first integrals,
that is, the system is completely integrable.

Proof of Theorem 1. It is immediate to verify that the Kirchoff equations (3) in R6 have
zero divergence because every Pi does not depend on xi. In the case of condition (2) the
Kirchoff equations have 4 = 6−2 first integrals functionally independent. So in this case the
Kirchoff equations satisfy the assumptions of Theorem 4. Therefore this case is completely
integrable. �
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3. Proof of Theorem 2

Before proving Theorem 2 we state and prove some auxiliary results and definitions.
Given an involution τ , a vector field X is said to be τ -equivariant if τ∗(X ) = X , where τ∗
is the push-forward associated to the diffeomorphism τ . We recall that the push-forward
τ∗(X ) = (DτX ) ◦ τ−1 = (DτX ) ◦ τ because τ is an involution. Here Dτ denotes the
differential of the function τ .

Lemma 5. The vector field X is σ-equivariant.

Proof. It follows by direct computations that DσX = X ◦ σ. �

Lemma 6. If F is a Darboux polynomial of a σ-equivariant vector field X with cofactor
K, then F σ is a Darboux polynomial of X with cofactor Kσ.

Proof. Since XF = KF , we have that σ∗(XF ) = σ∗(KF ). By the property of push-
forwards, we get

σ∗(X )σ∗(F ) = σ∗(KF ).

so σ∗(X )F σ = KσF σ. Finally, since X is σ-equivariant, σ∗(X ) = X and we get XF σ =
KσF σ as we wanted to prove. �

Proof of Theorem 2. Under the assumptions of Theorem 2, let K be the cofactor associated
to F , i.e. XF = KF with K ̸= 0. Moreover Kσ = −K, and thus XF σ = KσF σ = −KF σ.
Therefore

XH = X (FF σ) = (XF )F σ + F (XF σ) = KFF σ + F (−KF σ) = 0,

and consequently, H is a polynomial first integral. �

4. Proof of Theorem 3

We denote by Z+ the set of non–negative integers. The following result, due to Zhang
[16], will be used in a strong way in the proof of Theorem 3.

Theorem 7. For an analytic vector field X defined in a neighborhood of the origin in Rn

associated to system (5) with P (0) = 0, let λ1, . . . , λn be the eigenvalues of DP (0). Set

G =

{
(k1, . . . , kn) ∈ (Z+)n :

n∑

i=1

kiλi = 0,
n∑

i=1

ki > 0

}
.

Assume that system (5) has r < n functionally independent analytic first integrals Φ1(x), . . . ,
Φr(x) in a neighborhood of the origin. If the Z-linear space generated by G has dimension
r, then any nontrivial analytic first integral of system (5) in a neighborhood of the origin
is an analytic function of Φ1(x), . . . , Φr(x).

We call each element (k1, . . . , kn) ∈ G a resonant lattice of the eigenvalues λ1, . . . , λn.

Direct calculations show that the Kirchoff equations in (3) have nine planes of singulari-
ties, but we only use for proving our result the singularities of the plane S = (x1, 0, 0, x4, 0, 0).

At the singularity S = (x1, 0, 0, x4, 0, 0), the 6-tuple of eigenvalues µ = (µ1, . . . , µ6) of
the linear part of the Kirchoff equations in (3) are

(6)

(
0, 0, −

√
A1 − √

B1

2
,

√
A1 − √

B1

2
, −

√
A1 +

√
B1

2
,

√
A1 +

√
B1

2

)
,
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where

A1 = (α3(β1 − β2) + α2(β1 − β3))x
2
1 − (2α2

1 + α2α3 − α1(α2 + α3))x
2
4,

B1 = −4∆1 + A2
1,

with
∆1 = (α2(β1 − β2)x

2
1 + α1(α1 − α2)x

2
4)(α3(β1 − β3)x

2
1 + α1(α1 − α3)x

2
4).

From Theorem 7 we know that the number of functionally independent analytic first inte-
grals of the Kirchoff equations in (3) in a neighborhood of the singularities S1 is no more
than the number of linearly independent elements of the set

G1 =

{
(k1, . . . , kn) ∈ (Z+)6 :

6∑

i=1

kiµi = 0,

6∑

i=1

ki > 0

}
.

Consequently, the number of the functionally independent polynomial first integrals of the
Kirchoff equations in (3) are no more than the number of the linearly independent elements
of G1.

According to the eigenvalues (6) the resonant lattices satisfy

(7)

√
A1 −

√
B1(k3 − k4) +

√
A1 +

√
B1(k5 − k6) = 0.

This last equation has the following linearly independent non–negative solutions (k1, . . . , k6):

(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0) and (0, 0, 0, 0, 1, 1).

In order that equation (7) has other linearly independent non–negative integer solutions
different from the above list, we must have

(i) either (A1 − √
B1)(A1 +

√
B1) = 0;

(ii) or (A1 −√
B1)(A1 +

√
B1) ̸= 0 and

√
A1 − √

B1/
√

A1 +
√

B1 is a rational number.

Then ∆1 ̸= 0 and A1 ̸= 0 (otherwise
√

−√
B1/

√√
B1 cannot be a rational number).

Set √
A1 −

√
B1/

√
A1 +

√
B1 = m/n, m, n ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

∆1

A2
1

=
m2n2

(m2 + n2)2
,

where we have used the fact that B1 = A2
1 − 4∆1.

In case (i) and since αiβi > 0 for i = 1, 2, 3, we obtain the following independent condi-
tions:

α1 = α2 and β1 = β2,

α1 = α3 and β1 = β3.

In both cases we are inside the case (4).

In case (ii) ∆1/A
2
1 has the form m2n2/(n2 + m2)2 with m,n ∈ Z \ {0} coprime. So it

follows from the expressions of ∆1 and A1 that ∆1 should be a square of α2(β1 − β2)x
2
1 +

α1(α1 − α2)x
2
4 or of α3(β1 − β3)x

2
1 + α1(α1 − α3)x

2
4. Without loss of generality we set

(8) α3(β1 − β3)x
2
1 + α1(α1 − α3)x

2
4 = L2(α2(β1 − β2)x

2
1 + α1(α1 − α2)x

2
4),

and it is easy to check that A1/(α2(β1 − β2)x
2
1 + α1(α1 − α2)x

2
4) is a constant. Set

(9) A1 = K(α2(β1 − β2)x
2
1 + α1(α1 − α2)x

2
4).
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Then, from (8) and (9) we have

α3(β1 − β3) = L2α2(β1 − β2),

α1(α1 − α3) = L2α1(α1 − α2),

α3(β1 − β2) + α2(β1 − β3) = Kα2(β1 − β2),

−2α2
1 − α2α3 + α1(α2 + α3) = Kα1(α1 − α2),

(10)

where L/K = mn/(n2 + m2). Since αi ̸= 0 for i = 1, 2, 3 we get β1 = β2 = β3 and

α1 =
K + 2L2 ±

√
K2 − 4L2

2(1 + K + L2)
α2, α3 =

K + 4L2 + KL2 ∓
√

K2 − 4L2(L2 − 1)

2(1 + K + L2)
α2.

In all the cases we are inside condition (4).

In short, if cases (i) or (ii) hold then (4) is satisfied and by Theorem 1 the Kirchoff’s
equations are completely integrable. If cases (i) and (ii) do not hold then by Theorem 7 the
Kirchoff’s equations can have at most four analytic integrals in a neighborhood of a point
of S. Consequently the differential system (3) has at most four functionally independent
polynomial first integrals. This completes the proof of Theorem 3

Remark 8. By Theorem 7 applied to the singular point (x1, 0, 0, x4, 0, 0) the Kirchoff’s
equations have at most 4 polynomial first integrals. In case that they have exactly 4 poly-
nomial first integrals, the extra analytic first integral provided by Theorem 4 cannot be
defined at the singular point (x1, 0, 0, x4, 0, 0), otherwise we would have a contradiction with
Theorem 7.
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