DOI: [10.1063/1.4763464]

ANALYTIC NON-INTEGRABILITY OF THE SUSLOV PROBLEM

ADAM MAHDI¹ AND CLAUDIA VALLS²

ABSTRACT. In this work we consider the Suslov problem, which consists of a rotation motion of a rigid body, whose center of mass is located at one axis of inertia, around a fixed point O in a constant gravity field restricted to a nonholonomic constraint. The integrability and non-integrability has been established by a number of authors for the nongeneric values of $\mathbf{b}=(b_1,b_2,b_3)$ which is the unit vector along the line connecting the point O with the center of mass of the body. Here we prove the analytic non-integrability for the remaining (generic) values of \mathbf{b} .

1. Introduction

The Suslov problem is one of the most famous problems in nonholonomic dynamics with no shape space and was formulated in [6]. It is a generalized rigid body with some of its body angular velocity components set equal to zero, i.e., it consists of a rotational motion of a rigid body around a fixed point O in a constant gravity field when restricted by a non-holonomic constraint

$$\langle \mathbf{n}, \boldsymbol{\omega} \rangle = 0,$$

where $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3)$ is the body angular velocity, **n** is a vector fixed in the body and $\langle \cdot, \cdot \rangle$ denotes the standard metric in \mathbb{R}^3 . To be more precise, the equations of motion of the Suslov problem are

(1)
$$\mathbf{I}\dot{\omega} = \mathbf{I}\boldsymbol{\omega} \times \boldsymbol{\omega} + \varepsilon \boldsymbol{\gamma} \times \mathbf{b} + \lambda \mathbf{n}, \qquad \dot{\boldsymbol{\gamma}} = \boldsymbol{\gamma} \times \boldsymbol{\omega}, \quad \langle \mathbf{n}, \boldsymbol{\omega} \rangle = 0,$$

where λ is the Langrange multiplier; the diagonal matrix $\mathbf{I} = \mathrm{diag}(I_1, I_2, I_3)$ represents the inertia of the body; $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is the unit vector and $\mathbf{b} = (b_1, b_2, b_3)$ is the unit vector along the line connecting the point O with the center of mass of the body; ε is the product of the mass of the body and the gravity constant. We assume that $\mathbf{n} = (0, 0, 1)$, i.e., we assume that the center of mass is located at the third axis of inertia, and thus the equation of the constraint is $\omega_3 = 0$. The Suslov equations can be written as

(2)
$$\dot{\omega}_{1} = \frac{\varepsilon}{I_{1}} (\gamma_{2}b_{3} - \gamma_{3}b_{2}), \qquad \dot{\omega}_{2} = \frac{\varepsilon}{I_{2}} (\gamma_{3}b_{1} - \gamma_{1}b_{3}),$$
$$\dot{\gamma}_{1} = -\omega_{2}\gamma_{3}, \qquad \dot{\gamma}_{2} = \omega_{1}\gamma_{3}, \qquad \dot{\gamma}_{3} = \omega_{2}\gamma_{1} - \omega_{1}\gamma_{2},$$

where $I_1, I_2 > 0$. System (2) has two polynomial first integrals

(3)
$$\mathcal{F}_1 = \frac{1}{2}(I_1\omega_1^2 + I_2\omega_2^2) + \varepsilon(b_1\gamma_1 + b_2\gamma_2 + b_3\gamma_3) \quad \text{and} \quad \mathcal{F}_2 = \gamma_1^2 + \gamma_2^2 + \gamma_3^2.$$

The integrability of the Suslov problem and its generalization have been studied by a number of authors (see [3], [4], [5], [1], [8], [7] and the references therein). There are three known integrable cases of system (2), which are:

- (i) The Suslov case (see [6]), i.e., when $\varepsilon = 0$. Then $\mathcal{F}_3 = \omega_1$. This case was studied by Suslov in [6] without the assumption on the location of the center of mass, i.e., with **n** being arbitrary.
- (ii) The Kharlamova-Zabelina case (see [2]), i.e., when $\langle \mathbf{b}, \mathbf{n} \rangle = 0$. Then $\mathcal{F}_3 = I_1 \omega_1 b_1 + I_2 \omega_2 b_2$.

The second author is supported by the grants AGAUR PIV-DGR-2010 and by FCT through CAMGDS, Lisbon. $\label{eq:lisbon} {}^{1}$

²⁰¹⁰ Mathematics Subject Classification. 70F25, 70E40, 37J30.

Key words and phrases. Suslov problem, analytic integrability.

(iii) The Kozlov case, i.e., when **b** parallel to **n**, i.e., $b_1 = b_2 = 0$, and $I_1 = I_2$. Then $\mathcal{F}_3 = \omega_1 \gamma_1 + \omega_2 \gamma_2$ (see [3]).

There are also a number of non-integrability results. Namely, using different type of techniques such as the Moralis-Ramis theory, or the study of the connection between the properties of solutions on the complex time plane and the existence of first integrals it was proved in [8, 7] and [4] that when **b** is parallel to **n** only the case $I_1 = I_2$ admits an additional complex or real meromorphic first integral. When **b** is not parallel to **n** and $b_2 = 0$ it was proved in [5] and [4] that system (2) does not possess any third complex or real meromorphic first integral which is functionally independent of \mathcal{F}_1 and \mathcal{F}_2 . The main purpose of this paper is to study the integrability of the remaining case, i.e., when $\varepsilon b_2 b_3 \neq 0$. We note that if $\varepsilon \neq 0$, then with a rescaling of time we can always assume that $\varepsilon = 1$. Moreover, we note that system (2) is invariant with respect to the change of variables

$$\gamma_1 \to -\gamma_2$$
, $\gamma_2 \to -\gamma_1$, $\omega_1 \to \omega_2$, $\omega_2 \to \omega_1$, $I_2 \to I_1$, $I_1 \to I_2$, $b_2 \to -b_1$, $b_1 \to -b_2$.

Therefore we can also assume that $b_1 \neq 0$ otherwise with the above change we are in the case $b_2 = 0$, which was studied in [8, 7] and [4]. In short, we will consider the polynomial integrability of system (2) when $\varepsilon b_1 b_2 b_3 \neq 0$. The following theorem is the main result of the paper.

Theorem 1. If $\varepsilon b_1 b_2 b_3 \neq 0$, then system (2) does not admit any third analytic first integral which is functionally independent of \mathfrak{F}_1 and \mathfrak{F}_2 .

This theorem completes the characterization of the integrability of the Suslov problem in the analytic category. The article is organised as follows. In Section 2 we shortly review some of the definitions and results used in the paper. The proof of our main result is given in Section 3

2. Preliminaries

We consider polynomial differential systems of the form

(4)
$$\frac{d\mathbf{x}}{dt} = \dot{\mathbf{x}} = \mathbf{P}(\mathbf{x}), \quad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{C}^n,$$

with $\mathbf{P}(\mathbf{x}) = (P_1(\mathbf{x}), \dots, P_n(\mathbf{x}))$ and $P_i \in \mathbb{C}[x_1, \dots, x_n]$ for $i = 1, \dots, n$. As usual $\mathbb{C}[x_1, \dots, x_n]$ denotes the polynomial right over \mathbb{C} in the variables x_1, \dots, x_n . Here, t can be real or complex. We say that \mathcal{F} is a *first integral* of (4) if and only if \mathcal{F} is constant on the solution curves of (4). We associate to (4) a vector field \mathcal{X} as follows

$$\mathfrak{X} = P_1(\mathbf{x}) \frac{\partial}{\partial x_1} + \ldots + P_n(\mathbf{x}) \frac{\partial}{\partial x_n}.$$

Then if \mathcal{F} is differentiable, then it is a first integral of (4) if and only if $\mathfrak{XF}=0$. We say that \mathcal{F} is a polynomial, analytic or meromorphic first integral depending whether \mathcal{F} belongs to the corresponding category of functions. Also, we say that system (4) is weight-homogeneous if there exists $\mathbf{s}=(s_1,\ldots,s_n)\in\mathbb{N}^n$ and $d\in\mathbb{N}$ such that for an arbitrary $\alpha\in\mathbb{R}^+$, where \mathbb{R}^+ denote the set of positive real numbers, we have

$$P_i(\alpha^{s_1}x_1,\dots,\alpha^{s_n}x_n) = \alpha^{s_i-1+d}P_i(x_1,\dots,x_n)$$

for i = 1, ..., n. We call $\mathbf{s} = (s_1, ..., s_n)$ the weight-exponent of system (4) and d the weight degree with respect to the weight exponent \mathbf{s} . In the particular case that $\mathbf{s} = (1, ..., 1)$ system (4) is called a homogeneous polynomial differential system of degree d. We say that a polynomial $F(x_1, ..., x_n)$ is a weight-homogeneous polynomial with weight exponent $\mathbf{s} = (s_1, ..., s_5)$ and weight-degree d if

$$F(\alpha^{s_1}x_1,\ldots,\alpha^{s_n}x_n) = \alpha^d F(x_1,\ldots,x_n).$$

If $\mathbf{s} = (1, ..., 1)$ then we say that F is a homogeneous polynomial of degree d. The following well-known proposition reduces the study of the existence of an analytic first integral of a

weight-homogeneous polynomial differential system (4) to the study of the existence of a weight-homogeneous polynomial first integrals.

Proposition 1. Let H be an analytic function and let $H = \sum_k H_k$ be its decomposition into weight-homogeneous polynomials of weight degree k with respect to the weight exponent \mathbf{s} . Then H is an analytic first integral of the weight-homogeneous polynomial differential system (4) with weight exponent \mathbf{s} if and only if each weight-homogeneous part H_k is a first integral of system (4) for all k.

Introducing the change of variables

$$\begin{split} \Omega_1 &= \ell_1 \omega_1 + i \ell_2 \omega_2, \qquad \Omega_2 = \ell_1 \omega_1 - i \ell_2 \omega_2, \qquad \xi_1 = \gamma_1 + i \gamma_3, \qquad \xi_3 = \gamma_1 - i \gamma_3, \\ \text{where } i &= \sqrt{-1} \text{ and } \ell_1 = \sqrt{I_1} \text{ and } \ell_2 = \sqrt{I_2}, \text{ system (2) writes} \\ &\dot{\Omega}_1 = -\frac{i}{2\ell_2} (b_3 (\xi_1 + \xi_3) + i b_1 (\xi_1 - \xi_3)) + \frac{1}{2\ell_1} (2b_3 \gamma_2 + i b_2 (\xi_1 - \xi_3)), \\ &\dot{\Omega}_2 = \frac{i}{2\ell_2} (b_3 (\xi_1 + \xi_3) + i b_1 (\xi_1 - \xi_3)) + \frac{1}{2\ell_1} (2b_3 \gamma_2 + i b_2 (\xi_1 - \xi_3)), \\ &\dot{\Omega}_2 = \frac{i}{2\ell_2} (\Omega_1 - \Omega_2) - \frac{i \gamma_2}{2\ell_1} (\Omega_1 + \Omega_2), \\ &\dot{\eta}_2 = -\frac{i}{4\ell_1} (\xi_1 - \xi_3) (\Omega_1 + \Omega_2), \\ &\dot{\xi}_3 = -\frac{\xi_3}{2\ell_1} (\Omega_1 - \Omega_2) + \frac{i \gamma_2}{2\ell_2} (\Omega_1 + \Omega_2). \end{split}$$

The first integral \mathcal{F}_1 in these new variables becomes

$$\overline{\mathcal{F}}_1 = \mathcal{F}_1(\gamma_1, \gamma_2, \gamma_3, \Omega_1, \Omega_2) = \Omega_1 \Omega_2 + b_1(\xi_1 + \xi_3) + 2b_2 \gamma_2 - ib_3(\xi_1 - \xi_3).$$

The second integral \mathcal{F}_2 in these new variables becomes

$$\overline{\mathcal{F}}_2 = \mathcal{F}_2(\gamma_1, \gamma_2, \gamma_3, \Omega_1, \Omega_2) = \xi_1 \xi_3 + \gamma_2^2$$

System (5) is weight-homogeneous of weight exponent (1, 1, 2, 2, 2) and weight degree d = 2. By Proposition 1 the characterization of the polynomial first integral of weight exponent (1, 1, 2, 2, 2) and weight degree d = 2 of system (5) is sufficient to know all the analytic first integrals of system (5). Thus for each $n \ge 1$, we can express any analytic first integrals G as

(6)
$$G = \sum_{l_1 + l_2 + 2j_1 + 2j_2 + 2j_3 = n} G_{l_1, l_2, j_1, j_2, j_3} \Omega_1^{l_1} \Omega_2^{l_2} \xi_1^{j_1} \gamma_2^{j_2} \xi_3^{j_3},$$

where $G_{l_1,l_2,j_1,j_2,j_3} \in \mathbb{C}$. In the rest of this section we shall use that fact that the five dimensional system (5) possesses the two functionally independent polynomial first integrals $\overline{\mathcal{F}}_1$ and $\overline{\mathcal{F}}_2$ in order to reduce it to the three dimensional polynomial system. We shall restrict system (5) to the zero level of the first integral $\overline{\mathcal{F}}_2$. Hence, setting $\overline{\mathcal{F}}_2 = 0$ and solving for ξ_3 we get

$$\xi_3 = -\frac{\gamma_2^2}{\xi_1}.$$

Now introducing $\xi_3 = -\gamma_2^2/\xi_1$ into $\overline{\mathcal{F}}_1 = 0$ sand solving for Ω_1 we get

(8)
$$\Omega_1 = -\frac{1}{\Omega_2 \xi_1} \left(b_1(\xi_1^2 - \gamma_2^2) + 2b_2 \gamma_2 \xi_1 - ib_3(\xi_1^2 + \gamma_2^2) \right).$$

Let

(9)
$$S = ib_1(\xi_1^2 - \gamma_2^2) + b_3(\xi_1^2 + \gamma_2^2) + 2ib_2\xi_1\gamma_2, \\ S_1 = (ib_2\ell_2 - b_1\ell_1)(\xi_1^2 + \gamma_2^2) + b_3(2\ell_2\xi_1\gamma_2 + i\ell_1(\xi_1^2 - \gamma_2^2)).$$

Then system (5) with the restriction $\overline{\mathcal{F}}_1 = \overline{\mathcal{F}}_2 = 0$ and with a rescaling of time by setting $dt = \ell_1 \ell_2 \Omega_2 \xi_1 d\tau$ becomes

(10)
$$\dot{\Omega}_{2} = 2\Omega_{2}\xi_{1}S_{1},
\dot{\xi}_{1} = 2\xi_{1}\left(i(\ell_{1}\xi_{1} - i\ell_{2}\gamma_{2})S - \xi_{1}(\ell_{1}\xi_{1} + i\ell_{2}\gamma_{2})\Omega_{2}^{2}\right),
\dot{\gamma}_{2} = \ell_{2}(\xi_{1}^{2} + \gamma_{2}^{2})\left(S - i\xi_{1}\Omega_{2}^{2}\right).$$

where the dot denotes derivative with respect to τ . Then if we denote by $\overline{G} = \overline{G}(\Omega_2, \xi_1, \gamma_2)$ the restriction of G given in (6) to ξ_3 and Ω_1 as in (7) and (8) we get that \overline{G} is a first integral of system (10) and is of the form

$$\overline{G} = \sum_{l_1 + l_2 + 2j_1 + 2j_2 + 2j_3 = n} \overline{G}_{1,2,3} \Omega_2^{l_2 - l_1} (b_1(\xi_1^2 - \gamma_2^2) + 2b_2 \gamma_2 \xi_1 - ib_3(\xi_1^2 + \gamma_2^2))^{l_1} \xi_1^{j_1 - j_3 - l_1} \gamma_2^{j_2 + 2j_3},$$

where $\overline{G}_{1,2,3} = (-1)^{l_1+j_3} G_{l_1,l_2,j_1,j_2,j_3} \in \mathbb{C}$.

3. Proof of the main result

It follows from Section 2 that to prove Theorem 1 it is sufficient to show that system (10) has no first integral of the form (11). For each $n \ge 1$, we can express it as

$$G = \sum_{k=-[n/2]}^{[n/2]} G_k(\xi_1, \gamma_2) \Omega_2^k,$$

where as usual $[\cdot]$ denotes the integer part function. Without loss of generality we can assume that G has no constant term. We note that G_k is a polynomial in the variable γ_2 and a rational function with respect to the variable ξ_1 . Clearly, G is a polynomial in the variable γ_2 and a rational function in the variables ξ_1 and Ω_2 . To prove Theorem 1 it is enough to show that $G_k = 0$ for each $k = -[n/2], \ldots, [n/2]$. If G is a first integral system (10) it must satisfy

(12)
$$\frac{\partial G}{\partial \Omega_2} \dot{\Omega}_2 + \frac{\partial G}{\partial \xi_1} \dot{\xi}_1 + \frac{\partial G}{\partial \gamma_2} \dot{\gamma}_2 = 0.$$

Setting

(13)
$$\mathcal{A}[f_j] = \mathcal{S}\left[\ell_2(\xi_1^2 + \gamma_2^2)\frac{\partial f_j}{\partial \gamma_2} + 2i\xi_1(\ell_1\xi_1 - i\ell_2\gamma_2)\frac{\partial f_j}{\partial \xi_1}\right] + 2j\xi_1\mathcal{S}_1f_j,$$

and

$$\mathcal{B}[f_j] = -i\ell_2(\xi_1^2 + \gamma_2^2)\xi_1 \frac{\partial f_j}{\partial \gamma_2} - 2\xi_1^2(\ell_1 \xi_1 + i\ell_2 \gamma_2) \frac{\partial f_j}{\partial \xi_1},$$

computing the different coefficients of Ω_2^j in (12), we obtain

(14)
$$\mathcal{A}[G_j] = 0, \quad j = -n, -n+1,$$

$$\mathcal{A}[G_j] + \mathcal{B}[G_{j-2}] = 0, \quad j = -n+2, \dots, n,$$

$$\mathcal{B}[G_j] = 0, \quad j = n-1, n.$$

We consider a preliminary result.

Lemma 2. Let S and S_1 be as in (9), then S does not divide S_1 .

Proof. Setting S = 0 and solving with respect to ξ_1 we get

$$\xi_1 = \frac{\gamma_2}{b_1 - ib_3} \left(-b_2 \pm \sqrt{b_1^2 + b_2^2 + b_3^3} \right).$$

Note that since $b_1, b_3 \in \mathbb{R}$, ξ_1 is well defined. Now introducing ξ_1 in S_1 we obtain

$$\frac{2\gamma_2^2}{(b_1 - ib_3)^2} \sqrt{b_1^2 + b_2^2 + b_3^2} \left(b_2 \ell_1 (b_3 + ib_1) + \ell_2 (b_2^2 + ib_1b_3 + b_3^2) + \sqrt{b_1^2 + b_2^2 + b_3^2} (ib_2 \ell_2 - (b_1 - ib_3)\ell_1) \right).$$

Solving it with respect to b_1 we get

$$b_1 = \pm i\sqrt{b_2^2 + b_3^2}$$
 and $b_1 = \frac{1}{I_1}[ib_2\sqrt{I_1I_2} \pm b_3\sqrt{I_1(I_2 - I_1)}],$

which is not possible since $b_j \in \mathbb{R}$ for j = 1, 2, 3 and $I_1, I_2 > 0$.

Lemma 3. Let $l_1 \neq l_2$ and f_j be a polynomial in the variable γ_2 and a rational function with respect to the variable ξ_1 . Then condition $\mathcal{A}[f_j] = 0$ implies

$$f_j = \begin{cases} 0, & \text{for } j \in \mathbb{Z} \setminus \{0\}, \\ \text{constant}, & \text{for } j = 0. \end{cases}$$

Proof. Let $l_1 \neq l_2$ and $j \in \mathbb{Z} \setminus \{0\}$. From $\mathcal{A}[f_j] = 0$ we have that

(15)
$$8 \left[\ell_2(\xi_1^2 + \gamma_2^2) \frac{\partial f_j}{\partial \gamma_2} + 2i\xi_1(\ell_1\xi_1 - i\ell_2\gamma_2) \frac{\partial f_j}{\partial \xi_1} \right] + 2j\xi_1 S_1 f_j = 0.$$

Since by Lemma 2 S does not divide S_1 , in view of (15) we get that S must divide f_j . Therefore we can write $f_j = S^m g_j$ for some $m \ge 1$ and g_j is not divisible by S. Then g_j satisfies

(16)
$$m \mathcal{S} \left[\ell_2(\xi_1^2 + \gamma_2^2) \frac{\partial g_j}{\partial \gamma_2} + 2i\xi_1(\ell_1 \xi_1 - i\ell_2 \gamma_2) \frac{\partial g_j}{\partial \xi_1} \right] + G_j g_j = 0,$$

where

$$\begin{split} G_{j} &= -2 \big(b_{1} j l_{1} \xi_{1}^{3} + b_{1} j l_{1} \xi_{1} \gamma_{2}^{2} - 2 b_{1} m l_{1} \xi_{1}^{2} \gamma_{2} + i b_{1} m l_{2} \xi_{1}^{2} \gamma_{2} + 2 i b_{1} m l_{2} \xi_{1} \gamma_{2}^{2} + i b_{1} m l_{2} \gamma_{2}^{3} - i b_{2} j l_{2} \xi_{1}^{3} \\ &- i b_{2} j m_{2} \xi_{1} \gamma_{2}^{2} + 2 b_{2} m l_{1} \xi_{1}^{3} - i b_{2} m l_{2} \xi_{1}^{3} - 2 i b_{2} l l_{2} \xi_{1}^{2} \gamma_{2} - i b_{2} m l_{2} \xi_{1} \gamma_{2}^{2} - i b_{3} j l_{1} \xi_{1}^{3} + i b_{3} j l_{1} \xi_{1} \gamma_{2}^{2} \\ &- 2 b_{3} j l_{2} \xi_{1}^{2} \gamma_{2} - 2 i b_{3} m l_{1} \xi_{1}^{2} \gamma_{2} - b_{3} m l_{2} \xi_{1}^{2} \gamma_{2} - 2 b_{3} m l_{2} \xi_{1} \gamma_{2}^{2} - b_{3} m l_{2} \gamma_{2}^{3} \big). \end{split}$$

Since g_j is not divisible by S, then G_j must be divisible by S, i.e.

$$G_i = S(\alpha_1 \xi_1 + \alpha_2 \gamma_2 + \alpha_3),$$

for some $\alpha_i \in \mathbb{C}$, i = 1, 2, 3. Then introducing G_j in (16), and after simplifying by S, we get

$$m\left[\ell_2(\xi_1^2+\gamma_2^2)\frac{\partial g_j}{\partial \gamma_2}+2i\xi_1(\ell_1\xi_1-i\ell_2\gamma_2)\frac{\partial g_j}{\partial \xi_1}\right]+(\alpha_1\xi_1+\alpha_2\gamma_2+\alpha_3)g_j=0.$$

Solving it we obtain

$$g_j = K_j \bigg(\frac{l_2^2 \xi_1^2 - 2i l_1 l_2 \xi_1 \gamma_2 - l_2^2 \gamma_2^2}{\xi_1} \bigg) e^{-\frac{\xi_1 h(\xi_1, \gamma_2)}{2m \sqrt{l_1^2 - l_2^2} (l_2^2 \xi_1^2 - 2i l_1 l_2 \xi_1 \gamma_2 - l_2^2 \gamma_2^2)}} \,,$$

where K_i is any smooth function in the variable $(l_2^2\xi_1^2 - 2il_1l_2\xi_1\gamma_2 - l_2^2\gamma_2^2)/\xi_1$ and

$$h_1 = -2\alpha_3 \sqrt{l_1^2 - l_2^2} (l_1 \xi_1 - i l_2 \gamma_2) - \left(l_2 (\xi_1^2 - \gamma_2^2) - 2i l_1 \xi_1 \gamma_2 \right) \left(i \alpha_2 \sqrt{l_1^2 - l_2^2} \log \alpha_1 \right)$$

$$- 2i (\alpha_2 l_1 + i \alpha_1 l_2) \log \left(\frac{-2i \sqrt{l_1^2 - l_2^2} \xi_1 - 2i (l_1 \xi_1 - i l_2 \gamma_2)}{\sqrt{x_1}} \right).$$

Since $m \geq 1$, $l_1 \neq l_2$, $l_1 l_2 \neq 0$ and g_j must be a polynomial in the variable γ_2 and a rational function with respect to the variable ξ_1 , we must have $\alpha_1 = \alpha_2 = \alpha_3 = 0$. But then $G_j = 0$, which is not possible. Hence, $g_j = 0$ which yields $f_j = 0$. Now assume j = 0. From $\mathcal{A}[f_0] = 0$ after simplifying by \mathcal{S} , we have that

(17)
$$\ell_2(\xi_1^2 + \gamma_2^2) \frac{\partial f_0}{\partial \gamma_2} + 2i\xi_1(\ell_1 \xi_1 - i\ell_2 \gamma_2) \frac{\partial f_0}{\partial \xi_1} = 0.$$

Solving it we obtain

(18)
$$f_0 = K_0 \left(\frac{l_2^2 \xi_1^2 - 2i l_1 l_2 \xi_1 \gamma_2 - l_2^2 \gamma_2^2}{\xi_1} \right).$$

where K_j is any smooth function. Since f_0 must be a polynomial in the variable γ_2 and a Laurent polynomial with respect to the variable ξ we must have that K_0 is a polynomial. In view of equation (11), we get that f_0 is of the form

$$(19) f_0 = \sum_{2l_2+2j_1+2j_2+2j_3=n} \overline{G}_{1,2,3} (b_1(\xi_1^2 - \gamma_2^2) + 2b_2\gamma_2\xi_1 - ib_3(\xi_1^2 + \gamma_2^2))^{l_2} \xi_1^{j_1-j_3-l_2} \gamma_2^{j_2+2j_3}.$$

Then *n* must even, and comparing (18) and (19) if we set $j_3 + l_2 - j_1 = p$, we must have $2l_2 + j_2 + 2j_3 = 2p$. This implies, $2j_3 + 2l_2 - 2j_1 = 2l_2 + j_2 + 2j_3$ which yields $-2j_1 = j_2$, i.e. $j_1 = j_2 = 0$. Hence, if we denote $G_{l_2,l_2,0,0,j_3} = \tilde{G}_{l_2,,j_3}$ we get

$$\begin{split} f_0 &= \sum_{2l_2 + 2j_3 = n} (-1)^{j_3 + l_2} \tilde{G}_{l_2, j_3} (b_1(\xi_1^2 - \gamma_2^2) + 2b_2 \gamma_2 \xi_1 - ib_3(\xi_1^2 + \gamma_2^2))^{l_2} \xi_1^{-j_3 - l_2} \gamma_2^{2j_3} \\ &= \frac{(-1)^{n/2}}{\xi_1^{n/2}} \sum_{l_2 = 0}^{n/2} \tilde{G}_{l_2, \frac{n-2l_2}{2}} (b_1(\xi_1^2 - \gamma_2^2) + 2b_2 \gamma_2 \xi_1 - ib_3(\xi_1^2 + \gamma_2^2))^{l_2} \gamma_2^{n-2l_2}. \end{split}$$

Comparing with (18) we obtain that if f_0 is not a constant then

$$(l_2^2\xi_1^2 - 2il_1l_2\xi_1\gamma_2 - l_2^2\gamma_2^2)^{n/2} = \sum_{l_2=0}^{n/2} \bar{G}_{l_2,l_2,\frac{n-2l_2}{2}}(b_1(\xi_1^2 - \gamma_2^2) + 2b_2\gamma_2\xi_1 - ib_3(\xi_1^2 + \gamma_2^2))^{l_2}\gamma_2^{n-2l_2},$$

which is not possible (note that $b_1b_2b_3 \neq 0$). This concludes the proof of the lemma.

Lemma 4. Let $l_1 = l_2$ and f_j be a polynomial in the variable γ_2 and a rational function with respect to the variable ξ_1 . Then condition $\mathcal{A}[f_j] = 0$ implies

$$f_j = \begin{cases} 0, & for \quad j \in \mathbb{Z} \setminus \{0\}, \\ constant, & for \quad j = 0. \end{cases}$$

Proof. Let $l_1 = l_2$ and $j \in \mathbb{Z} \setminus \{0\}$. From $\mathcal{A}[f_j] = 0$ and after simplifying by $l_2(\xi_1 - i\gamma_2)$ we have that

$$\mathbb{S}\left[(\xi_1+i\gamma_2)\frac{\partial f_j}{\partial \gamma_2}+2i\xi_1\frac{\partial f_j}{\partial \xi_1}\right]+2j\xi_1\big((ib_2-b_1)(\xi_1+i\gamma_2)+ib_3(\xi_1-i\gamma_2)\big)f_j=0.$$

Solving it we get

$$\begin{split} f_j &= K_j \Big(\frac{x_2 + ix_1}{\sqrt{x_1}}\Big) e^{-ij\tan^{-1}\left(\frac{-2b_2\xi_1^2 + b_3(\xi_1 - i\gamma_2)^2 + 2b_1\xi_1(\gamma_2 + i\xi_1)}{2(b_2 - b_3)\xi_1((i\xi_1 + \gamma_2) + b_1(3\xi_1^2 - 2i\xi_1\gamma_2 - \gamma_2^2))}\right)} \\ &\frac{(5b_1 + 4ib_2 - 3ib_3)\xi_1^2 + 2(-2ib_1 + b_2 - 2b_3)\xi_1\gamma_2 - (b_1 - ib_3)\gamma_2^2)}{\xi_1^2((b_1 - ib_3)\xi_1^2 + 2b_2\xi_1\gamma_2 - (b_1 + ib_3)\gamma_2^2)^{j/2}} \end{split}$$

Since f_j must be a polynomial in the variable γ_2 and a rational function with respect to the variable ξ_1 and $b_1b_2b_3 \neq 0$ we must have $f_j = 0$. Now assume j = 0. From $\mathcal{A}[f_0] = 0$ after simplifying by $l_2\mathcal{S}(\xi_1 - i\gamma_2)$, we have that

(20)
$$(\xi_1 + i\gamma_2) \frac{\partial f_0}{\partial \gamma_2} + 2i\xi_1 \frac{\partial f_0}{\partial \xi_1} = 0.$$

Solving it we get

$$f_0 = K_0 \left(\frac{(\gamma_2 + i\xi_1)^2}{\xi_1} \right),$$

where K_j is any smooth function. Since f_0 must be a polynomial in the variable γ_2 and a rational function with respect to the variable ξ_1 we must have that K_0 is a polynomial. Proceeding as in the proof of Lemma 3 we get that either f_0 is constant or

$$(\gamma_2 + i\xi_1)^n = \sum_{l_2=0}^{n/2} \bar{G}_{l_2, l_2, \frac{n-2l_2}{2}} (b_1(\xi_1^2 - \gamma_2^2) + 2b_2\gamma_2\xi_1 - ib_3(\xi_1^2 + \gamma_2^2))^{l_2}\gamma_2^{n-2l_2}.$$

But this last case is not possible and thus f_0 is constant. This concludes the proof of the lemma.

Proof of Theorem 1. We first show by backwards induction that $G_j = 0$ for $j = -n, \ldots, -1$. For j = -n we need to solve $\mathcal{A}[G_{-n}] = 0$, and it follows from Lemmas 3 and 4 that $G_{-n} = 0$. Then using that $\mathcal{B}[0] = 0$ by induction we obtain that for any $j = -n, \ldots, -1$, the coefficient of Ω_2^j in (12) satisfies that $\mathcal{A}[G_j] = 0$. Then the same arguments that we used for G_{-n} imply that $G_j = 0$ for $j = -n, \ldots, -1$. Moreover, G_0 satisfies that $\mathcal{A}[G_0] = 0$ and again by Lemmas 3 and 4 we get that G_0 is a constant. Since we can always assume that G has no constant term, then $G_0 = 0$. Note that $\mathcal{B}[0] = 0$ and by induction we obtain that for any $j = 1, \ldots, n$, the coefficient of Ω_2^j in (12) satisfies $\mathcal{A}[G_j] = 0$. Again by Lemmas 3 and 4, we get $G_j = 0$ for $j = 1, \ldots, n$. This completes the proof of the theorem. \square

4. Acknowledgment

The authors would like to thank Prof. Andrzej Maciejewski for pointing out the remaining case in the integrability of the Suslov problem.

References

- Y.N. Fedorov, A.J. Maciejewski, and M. Przybylska, The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions, Nonlinearity 22 (2009), no. 9, 2231– 2250
- [2] E. I. Kharlamova-Zabelina, Rapid rotation of a solid body about a fixed point with non-holonomic constraints, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 12 (1957), 25–34.
- [3] V.V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Results in Mathematics and Related Areas (3), vol. 31, Springer-Verlag, Berlin, 1996.
- [4] A. J. Maciejewski and M. Przybylska, Non-integrability of the Suslov problem, Regul. Chaotic Dyn. 7 (2002), no. 1, 73–80.
- [5] Andrzej J. Maciejewski and Maria Przybylska, Nonintegrability of the Suslov problem, J. Math. Phys. 45 (2004), no. 3, 1065–1078.
- [6] G.K. Suslov, Theoretical mechanics., Gostehizdat, vol. 107.
- [7] S. L. Ziglin, On the absence of a real-analytic first integral in some problems of dynamics, Funktsional. Anal. i Prilozhen. 31 (1997), no. 1, 3–11, 95.
- [8] S.L. Ziglin, On the absence of an additional first integral in the special case of the G. K. Suslov problem, Uspekhi Mat. Nauk 52 (1997), no. 2(314), 167–168.

 $^1\mathrm{North}$ Carolina State University, Raleigh, NC, 27695-8205, USA $E\text{-}mail\ address:}$ amahdi@ncsu.edu

 $^1{\rm Faculty}$ of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

²DEPARTAMENTO DE MATEMÁTICA, INSTITUTO SUPERIOR TÉCNICO, 1049-001 LISBOA, PORTUGAL *E-mail address*: cvalls@math.ist.utl.pt

