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Resumo

O estudo dos pontos singulares em campos vetoriais analiticos é um problema quase com-
pletamente resolvido. O tnico caso que ainda permanece insolivel é o caso monodroémico,
em que as oOrbitas circundam a singularidade. Em sistemas diferenciais analiticos, se p
¢é singularidade monodrémica, entao p ou é um centro, ou é um foco. O problema do
centro-foco consiste em determinar condig¢oes que diferenciem os casos em que p é um

foco, daqueles em que p é um centro.

O tema central desta dissertacao é a investigacao do problema do centro-foco em
sistemas diferenciais analiticos com singularidade nilpotente. Este problema ¢é bastante
estudado, uma vez que ainda nao existe um algoritmo eficiente para este caso, tal como

ocorre em sistemas com singularidades nao degeneradas.

Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas
normais e aborda o problema da maneira cléssica, dividindo-o na investigacao da mono-
dromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com

singularidades nilpotentes como limite de sistemas com singularidades nao degeneradas.
A fim de avaliarmos sua eficiéncia e compreendermos as possiveis obstrugoes envolvi-

das, aplicamos os métodos a familias concretas de sistemas diferenciais.

Palavras-chave: Problema do Centro-Foco; Constantes de Lyapunov; Singularidades

Nilpotentes; Monodromia.
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Abstract

The study of singular points in planar analytic vector fields is a problem almost completely
solved. The only case that remains open is the monodromic one, in which the orbits turn
around the singularity. In analytic differential systems, if p is a monodromic singular
point, then p is either a center or a focus. The center-focus problem consists in determining

conditions for distinguishing between a center and a focus.

The main purpose of this work is the investigation of the center-focus problem in
analytic differential systems with nilpotent singular points. This problem is still widely
studied, since there is no algorithm for such case, comparable to the Lyapunov method

for the case of non-degenerate singularities.

We studied two different methods. The first makes use of the normal form theory and
deals with the problem in the classic way, splitting it up in two parts: the investigation
of the monodromy and the study of the stability. The latter investigates the differential
analytic systems with nilpotent singular points as limit of differential systems with non-

degenerate singularities.

In order to evaluate the efficiency and understand possible obstructions, we applied

the two techniques to concrete families of differential systems.

Key words: The Center-Focus Problem; Lyapunov Constants; Nilpotent Singularities;

Monodromy.
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Introducao

A caracterizacao local dos retratos de fase de campos vetoriais planares é um dos
problemas classicos da teoria qualitativa das equagoes diferenciais ordinarias (EDQO’s).
Este problema esta quase completamente resolvido, restando essencialmente o caso em que
a singularidade nao tem diregoes caracteristicas (monodromia). Em sistemas diferenciais

analiticos, se p € monodromico, entdo p ou é um centro, ou é um foco - cf. [33].

Considere o sistema diferencial analitico no plano:

{ & = P(z,y),
g =Q,y),
e seja p um ponto singular isolado deste sistema.

O problema do centro-foco consiste em determinar condig¢oes que diferenciem os casos

em que p é um foco dos casos em que p é um centro - cf. |28, 38|.

A investigacao do problema do centro-foco pode ser dividida em trés casos, de acordo

com o tipo de singularidade:

e Pontos singulares nao degenerados: o problema do centro-foco foi teoricamente
solucionado por Poincaré [45] e Lyapunov [36]. Entretanto, obstrug¢oes computa-
cionais e de suficiéncia ainda nao permitem obter uma solucao geral para familias
concretas de sistemas diferenciais, & excecao dos campos vetoriais quadraticos de
grau 2 - cf. [10, 21];

e Pontos singulares degenerados nilpotentes: neste caso, o problema do centro-

foco usualmente é dividido em duas partes, o problema da monodromia, que foi



solucionado por Andreev - cf. [3]|, em 1958, e o problema da estabilidade, resolvido
por Moussu - cf. [41], em 1982. Tal como no caso anterior, obstrugoes computa-
cionais e de suficiéncia dificultam a investigacao de centros nilpotentes em sistemas
diferenciais concretos. Este caso é um dos mais investigados até hoje, com grande

niamero de artigos publicados a respeito - cf. [1, 2, 23, 25, 29];

e Pontos singulares degenerados com parte linear identicamente nula: ainda
é um caso em aberto. Os resultados obtidos se referem a familias especificas de
sistemas diferenciais e acredita-se que uma solucao geral ainda esta longe de ser
alcangada - cf. |28, 24, 29|.

Nesta dissertagao, vamos discutir o problema do centro-foco em sistemas com singular-
idades isoladas do tipo nilpotente, apresentando exemplos e discutindo as obstrugoes en-
contradas. Os demais casos também serao apresentados, porém, de maneira mais sucinta,

com a apresentacao de alguns resultados relevantes.
A dissertagao esta organizada da seguinte forma:

No CAPITULO 1, introduzimos notagoes, apresentamos defini¢goes basicas tais como
secao transversal, monodromia, e a classificacao de pontos singulares, dentre outros. Além
disso, descrevemos as formas normais e técnicas de blow-up. O objetivo deste capitulo é

fornecer as ferramentas necessérias ao desenvolvimento realizado nos capitulos posteriores.

O CAPITULO 2 é dedicado ao problema do centro-foco em sistemas diferenciais
analiticos com singularidades nao degeneradas e singularidades linearmente nulas. Apre-
sentamos importantes conceitos e resultados, como as constantes de Lyapunov, ferramenta
fundamental no estudo do problema do centro-foco em sistemas com pontos singulares
nao degenerados, e o Teorema de Bautin - cf. [10], que fornece solugao para o problema do
centro-foco em campos quadraticos planares. Alguns resultados referentes ao problema
do centro-foco em sistemas com singularidades linearmente nulas também sao brevemente

discutidos.

O caso nilpotente ¢ investigado em detalhes no CAPITULO 3, com a apresentacio de
dois métodos. A técnica desenvolvida por Alvarez & Gasull - cf. [1, 2|, que faz uso da
teoria das formas normais e da técnica de blow-up (1,n)-quasehomogéneo, dentre outros,
fornece demonstragoes mais elegantes para os teoremas de Andreev - cf. [3| (problema

da monodromia) e de Moussu - cf. [41] (problema da estabilidade). Outra abordagem,



devida a Giacomini, Giné & Llibre - cf. [29], utiliza a aproximacao de sistemas diferenciais

com centro nilpotente por sistemas com centros lineares.

No CAPITULO 4, as técnicas estudadas no terceiro capitulo sdo aplicadas em sis-
temas concretos, possibilitando avaliar sua eficacia, bem como identificar as dificuldades

encontradas.

Ao final da dissertagao, sao feitas algumas consideracoes finais, e apresentadas as

referéncias bibliogréaficas utilizadas na pesquisa.






Capitulo

1

Elementos da teoria qualitativa das

EDO’s no plano

Nesse capitulo, apresentamos conceitos e resultados da teoria qualitativa das EDO’s no
plano, necessarios para a investigacao do problema do foco centro, tema dessa dissertagao.
Alguns topicos sao apresentados de maneira detalhada, enquanto em outros, fornecemos

referéncias para maiores detalhes.

1.1 Campos vetoriais e pontos singulares

Definicao 1.1.1. Seja A um subconjunto aberto de R™. Um campo vetorial de classe C*
em A ¢ uma aplicacio X : A — R, de classe C*, onde k é um inteiro positivo, +00, ou

w, e C¥ denota o conjunto das funcoes analiticas.

As curvas © = @(t), t € I C R, que s@o solugoes da equagao diferencial
= X(z), (1.1.1)

sao chamadas de curvas integrais do campo vetorial X. Observe que em (1.1.1), z € A

e & = dx/dt, As variaveis = e t sdo chamadas respectivamente de variavel dependente
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e variavel independente da equagao diferencial. Usualmente, ¢t é designado como tempo.
No caso em que X = X (z) independe de ¢, dizemos que a equagao diferencial (1.1.1) é

auténoma.

Um campo vetorial planar X pode ser representado por meio do seguinte operador

diferencial

0 0
X=X1—+Xo—
181’1+ 281’2’

definido no conjunto das fungoes de classe C", r > 1, isto é, dada f € C", r > 1, temos

. 9F of
Xf=% 0x1 + XQB:Q’

representando a derivada de f o ¢, para qualquer solugao ¢ de (1.1.1), com ¢(t) = = =

(21, 22).

Definicao 1.1.2. Seja X : A C R? — R? um campo vetorial no plano. Considere o
conjunto 2 = {(t,z) € R x A;t € I}. Chamamos de fluro de X a aplicacao ¢ : Q@ — A
definida por ¢(t,x) = @.(t), onde I indica o intervalo mazximal nao degenerado para o

qual @, (t) € curva integral de X.

Se 2 =R x A entao o fluro de X € dito fluxo global.

Em [49], encontramos a prova das propriedades abaixo listadas. As duas primeiras nos
garantem que as aplicagoes ¢, fluxos de um campo vetorial X definem uma estrutura de

grupo a um parametro de transformacoes:

hd gp(t + S,.T) - ¢<t7¢(87x)>;

e p(—t,x)= (W(t’x))_l'

Do Teorema de Existéncia e Unicidade das Equacoes Diferenciais Ordinarias segue
que, para cada x € A existe um aberto I, no qual a solu¢gao maximal ¢,, do campo X, é

tnica e estd definida, além disso, ¢, (0) = .

Finalmente, a continuidade do fluxo com respeito as condigoes iniciais. Seja 2 =
{(t,z) :x € Aet € I,}. O conjunto ¢ um aberto de R? e o fluxo ¢ : O — R?, do
campo X de classe C", dado por ¢(t,z) = @, (t) é de classe C".
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Definicao 1.1.3. A imagem da curva integral de X pelo ponto P, isto €, o conjunto

vp = {p(t, P),t € Ip}, € chamada de érbita de X por P.

Definicao 1.1.4. O conjunto aberto A, dominio do campo X, € denominado de espaco
de fase de X. O espaco de fase de X, munido da decomposi¢ao em orbitas do campo, €

chamado de retrato de fase de X.

Definicao 1.1.5. Um campo vetorial X da forma X : R? — R? € linear se for da forma:

X (x,y) = (ax + by, cx + dy) ,

onde a,b,c,d € R.

Definicao 1.1.6. Seja o sistema de equagoes diferenciais no plano de classe C”, com

r>1 our =w (analitico), onde P,Q € C"

. = P Y )
t =Py (1.1.2)
g =Q(,y),
E seja
X = Ple,y) 2 1 Qa.y) L (1.13)
= Y or Y oz -1
o campo vetorial associado a (1.1.2), com p ponto singular de X. Dizemos que
opr oP
2. P a—y(p)
DX(0,0) = (1.1.4)
0Q, . 0Q

5 P a—y(p)
€ a parte linear do campo vetorial X em p.

Definicao 1.1.7. Uma orbita v de um campo vetorial X € dita periddica se existe T > ()
tal que y(t+71) = ~(t), Vt € R. Se 7 for tal que v(t1) # v(t2), para [t; — to| < T, entdo T

€ chamado de periodo de .
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Definicao 1.1.8. Uma orbita periodica v de um campo vetorial X € chamada de ciclo
limite se existe uma vizinhanga V' de vy, tal que v seja isolada, isto €, € a unica orbita

fechada de X que intercepta V.

Definicao 1.1.9. Seja x € A. Dizemos que x € um ponto:

o reqular, se X (x) #0;
o singular, ou uma singularidade, se X (x) = 0.

Definigao 1.1.10. Seja p um ponto singular de um campo vetorial da forma (1.1.3), de

classe C", comr > 1 our = w (analitico). O ponto singular p é denominado:

(a) nao degenerado, se 0 nao é um autovalor de DX (p);

(b) degenerado, se DX (p) € degenerada, isto é, seu determinante € nulo. Um ponto
singular degenerado € chamado de:
(b.1) degenerado elementar, se apenas um dos autovalores de DX (p) for nulo;
(b.2) nilpotente , se os dois autovalores de DX (p) sao nulos, mas DX (p) # 0;
(b.3) linearmente nulo, se DX (p) for identicamente nula;

(c) centro, se existe uma vizinhanga aberta V' de p tal que, todas as orbitas de V\{p}

sao orbitas periodicas. A singularidade € dita centro linear se ambos os autovalores

de DX (p) sao nimeros imagindrios puros nao nulos.

(d) foco, se existe uma vizinhanca aberta V de p tal que, todas as orbitas de V\{p}

espiralam para p quando t — +00 ou t — —o0.

Definigao 1.1.11. Seja p um ponto singular de um campo vetorial da forma (1.1.3), de
classe C", com r > 1 ou r = w (analitico). O ponto singular p é dito monodréomico se

nao existem orbitas tendendo a, ou deixando p com um dngulo bem definido.

Quando o campo vetorial X é analitico, um ponto monodrémico é sempre um centro

ou um foco. Este fato foi demonstrado no inicio da década de noventa do século passado,
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e é consequéncia dos Teoremas de Finitude dos Ciclos Limites de Ecalle e Ilyashenko - cf.
[33].

Se o campo vetorial nao for analitico, podem existir pontos monodrémicos que sao

pontos de acumulacao de ciclos limites, como ilustra o exemplo a seguir.
Exemplo 1.1.12. [44/

Seja o sistema diferencial dado por:

(

y =x+yF(zy), se(z,y)#(0,0),

| (0,0), caso contrdrio.

1
x? 492

onde F(z,y) = /2% + y?sen ( ).
Portanto, a origem é um ponto singular do sistema.

Em coordenadas polares, temos

7 =r?sen(-),

parar >0, comr7r =0 emr =0.

Logo os circulos I'(n) = {r = —,n € N*} sao trajetorias do sistema, uma vez que
nm

temos 7 = 0 ao longo deles.

. 1 i . i
Além disso, para nt < — < (n+ 1), seque que 1 < 0, se n € impar e 7 > 0, se n
r
¢ par. Isto é, as trajetdrias entre os circulos I'(n) espiralam para dentro ou para fora de

um destes circulos.
Assim, I'(n) sao ciclos limites que se acumulam na origem.

Definicao 1.1.13. Um ponto singular p de um campo vetorial de classe C", com r > 1
ou r = w (analitico) é chamado de foco fraco quando p é um foco cuja parte linear é um

centro, isto €, se for um centro linear que efetivamente é um foco do sistema.
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Nas defini¢coes que seguem abaixo X indica um campo de vetores de classe C", com

r > 1 our = w (analitico), definido no aberto A C R?.

Definicao 1.1.14. Uma aplicacao f : A — A de classe C", € chamada de secao transver-
sal local de X quando, para cada a € A, f'(a) e X(f(a)) sao linearmente independentes.
Considere 3 = f(A) com a topologia induzida. Se f : A — 3 é um homeomorfismo, entao

> € uma se¢ao transversal de X .

O conceito de se¢ao transversal acima foi enunciado apenas para o caso n = 2. Em
[49] encontramos defini¢ao semelhante para subconjuntos abertos de R™, n > 2, quando

o espaco transversal é homeomorfo a R" !,

1.2 Classificacao local de campos de vetores

Nessa secao trataremos de definir os tipos de equivaléncia entre campos vetoriais

planares e investigar suas consequéncias.

Definigao 1.2.1. Sejam X, e Xy dois campos vetoriais definidos em subconjuntos abertos
A e Ay de R?, respectivamente. Dizemos que X1 € topologicamente equivalente (respec-
tivamente C"-equivalente, com r > 1 ou r = w) a Xo se existe um homeomorfismo
(respectivamente um. difeomorfismo de classe C") h : Ay — Ag que leva drbitas de Xy em
orbitas de X5 preservando a orientacao. Mais precisamente, sejam p € Xy e 7; orbita
ortentada de X1 passando pelo ponto p. Entao, h(yg) € orbita orientada de X5 passando

pelo ponto h(p).

O homeomorfismo h, da defini¢ao acima, é chamado de equivaléncia topologica (res-

pectivamente C"-equivaléncia) entre X; e Xo.

Definigao 1.2.2. Sejam o, : Q1 — R? e ¢y : Qy — R? 0s fluros gerados pelos campos de
vetores X1 : Ay — R? e Xy : Ay — R?, respectivamente. Dizemos que X, € topologica-
mente conjugado (respectivamente C"-conjugado) a Xy quando existe um homeomorfismo
(respectivamente um difeomorfismo de classe C") h : Ay — Ay tal que h(pi(t,z)) =
wo(t, h(x)) para todo (t,z) € Q.
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Na defini¢dao acima os intervalos maximais I, para @i, e Ij() para g coincidem. O
homeomorfismo (ou difeomorfismo) A é chamado de uma conjugacao topologica (respec-

tivamente uma C"-conjugagao) entre os campos X e Xs.

Teorema 1.2.3 (Teorema do Fluxo Tubular). Seja p um ponto reqular de um campo de
vetores X : A — R? de classe C", com r > 1 our = w (analitico), e seja f : A — %
uma segao transversal de X, de classe C", com f(0) = p. Entao existe uma vizinhanga
do ponto p em V. .C A e um difeomorfismo h : V — (—¢,e) x B de classe C", para ¢ > 0

e B € um intervalo aberto com centro na origem, tal que:

1. M(ENV)=0x B;

2. h € uma conjugacio de classe C" entre X|y e o campo de vetores constante Y :

(—e,€) x B — R? definido por Y (z,y) = (0,1).

Corolario 1.2.4. Seja ¥ uma segao transversal de um campo vetorial X de classe C",
comr > 1 our = w (analitico). Para todo ponto p € X, existem € = €(p) > 0, uma

vizinhanga V de p em R? e uma fungio 7 : V — R de classe C7, tal que 7(V NY) =0 e:

(i) para todo q € V', a curva integral p(t,q) de X|V ¢ definida e biunivoca em J, =

(—e+71(q),e +71(q);

(1) &(q) = o(7(q),q) € ¥ € o unico ponto onde o - ,q)|J intercepta . Em particular,
q
q € XNV se, e somente se, T(q) = 0;

(1)) £ : V. — X € de classe C" e DE(q) € sobrejetora para todo q € V. Mais ainda,

DE&(q)v =0 se, e somente se, v =aX(q) para algum o € R.

O teorema do fluxo tubular garante a existéncia de um difeomorfismo (de classe C”)
que conjuga um campo X em uma vizinhanga de um ponto regular qualquer (zo, o) ao
campo constante Y = (1,0). Deste modo, temos um conhecimento satisfatorio das orbitas

do campo vetorial X nas vizinhancas de seus pontos regulares.

Entretanto, se (xg,y0) ¢ uma singularidade, a situa¢do ¢ bem mais complexa. A
seguir, apresentamos o teorema de Hartman Grobman, que nos permite caracterizar o

comportamento de um campo de vetores numa vizinhanca de singularidades hiperbodlicas.
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Definigao 1.2.5. Um ponto singular p de um campo de vetores X = (fi1,..., fm), de

classe C1, ¢ chamado de ponto hiperbolico se os autovalores de:

L) .. )
DX(p) = : :

Ofm Ofm
In(p)y ... Y=(p)

tém parte real diferente de zero.

Os nos, as selas e os focos sao hiperbolicos. Ja o centro nos fornece um exemplo de

singularidade nao hiperbdélica.

Teorema 1.2.6 (Teorema de Hartman-Grobman). Sejam A C R™ aberto, X : A — R™
um campo de vetores de classe C' e 0 € A uma singularidade hiperbélica. Entao X e

DX (0) sao localmente topologicamente equivalentes na origem.

Como se trata de um problema local, se a singularidade (zg,vy) € A néo estiver na
origem, entao por meio de uma carta local conveniente é possivel levar esta singularidade

a origem, preservando o comportamento do campo nas vizinhancas da singularidade.

O Teorema de Hartman-Grobman nos diz que, na vizinhanga de uma singularidade

hiperbélica, o comportamento de um campo nao linear é o mesmo da sua parte linear.

Apresentamos  abaixo, uma interpretacdo geométrica do teorema de

Hartman-Grobman, para o caso geral em que a singularidade (¢, yo) nao esta na origem:

\ W

TN

i

Figura 1.1: Interpretagao geométrica do teorema de Hartman-Grobman
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A demonstracao deste teorema pode ser encontrada em [43].

O proximo lema nos garante que dado um sistema diferencial analitico com uma sin-
gularidade isolada, podemos assumir, sem perda de generalidade, que este ponto singular

é a origem.

Lema 1.2.7. Se (xg,y0) € um ponto singular do sistema (1.1.2), entao a origem € ponto

singular do sistema

P(z,9)
Q(z,y)

onde x =T+ xy, y =1y + Yo, com P(Z,y),Q(Z,y) sem termos constantes.

8-
Il
5]

)
Y

<

9
9

<.
Il
8l

A demonstragao é trivial, bastando efetuar a mudanga de coordenadas acima e voltar

a notagao original em x e y.

Considerando a origem como uma singularidade isolada do campo vetorial planar X
e utilizando a equivaléncia acima definida, vamos investigar o comportamento local do
campo X numa vizinhanca da origem. Esse estudo depende da classificagao do ponto

singular.

Proposicao 1.2.8. [}/ Seja X uma campo vetorial planar analitico, escrito na forma
(1.1.2), com ponto singular nao degenerado e isolado na origem. Suponha que os autovalo-
res de sua parte linear na origem sao nimeros complexos conjugados \ o = a£if3, o, €
R, 8 # 0. Entao, este sistema pode ser escrito na forma

T =oax—Py+ F(x,y), (12.1)

y = pr+ay+Gz,y),

onde F(x,y) e G(x,y) sdo fungdes analiticas numa vizinhanga da origem, com F(0,0) =

G(0,0) = DF(0,0) = DG(0,0) = 0.

Demonstragao. Da analiticidade do campo X numa vizinhanca da origem, podemos

expressar P(z,y) e Q(x,y) como:

P(z,y) = P;(0,0)z + P,(0,0)y + (z,y),
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Q(z,y) = Q,(0,0)x 4+ Q,(0,0)y + ¥(z,y).

onde as fungoes ®(x,y) e ¥(z,y) sdo analiticas e ¢(0,0) = ¥(0,0) = 0, ¢/(0,0) =
®7,(0,0) = ¥/ (0,0) = ¥ (0,0) = 0.

Denotando P, (0,0), P,(0,0), Q,(0,0), Q;(0,0) respectivamente por a, b, ¢, d, segue que

o sistema (1.1.2) passa a ser escrito na forma

{9’0 = az + by + @(z,y), (1.2.2)

y =cx+dy+ V(z,y).

Portanto, a parte linear DX (0,0) do sistema (1.2.2) tem seu polindémio caracteristico
dado por p(\) = A2 — (a + d)\ + (ad — be).

Como a origem é um ponto singular nao degenerado e isolado, segue que ad — be # 0.

Assim, A = (a+ d)* — 4(ad — bc) = (a — d)? — 4ac.

Por outro lado, como A2 = a i, a, B € R, §# 0, vale:

A =(a—d)?—4dac<0=>a,c#0. (1.2.3)

Considere a mudanca de coordenadas:

x:_<a_d>j;_1g
A c” (1.2.4)
y:—Ef

A condigao (1.2.3) e o fato de que § # 0 asseguram que esta mudanga de coordenadas

¢é sempre possivel.

Assim, a expressao (1.2.2), apés a mudanga de coordenadas (1.2.4), sera:

at — By + F(z,7),

S
I
N

N
_l’_
)

o

S/I

+ «

&I

p

<.
Il

onde F(z,7),G(Z,§) sao analiticas, com F(0,0) = G(0,0) = 0, e F/(0,0) = F}(0,0) =
G.(0,0) = G7,(0,0) = 0.
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Retornando a notagao inicial nas variaveis x,y, obtemos a forma desejada (1.2.1). =

Para o caso particular em que os autovalores da parte linear DX (0,0) do sistema
(1.2.2) sao ntmeros imaginarios puros nao nulos, isto ¢, da forma Ao = £5, § # 0,

obtemos, a partir de (1.2.1):
T=—py+ F(z,7),
Bz +G(z,9),

onde F(Z,7),G(Z,y) analiticas, com F(0,0) = G(0,0) = 0, e F'(0,0) = F;(0,0) =
G'(0,0) = @;(0,0) =0.

<.
I
<

Como [ # 0, podemos efetuar um reescalonamento do tempo St = 7. Retornando a

notacao inicial nas variaveis x, y, t, obtemos:

{¢::W+F@w% (1.2.5)

y =x+G(z,y),

Observe que o reescalonamento do tempo preserva a analiticidade do sistema e por-
tanto, F'(z,y), G(x,y) sdo analiticas e satisfazem F'(0,0) = G(0,0) = DF(0,0) = DG(0,0)
0.

Proposicao 1.2.9. Se p é uma singularidade degenerada, entao DX (p) tem pelo menos

um autovalor nulo.

Demonstragao. Sejam m o trago de DX (p) e n o valor de seu determinante. Entdo, o
polindmio caracteristico de DX (p) é dado por p(\) = A2 — mA +n = A2 — m\ pois, por
hipotese, n = 0. Logo, p(A) =0 X2 —mA=0&A=0 ou A =m. m

Proposigao 1.2.10. [4] Seja um sistema diferencial analitico no plano da forma (1.1.2),
tal que a origem seja um ponto singular isolado degenerado nilpotente. Entao, este sistema

pode ser escrito na forma

& o=y+ Fy),
y =Glx,y),
onde F(z,y) e G(z,y) sao fungoes analiticas numa vizinhanga da origem, com F(0,0) =

G(0,0) = DF(0,0) = DG(0,0) = 0.

(1.2.6)
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Demonstragao. Repetindo parte dos procedimentos da demonstracao da Proposicao
1.2.8, segue que numa vizinhanga da origem podemos expressar o sistema (1.1.2) na
forma (1.2.2) e a parte linear DX (0,0) do sistema (1.2.2) é dada por

DX(0,0) = < ¢ 2)

Como a origem é um ponto singular degenerado nilpotente, temos
|al + [b] + |e| + |d[ # O
a+d=0
ad —bc =10

Assim, DX (0,0) é uma matriz nilpotente de ordem 2. De fato, aplicando as condi¢oes
b ’ 24+ bc ab+bd
DXQ(O, O) _ a _ a®+oc ab—+ _
c d ac+cd b+ d?
[ ala+d) bla+d) ) (00
cla+d) d(a+d) 00
A Forma Canonica de Jordan para matrizes 2 x 2 nilpotentes (vide [31]) tem expressao

(1)

Agora, renomeando as coordenadas x e y, trocando-as entre si, obtemos a expressao (1.2.6)

acima, temos

desejada. [ |

Proposicao 1.2.11. /4] Seja um sistema diferencial analitico no plano da forma (1.1.2),
tal que a origem seja um ponto singular degenerado linearmente nulo, com DX (0,0) a

matriz nula. Entdao, este sistema pode ser escrito na forma

=-
I

Fz.y). (1.2.7)
G(x,y),

Nl
I

onde F(x,y) e G(x,y) sdo fungoes analiticas numa vizinhanga da origem, com F(0,0) =
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G(0,0) = DF(0,0) = DG(0,0) = 0.

Demonstragao. Pela hipotese de analiticidade do sistema (1.1.2), numa vizinhanga da
origem podemos expressar o sistema (1.1.2) na forma (1.2.2). Como por hipotese a parte

linear DX (0,0) ¢ a matriz nula, o sistema tem a forma (1.2.7). ]

Em resumo, das trés proposicoes acima segue que, se um sistema diferencial analitico
planar da forma (1.1.2) tem uma singularidade isolada na origem, entdao apds uma mu-
danca de coordenadas analitica e um reescalonamento de tempo convenientes, este sistema

pode ser escrito em uma das trés formas seguintes:

y =z+G(2,y),

se a origem for uma singularidade nao degenerada, com DX (0,0) possuindo autovalores

puramente imaginarios (centro linear);

se a origem for uma singularidade degenerada nilpotente;

{ i = F(z,y),
y =G(z,y),

se a origem for uma singularidade degenerada, com parte linear identicamente nula.

As fungoes F(z,y) e G(z,y) em cada caso sdo analiticas sem termos constantes ou

lineares, definidas numa vizinhanca da origem.

1.3 Formas normais

O principal resultado apresentado nesta secao é o Teorema Formal das Formas Nor-
mais, que fornece um método para obtencao de um sistema de coordenadas no qual o

campo vetorial assume sua forma “mais simples possivel”, no sentido dado a seguir. A
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teoria das formas normais sera fundamental no desenvolvimento de alguns resultados cen-
trais desta dissertacao, discutidos na Secao 3.1. Vale destacar que, a literatura sobre
formas normais é vasta, e nao a abordaremos em detalhes. O leitor interessado pode
consultar [17, 52, 30, 47].

Em nosso contexto, “mais simples possivel” significa remover termos nao essenciais da
série de Taylor das fungoes que definem o campo vetorial. Em um campo vetorial que
possui apenas parte linear, isso significa escrevé-la na forma canoénica de Jordan. Dado
um ponto singular hiperbolico - cf. Defini¢ao 1.2.5, de um campo vetorial X, podemos
utilizar o teorema de Hartman-Grobman para exibir uma equivaléncia local entre X e
sua parte linear. Entretanto, para singularidades nao hiperbolicas, nem sempre isso pode
ser feito e encontrar a forma “mais simples possivel” do campo torna-se tarefa bem mais

dificil.

Alguns aspectos importantes acerca deste método devem ser observados:

o teorema formal das formas normais serd apresentado para campos vetoriais de
classe C'° em R", uma vez que a restricao a campos vetoriais no plano nao resulta

em maior simplicidade na demonstragao;
e 0 método é local;

e a mudanca de coordenadas é de fato uma composicao de mudangas de coordenadas
polinomiais locais, que mantém a parte linear do campo e remove termos de ordem

superior da série de Taylor das fun¢oes que expressam o campo;

e a configuracao da forma normal é determinada exclusivamente pela natureza da

parte linear do campo vetorial.

Seja X = A+ f um campo vetorial em R", com A linear e f uma funcao de classe C*
tal que f(0) = 0 e Df(0) = 0. Queremos determinar, para cada campo vetorial linear
A dado, uma classe restrita de nao linearidades F},, tdo pequenas e simples quanto for
possivel, de modo que para cada f, por uma mudanca de coordenadas C°° conveniente,

possamos escrever o campo X na forma X=A+ f , f e F,.

Antes de prosseguirmos, apresentamos algumas defini¢coes importantes.

Defini¢ao 1.3.1. [52] Sejam {s1, S2, ..., S} uma base de R™, e y = (y1,Y2, .-, Yn) as

coordenadas de um ponto P € R"™ qualquer, com respeito a esta base.
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Definimos um monomio vetorial de grau k como hy = (y7",ys2, ..., y"")s;, com
n

E m; =k, m; € Z,. O conjunto de todos os mondémios vetoriais hy forma um espago
i=1

vetorial que denotaremos por H¥. Naturalmente, este é o espaco vetorial dos polindémios

homogéneos de grau k em R™.

Uma base 6bvia para H* consiste nos elementos formados considerando-se todos os

possiveis monomios de grau k multiplicados por cada s;.

0

n
Lembrando que, dados dois campos vetoriais X,Y € HF(R"), com X = Zaia_7
L
=1

NG,
Y = Z bia—xi, o colchete de Lie do par (X,Y) ¢ o campo [X, Y] € H*(R"), dado por:
i=1

n 9 n abl 8ai
[X, Y] = Zcia—xi, onde C; = Zaja—xj — b]a_xj

i=1 j=1
Definicao 1.3.2. No espaco vetorial HE, definimos o operador linear:

adp A HY —s HF
X — [A, X],

onde [.,.] denota o colchete de Lie.

Na literatura dedicada ao tema, este operador muitas vezes é denominado de "operador
homologico- cf. [47].

Para uma demonstracao da linearidade do operador ad,A em H*, consulte [52].

Seja B¥ a imagem do operador adyA em HF, e seja G* o espaco complementar a B*
em H*. Entao:

Com base nessas informacoes, enunciamos o teorema abaixo:

Teorema 1.3.3 (Teorema Formal das Formas Normais). [22] Seja X um campo vetorial

de classe C", r > 1, definido numa vizinhan¢a de zero, com X(0) = 0 e DX(0) =
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A. Sejam B* = ad,A(H*) e G* seu espaco complementar, isto é, H* = B* @ G*.
Entao, existe uma mudanga de coordenadas analitica, numa vizinhanca da origem, que
transforma & = X(z) em § = Ay+ go(y) + g3() + - + 9:() + o(|ly7|]), onde g; € G,i =
1,2,...,r.

A demonstragdo completa deste teorema pode ser encontrada em [17, 30]. A seguir,
apresentamos um esbog¢o da mesma.

Esbogo da demonstragao. A prova é feita por indugao em s, 2 < s < r. Suponha
que 2 = X (x) tenha sido transformada e que os termos de grau menor que s estao em G*:

&= X(2) = Az + g2(%) + g3(2) + . + g5 (2) + fs(2) + of|[27]]),

onde G é o espaco complementar de B em H', i =1,2,....5s — 1, e f, € H*. Fazendo a

mudanga de coordenadas = = y + P(y), com P € H?*, temos:

(I+DPy)y = Aly + P(y) + 92(y) + ... + gs—1(y) + fs(y) + o([|y°[])-

Usando o fato de que (I + DP(y)™') =1 — DP(y) + o(||y*||) e efetuando os demais

calculos temos:

y=Ay+g2(y) + ... + gs1(y) + fs(y) + AP(y) — DP(y) Ay +o([|y°|]).

Os termos de ordem menor que s nao sao alterados pela mudanca de coordenadas,
enquanto que o termo de grau s é dado por: f(y) + AP(y) — DP(y)Ay = fs(y) +
adrA(P(y)). Entao, P deve ser tal que gs(y) = fs(y) — adi A(P(y)) € G*. ]

1.4 Desingularizacao de pontos singulares

O Teorema de Hartman-Grobman - cf. Teorema 1.2.6, possibilita caracterizar lo-
calmente os campos vetoriais X com singularidade hiperbélica isolada. Entretanto, para
singularidades nao hiperbdlicas, este resultado nao se aplica e, por isso, temos que recorrer

a outros métodos.
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O método blow-up é usado para encontrar o retrato de fase de campos de vetores X

planares, numa vizinhanca de uma singularidade nao hiperbélica.

Essencialmente, podemos dizer que blow up é a técnica em que uma mudanca de
coordenadas conveniente “explode” uma singularidade em uma curva na qual obtemos,
genericamente, finitas singularidades. Apos nova mudanga de coordenadas, estudamos
as singularidades do campo resultante X, isoladamente, ao longo desta curva. Para as
singularidades nao hiperbdlicas, podemos aplicar novo blow up, e assim sucessivamente.
Sob condigoes genéricas, ap6s uma sequéncia finita de blow ups, sao obtidas apenas sin-
gularidades elementares. Esse resultado ¢ conhecido como Teorema da Decomposicao.
Pelo processo inverso (blow down), obtém-se o retrato de fase local do campo original X.
Maiores detalhes acerca de blow up e do Teorema da Decomposicao podem ser encontrados
em [22].

Esta técnica também serve para estudar pontos fixos de difeomorfismos, mas vamos
nos restringir a aplicagao do blow-up na investigacao de singularidades de campos de

vetores.

Germes e jatos de campos de vetores

Definigao 1.4.1. Dois campos de vetores X e Y em R"™, com X(0) = Y (0) = 0, sdo

germe-equivalentes em 0 se coincidem em alguma vizinhanga V' de 0, isto é
X(z) =Y (z),Vx € V.

As classes de equivaléncia para esta relagao de equivaléncia sao chamadas germes de
campos vetoriais em 0. Denotamos por G™" o conjunto de germes para campos de vetores

de classe C" em 0, e por G"™ o conjunto de germes para campos C'*° em 0.

Definicdo 1.4.2. Sejam X,Y € G". Entio X eY sio k-jato-equivalentes (com k € N)

se para algum representante X e'Y, respectivamente de X e'Y, tivermos

Je> 0,30 > 0; (X — Y) ()| < cllz||", Vo € R, ||z]| < 6.

Uma classe de equivaléncia para esta relacao é chamada k-jato de um campo de vetores
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e serd denotada por ji(X)(0). A classe de equivaléncia j;(X)(0) é formada por germes

cujo representante ¢ X.
Quando X ¢ de classe C? e X(0) = 0, pela diferenciabilidade obtemos X (z) =
1

DX(0)x + ri(z), com lim —— = 0. Entao, lim(X(z) — DX (0)z) = 0. Neste caso,
z—0 ||,1,’||2 z—0

X e A sao 1-jato-equivalentes. Portanto, j,(X)(0) = 7, (DX (0))(0).

Por este motivo, denotamos DX (0) por j;(DX(0))(0). Analogamente, dizemos que
Jk(X)(0) = 0 se 0 é um representante do jato. Isto é,

Je > 0,36 > 0: [(X)(@)]| < clle]*, Vo € B, [lz]| < &.

Blow up polar em R"

Descreveremos o método para campos vetoriais C'*°. Seja X aum campo V%torial planar
de classe C*°, com X (0) = 0, definido por X(z,y) = P(x,y)a— + Q(m,y)a—, associado
T Y

ao sistema:

. _p
y =Q(,y),
Considere a aplicacao ¢ correspondente a mudanca de coordenadas dada por
¢ :S' xR = R?
(1.4.2)

(0,7) — (rcos(0),rsen(6))

Observe que ¢ leva {r = 0} em (0, 0) e a aplicagao inversa ¢~ ' “expande"a origem em um

circulo.

Queremos encontrar um campo de vetores X : S' x R — R?, com

. 0 0
X = X(07T> = Xl(evr)% + XQ(Q,T)E

de tal forma que o sistema

seja equivalente ao sistema (1.4.1).
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O campo X é chamado “pull back” de X por ¢. Pela Eq. (1.4.2), 2 = rcos(d) e
y = rsen(f), efetuando calculos algébricos simples (calculos similares serdo demonstrados

com mais detalhes na Segao 1.4 obtemos:

0 = %(005(9) Q(rcos(0),rsen(0)) — sen(0) P(rcos(8),rsen(h))),
7 = cos(f) P(rcos(0),rsen(0)) + sen(f) Q(rcos(d),rsen(d)).

(1.4.3)

Portanto,

X(,r) :%[003(9) Q(rcos(0),rsen(0)) — sen(0) P(rcos(6), rsen(@))]% (144
+ [cos(0) P(rcos(0),rsen(0)) + sen(0) Q(rcos(0), rsen(@))]%

Tal construcao nos permite demonstrar a seguinte proposi¢ao:

Proposicao 1.4.3. Sejam X um campo planar de classe C*, tal que X(0) =0, e ¢ :
Stx R% — R?*\ {0}, definida em (1.4.2). Entao existe um campo X : S'x R* — S' xR,
tal que D(0,7)X (0,7) = X(p(0,7)), ¥V (6,7) € S* x R*.

Demonstracao. Basta verificar que X, dado por (1.4.4), satisfaz esta condigao. ]

Da proposigao anterior, segue que gzﬁ’Sl ¢ um difeomorfismo. Portanto, X é topologi-

xRY
camente conjugado a X|R2\{o} (vide Definigao 1.2.2).

O campo X esté definido na superficie do cilindro e, em r = 0, a singularidade esta
“expandida", ou “desingularizada". A seguir, apresentamos um esboco do retrato de fase,

no cilindro:

Figura 1.2: Esbogo do retrato de fase do campo X

Se X tem a propriedade de jx(X)(0) = 0 e ji+1(X)(0) # 0 para algum k& < oo,

isto ¢, 3k € Z,, onde k é o maior inteiro tal que r*™! | P(rcos(f),rsen(d)) e r*1 |
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Q(rcos(0),rsen(h)), definimos X como:

_ 1 -
X=X (1.4.5)

que é um campo de classe C*® em S' x R.

Observe que a singularidade (0,0) foi levada para a curva S' x {0}. Além disso, ao

longo de S' x {0}, as singularidades sdo determinadas pelas solugoes de X4(8,0) = 0.

Exemplo 1.4.4. Considere o campo X = (2* — 2zy, y* — 2zy).

Fazendo a mudanca de coordenadas x = rcos(0), y = rsen(d) obtemos:

P(rcos(9),rsen(8)) = r*(cos*(#) — 2cos(0)sen(h)),
Q(rcos(8),rsen(0)) = r?(se*(0) — 2cos(0)sen(h)),

entao,

X(0,r) =(r*(cos®(0) + sen®(0) — 2cos?(0)sen(0) + 2sen®(0)cos(h)),
3rcos(0)sen(8)(sen(d) — cos(h))).

Neste caso, k = 1. Assim, por (1.4.5), temos:

X(0,7) =(r(cos*(0) + sen®(0) — 2cos*(0)sen(0) + 2sen?(0)cos(0)),
3cos(f)sen(0)(sen(0) — cos(8))).

™ 3r  wbmw
E =0,t 0=0,-,—,m,—, —
mr =0, temos 0,2, SRR

estudo local do campo em cada ponto singular identificado.

como solugoes de Xp(0,0) = 0. Agora, efetuamos

0X, 0X,
) a (07 ) W('gv )
JX(0,r) =
%0 0,1y ZXop 1)
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0X
Como —9(0,7“) =0, seque que

or

det JX(0,r) :%(9, 7“)%(9, ) = (cos(0) + sen®(0) — 2cos*(0)sen(0) + 2sen?(0)cos(6))

(6sen(6)cos® () — 3sen®(0) + 6cos(0)sen?(0) — 3cos™(6)).

Entao det JX(0,0) = det JX(m,0) = —3. Logo, temos singularidades do tipo sela.

3 5
Analogamente, efetuando os céalculos para 6 = g, 77, %, Zﬂ, temos pontos singulares do
tipo sela. Aplicando um blow down, obtemos o seguinte retrato de fase de X:

Blow up Blowing down

- N
vz

Figura 1.3: Exemplo de blow up polar

Blow up direcional

Blow up na diregao x

Seja X = (P(z,y),Q(z,y)) um campo de vetores planar, com singularidade isolada na

origem, e considere a mudanca x = u ¢ y = uv. Entao,

T =1,
Y = uv + uo.
e assim, temos:
. i = P(u,uv),
Xwv)=9  Qu,uv) — vP(u,uv)
V=
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Q(u, uv) — vP(u,uv)
” .

Escreva X (u,v) = (X,, X,), onde X, = P(u,uwv) e X, =

Entdo, seja k o maior inteiro tal que u* | X, e u* | X,.

X (u, uv)
_uk _
para u = 0 as singularidades de X sao determinadas pelas solucoes de X, = 0.

Defina X (u,v) = (X,, X,) = . A singularidade (0,0) é levada em u = 0 e,

Blow up na direcao y

Seja X = (P(x,y),Q(z,y)) um campo de vetores planar, com singularidade isolada na

origem. Defina a mudanca = = uv e y = v. Entao,

T = uv + uv,
Y = 1.

analogamente ao blow up direcional em z, definimos

K(u) = (£, %) = (Pt el

Qo))

[

X (uv,v)
vk
Neste caso, a singularidade (0,0) é levada para a curva v = 0 e, para v = 0 as singulari-

seja k o maior inteiro tal que u* | X, e uf | X,. Defina X (u,v) = (X,, X,) =
dades de X sao determinadas pelas solucoes de X, = 0.

Exemplo 1.4.5. Considere o campo X = (2? —2zy, y* —2xy), com singularidade isolada

em (0,0).

Aplicando blow up na dire¢ao x em (0,0), © = u e y = uv, obtemos:

X = (X, X,) = (u® — 2u?v, 3uv? — 3uv)

Como k =1 é o maior inteiro tal que u* | X, e u* | X, temos:

=7 = (X, X,) = (u—2uv,3v* — 3v)
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Emu=0, temosv=0 ev =1 como raizes de X, = 0. Como

1—-2v —2u

JX (u,v) =
0 6v — 3

temos det JX(0,0) = det JX(0,1) = —3 e portanto, as singularidades (0,0) e (0,1) sdo

do tipo sela.

Agora, aplicamos um blow up na direcao y, v = uv e y = v, obtendo:

X = (X,, X,) = (3u*v — 3uv, v* — 2uv?)

Como k =1 é o maior inteiro tal que v* | X,, e v* | X, temos:

_ X _
X(u,v) = X(ww) = (X, X,) = (3uv — 3uv,v® — 2uv?).
v

Emv =0, temosu=0 eu=1 como raizes de X, = 0. Como

6u — 3 0

JX (u,v) =
—2v 1—2u

temos det JX(0,0) = det JX(1,0) = —3 e deste modo, as singularidades (0,0) e (1,0)

sao do tipo sela.

A figura abaizo ilustra os blow ups direcionais em x ey efetuados neste exemplo:
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Blow up na
diregdo x

'

T

Blowing down

/7N !

Blow up na |
diregao y

/\‘_)L

. . -y

Figura 1.4: Exemplo de blow up direcional

Observe que o esboco do retrato de fase acima, obtido com blow up direcional, € exa-

tamente o mesmo retrato obtido por blow up polar no Exemplo 1.4.4.
O Exemplo 1.4.5 motiva uma pergunta natural: qual € a relagao entre blow up polar
e blow up direcional?

A seguir, respondemos a esta pergunta.

Relagao entre blow up polar e blow up direcional

/0

Seja F': R x (—g, 5) — R?, dada por F(r,0) = (r cos(f),tg(0)). Entao,

cos(f) —r sen()

TEr6) = ( 0 sec?(0)

) = det JF(r,0) = sec(f) # 0,V0 € (—g, g) :
Consequentemente, F'(r, ) é difeomorfismo.

Além disso:

(i) F leva {(r, 0); r=0e — g <f< g} sobre o eixo O,. Em particular, para § = 0,
temos F'(r,0) = (0,0) € Ogy;
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10
(ii) JF(0,0) = ( 01 > . Portanto, F preserva a parte linear do campo;

x

(i) F(r,0) = (x, %) Entao, F~(u,v) = F~! (z, %) = (r,0), pois

{ u=r cos(f) N { u=rcos(f) =z
v=1tg(0)

uv =1 sen(d) = y.

Considere o campo vetorial apresentado no Exemplo 1.4.5. Quando aplicamos o blow up

na dire¢ao z, obtivemos as singularidades (0, 1) e (0,0), que sao do tipo sela.

(u,v) = (1,0
Assim: { (0,0) — (0,0
7T
4

T
Por simetria, temos 7 e T singularidades do tipo sela, como podemos observar figura
1.5:

Blow Up na dire¢do x

101

100 ——=

Figura 1.5: Relagao entre blow up na dire¢ao x e blow up polar

Seja G : (0,7) x R — R?, dada por G(6,r) = (cotg(f),r sen(f)). Entao,

—cossec(0) 0

JG(0,r) = ( r cos(0)  sen(6)

> = det JG(0,r) = —cossec(f) # 0,V0 € (0, 7).

Consequentemente, G(r, ) é difeomorfismo. Além disso:
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() G leva {(6.1): # =00 < 6 < 7} sobre o cixo O,. Em particulr, para 6 =
temos G(g,()) = (0,0) € Ogy;

-1 0

(i) JG(5,0) = ( .

> . Logo, G preserva a parte linear do campo;
(iii) G(0,r) = (x, E) Entao, G~ (u,v) = G™* <§,y> = (r,0), pois
Yy

u = cotg(0) L Jws=r cos(0) =x
v =r sen(0) v=r sen(d) =y.
Considere novamente o campo vetorial apresentado no Exemplo 1.4.5. Aplicando blow

up na diregdo y, obtivemos as singularidades (1,0) e (0,0), que sao do tipo sela.

3m  om
Por simetria, temos > e v singularidades do tipo sela, como podemos observar

figura 1.6:

Blow Up na direcao y

G

(00)  (1.0) /\ (0,00 (1,0)

|
N

1l ~—
3
g

Figura 1.6: Relacao entre blow up na dire¢ao y e blow up polar

A escolha por uma das técnicas, blow up polar ou blow up direcional fica a critério
de cada pesquisador. Entretanto, em geral, para blow ups sucessivos é mais conveniente

utilizar o blow up direcional, como seréa ilustrado no préximo exemplo.

Exemplo 1.4.6. Seja o campo X = (>, x+y*+y3), com singularidade isolada em (0,0).
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Vamos aplicar blow up na dire¢io x em (0,0). Através da mudanga de coordenadas
z=u ey=uv, obtemos X = (X,, X,) = (u*0%, 1 + uv? 4+ u?v® — uv?).

Neste caso, nio existe k € N tal que u*|X, e u*|X,. Portanto, X = X.

Ao longo de u =0, temos X, = 1. Logo, nio existe singularidade na direcio de x.

Aplicando blow up na diregio y, x = uwv e y = v, obtemos X = (X,, X,) = (v —u? —
uwv — uv? uv + v? 4+ v3),

Como nio existe k € N tal que u¥| X, e u*|X,, temos X = X

Em v =0, temos u =0 como solucio de X, = 0. Além disso,

_ —2u—v—0v> 20—u—2uv _
JX(z,y) = = JX(0,0) =
v u+ 2v+ 303 00

Assim, (0,0) ¢ uma singularidade nao hiperbolica de X. Aplicando novo blow up na
dire¢io de v em (0,0), u = wz e v = z, temos X = (X,, X,) = (z — 2w’z — 2wz —

2wz wz? + 22 + 23).

k =1 ¢ o maior inteiro tal que 2¥|X,, e 2¥|X..

N|:><jz

Assim, X = — = (X, X.) = (1 — 2w? — 2w — 2wz, wz + z + 2%).

-2—-v12 =24 +v12
e .
4 4

Em z =0, as solucoes de X,, = 0 sdo

A parte linear de X ¢ dada por:

_ —2 — /12 V12
det JX |0, = —3<0
_ —4w — 2 —2w 4 2

[ e yTD Niv:
2 w241 det JX 0’+T

=Y = _3<0.
2

_2_m> ) (o ~2+ /12
T

) sao do tipo

Consequentemente, as singularidades (O,

sela.
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A figura 1.7 apresenta as etapas para obtermos o esbogo do retrato de fase de X numa

vizinhanga da origem.

Blowup B’owup % h \/
[ ]

Figura 1.7: Exemplo de blow ups direcionais sucessivos

Blow-up (m, n)-quasehomogéneo

A técnica de blow-up (m,n)-quasechomogéneo que apresentaremos nesta se¢do é¢ uma
generalizagao da técnica de blow-up polar apresentada anteriormente. De fato, em muitos
casos, ao invés de uma desnecessaria limitagao na escolha do blow-up polar, é mais conve-
niente “adaptar” a técnica ao campo vetorial considerado, utilizando-se o blow-up (m, n)-
quasehomogeéneo. Este método foi aplicado pela primeira vez por Lyapunov - cf. [37],
e se constitui em importante ferramenta na investigacao do problema do centro-foco em

diversos trabalhos recentes - cf. |1, 2, 23].

Definicao 1.4.7. Sejam a aplicacio f: R" = R e (o, ...,ay) € N, k € N, tais que
fMwy, .t x,) = 5 f(2q,...,2,), YVt ER,

Entao, f é chamada de fungao (ay, ..., ay,)-quasehomogénea de grau k.

0 0
Definicao 1.4.8. Seja X um campo vetorial da forma X = fla— + ...+ fna—), com
T1 T

i@, ., xn), j=1,..,n, fungoes (aq, ..., ay)-quasehomogéneas de grau k+ a;. Entio, X

é denominado um campo vetorial (v, ..., ay,)-quasehomogéneo de grau k.
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Lema 1.4.9. Seja (ov, ..., ) € N e suponha que os o sejam primos todos entre si. En-
tao, € sempre possivel decompor um campo vetorial em R™ em uma série formal centrada
em (e R" X = ZX]-, onde cada X; € um campo vetorial (ay, ..., ay,)-quasehomogéneo

Jjzk
de grau j. k é o primeiro inteiro tal que Xy # 0 e € denominado de ordem do campo X.

A demonstragao deste lema pode ser encontrada em [13].

No caso de campos vetoriais planares, apresentamos os seguintes resultados.
Definigao 1.4.10. Seja um campo vetorial (m,n)—quasehomogéneo, m,n € N, . Intro-
duzimos, entao, as coordenadas (m,n)—quasehomogéneas: © = r"™ Cs(0), y = r"Sn(f),

onde as funcoes Cs e Sn sao definidas como sendo a unica solug¢ao do Problema de Cauchy

Cdr o
x @ Yy )
(1.4.6)
_ d_y — p2n—1
do ’

com condigoes iniciais ©(0) = 1,y(0) = 0.
Observe que, por defini¢ao, Sn e Cs sao fungdes T—periddicas, onde

1-2m)/2m 1
T — 2m! )/ / (1- t)(1—2m)/2mt(1—2n)/2n dt.
0

nl/2m
Além disso, n Sn*™(6) + m Cs**(0) = m.
Considere a relagao de equivaléncia x ~ y, se x —y = nT, n € Z e seja Sk o conjunto
das classes de equivaléncia assim obtidas. Para um campo vetorial analitico planar X,
com X (0,0) = 0, seja k > 0 a ordem de X com respeito a decomposigao do tipo (m,n).

Entao, X é o tnico campo vetorial definido pelo diagrama comutativo:

T(Sh x R) ™ TR2

XT TX

Sk x R—= R2

onde 7 : S x R — R? ¢ a mudanga de coordenadas (m,n)—quasehomogénea definida
acima, para (f,r) € Sk x R. A aplicagao 7 é sobrejetora e propria. Além disso, 771(0) =

St x {0} e a restrigao de m a Sk x (R \ {0}) ¢ um difeomorfismo sobre sua imagem.
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E possivel dividir X por r* - ¢f. [13]. Seja X o campo vetorial resultante. Sua ex-
pressao é X (0,7) = (P(0,r),Q(0,r)), onde
1 ,
PO,r) =Y ~ [Cs>(0) P;(Cs(0), Sn(0)) + Sn*™1(0)Q;(Cs(0), Sn(0))] v/ ~++1,

Jjzk
Q(.r) = 3 [Cs(8)Q,(Cs(6). Sn(6)) — - Sn(6)P,(Cs(6). Sn(6))| v/, e
Xj(x,y) = Pj(x,y)a% + Qj(x,y))a%.

No caso em que (m,n) = (1,1), a técnica se reduz ao blow-up polar, com Sn(f) =
sen(0), Cs(0) = cos(0) e T = 2.

O exemplo a seguir, extraido de [13], ilustra o método.

Exemplo 1.4.11. O campo vetorial planar X(z,y) = (y,2?) € (2,3)—quasechomogéneo

de grau k = 1. Assim,

X(0,r) = (X,(0,r), Xo(0, 7))

= <% CSZ(Q) Sn(@)(CS3(9) 4 SDQ(Q))T, CS3(Q) . g Sn2(9)>

Logo, X (0,0) = (O, Cs*(6) — 28n2(0)) tem duas singularidades em 6 = £6,, onde 6, €

/2 X, (0
solugdo de Sn(fo) = 4/ 3 Cs®(60), Cs(f) > 0. Em tais pontos, vale sgn (—8 ’é( ,r)) —
T

sgn(Sn(6y)), onde sgn € a fungao sinal.

Um esbogo do retrato de fase do campo € dado na figura a sequir:

Figura 1.8: Exemplo de blow-up (m,n)-quasehomogéneo
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O blow-up (1, n)—quasehomogéneo seré ferramenta importante na Se¢ao 3.1. Por esta

razao, discutiremos o método em detalhes.

Proposigao 1.4.12. [25] Sejam z(0) = Cs(0),y(0) = Sn(f) conforme Defini¢ao 1.4.10,
para m =1 en € N. Entao valem as sequintes propriedades:

1. Cs?™(6) + nSn?(0) = 1;

1
()
2. Cs(0) e Sn(0) sao fungoes T-periddicas, onde T = 2\/?271

r (n—l—l)
2n

3. j/ Sn(p) Cs?(p)dyp CS?H(G%
g+1
[ swie oo e = 20,
5. [(se) 0sq<w>dw=5@p:1§ffﬁit(? ol s oo
5. [ s cstgnap = "D IO Il ) oum(ga

T
7. / SnP(¢) Cs?(p)dp =0, se p ou q € impar;
0

F<p;1>r<q;1>

/snp ) Cs4(p)dp = n
np+1 (p+1 q—|—1>

I+

2 2n

o

, se p e q forem ambos nimeros pares.

A demonstragao destas propriedades pode ser encontrada em [37] e [25].

Dos resultados acima, e tomando um ntmero natural n € N, podemos introduzir as

coordenadas (1, n)-quasehomogéneas como sendo:

{ x =rCs(h), (1.47)

y =r"Sn(6).
onde as fungoes Sn e Cs sao dadas em (1.4.6), param =1en € N.

Do primeiro item da Proposicao 1.4.12, segue que z*" + ny? = r?". Derivando-se as
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expressoes em (1.4.7), obtemos

i =7 Cs(#) — Or Sn(h)
3§ = nr" "1 Sn(f) + Or™ Cs™~1(0)

Multiplicando-se a primeira equagdo por [r?"~!Cs**!(6)] e a segunda por [r"Sn(f)] e

somando membro a membro obtemos
r? L Cs* (@) d + r™ Sn(0)y = r* 1 (Cs™ () + n Sn*(0))7r.

Usando (1.4.7), temos

ZL’2n_1Zt + yy — T2n—17;,.
Portanto, -
. "4y
"= ron—1

Fazendo o produto da primeira equagio com [nr" ' Sn(#)] e da segunda com [— Cs(6)] e

efetuando calculos similares, obtemos

2 TY — nyx
9 - 7“”+1

Deste modo, temos o sistema em coordenadas r e 6:

. a4y
r= r2n—1 ’
(1.4.8)
. TY — nyx
0 o Tn—i—l

No Captitulo 3, retomaremos o tema blow up na prova de um dos teoremas fundamentais

desta dissertacao.



Capitulo

2

Problema do centro-foco

Considere o sistema diferencial analitico no plano

{ b= P(@,y), (2.0.1)
Yy :Q(l',y),

0
e X = P(z,y)=— + Q(z,y)5— o campo vetorial associado ao sistema (2.0.1). Seja p um

ox ox
ponto singular de X.

Como vimos, o problema do centro-foco pode ser dividido em trés casos distintos,
segundo o tipo do ponto singular do sistema diferencial analisado: nao degenerado, de-
generado linearmente nulo, ou nilpotente. Neste capitulo, discutiremos o caso nao de-
generado, apresentando alguns resultados importantes tais como o Teorema de Bautin, e

discutiremos brevemente o caso linearmente nulo.

2.1 Singularidades nao degeneradas

Sabemos da teoria qualitativa de sistemas diferenciais planares que, se os autovalores
da matriz DX (p) sdo complexos conjugados nao nulos a 4 if3, entao o ponto singular p é

monodrdmico - cf. [44, 22].
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Se o trago de DX (p) for ndo nulo, entdo p é um foco (estavel se a < 0 e instéavel caso

contrario).

Se o trago de DX (p) for nulo, entao os autovalores sao nimeros imaginarios puros, e
assim, p pode ser um foco ou um centro de X. O problema que visa distinguir entre esses
dois tipos de singularidades no caso de autovalores puramente imaginarios é o classico
problema do centro-foco de Lyapunov-Poincaré, ou simplesmente problema do centro-foco

para pontos singulares nao degenerados.

Sob o ponto de vista tedrico, o problema de encontrar condi¢oes necessarias para um
centro é solucionado pela determinacao das constantes de Lyapunov. Apresentamos a

seguir, os principais resultados relacionados a este assunto.

2.1.1 Preambulo tedrico

Nesta secao, desenvolveremos algumas ferramentas tuteis na investigacao de impor-
tantes propriedades da aplicacao de Poincaré e da fungao sucessao. Em particular, obte-
remos uma mudanga de coordenadas que sera utilizada na demonstracao da Proposicao
(2.1.5), que por sua vez, permitird calcular a expressdo da derivada da aplicagdo de

Poincaré na origem.

Seja o sistema diferencial analitico planar da forma (2.0.1), e seja vy uma 6rbita fechada

de periodo 7 > 0 deste sistema, parametrizada por

{I:gp(t)’te]l%i+

y = (t),

Como 7, é periddica de periodo 7, ¢, também sao fungoes periddicas de periodo 7.
Além disso, ¢, 1, sendo solugoes do sistema analitico (2.0.1), sdo também analiticas, e

particularmente, possuem segundas derivadas continuas.

Por cada ponto M = (¢(s),%(s)) da curva 7y, construimos uma segao transversal

contida na reta normal ao ponto M, com comprimento 5\/<p’(s)2 +9'(s)?, 6 > 0, em

ambos os lados de 7y ao longo da normal.

Tomamos entdao 0 > 0 suficientemente pequeno de forma a satisfazer o Lema 2.1.6.

Entéao, as extremidades internas (externas) em relagdo a curva 7, das se¢oes transversais
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de comprimento (5\/ ¢'(s)? + 1Y'(s)?, contidas nas retas normais a cada ponto de 7, formam

uma curva simples I'y (I'y), como ilustrado na figura a seguir.

r2 _
Figura 2.1: Orbita periédica 7y, curvas fechadas simples I'; e I'y e a regido

As curvas I'y e I'y entao, sao tais que definem uma regiao {2 no plano contendo inteira-

mente vy5. Observe que 2 é claramente homeomorfa a um anel circular.

Para 0 > 0 suficientemente pequeno, o sistema (2.0.1) nao tem singularidades em €,

pois a origem é uma singularidade isolada.

Considere as fungoes:

definidas na faixa
{(s,n) € R?*| s € (—00,+0),n € (—6,6)}. (2.1.1)

d
onde s indica o tempo e ¢'(s) denota d_¢
s

As funcbes @ e 1) possuem as seguintes propriedades:

1. ¢ e 1 sao fungoes analiticas, uma vez que ¢, sao analiticas;

2. ¢ e 1 e suas respectivas derivadas parciais sao periddicas em s, de periodo T;

3. g?(s,O) = @(s)

w<$7 0) = Zﬂ(s)

Ou seja, paran =0, x = @¢(s,n) e y = ¥(s,n) sdo as equagoes paramétricas de 7,

onde o paradmetro s coincide com t.
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4. O determinante

para n = 0 ¢ igual a A(s,0) = —¢/(s)? — ¢'(s)* # 0, pois ¢ e 1) parametrizam a

solucdo periodica vy em (2.0.1).
Ou seja, para n = 0, o determinante A(s,n) ndo se anula para qualquer s, —oco <
§ < +00.

0p(s,n)

Observamos que ¢,(s,n) denota , 0 mesmo valendo para as demais derivadas

parciais expressas acima.

Da propriedade (4), do fato do determinante ser uma fun¢ao continua, da compacidade
do segmento 0 < s < 7 e usando a periodicidade das funcdes @ e 1) em s, segue que para

valores suficientemente pequenos de n, A(s,n) # 0.

Por fim, observamos que, se § > 0 é suficientemente pequeno, todos os segmentos
normais a pontos distintos de vy sdo segbes transversais para as trajetorias de (2.0.1)

contidas na regiao €2 - cf. [5].

Em resumo, o > 0 precisa ser suficientemente pequeno para satisfazer as seguintes

condigoes:

1. Os segmentos de reta de comprimento 251/¢’(s)? + 1'(s)2, normais & solugdo peri-
odica vy em pontos distintos nao se interceptam. Disto segue que, em particular, a

regiao ) é homeomorfa a um anel circular;

2. Todos os segmentos normais descritos no item anterior sao secoes transversais para

pontos pertencentes a trajetorias do sistema na regiao €2;
3. Nao existem singularidades de (2.0.1) em €2;

4. O determinante A(s,n) é nao nulo na faixa (2.1.1).

Mostraremos agora, que

(2.1.2)
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¢ uma mudanca de coordenadas local do sistema (2.0.1). Para tanto, é suficiente mostrar

que (2.1.2) é um homeomorfismo.

De fato:

(i) n = 0 é levado por (2.1.2) na curva vy. As retas n = ¢, 0 < |c| < §, paralelas ao
eixo s sao levadas por (2.1.2) em curvas fechadas simples que néo se interceptam,

ficando uma “contida” na outra, em €2;

(ii) os pontos da forma {(s,n) € R? | s = syg,n € (—4,0)} sao levados por (2.1.2) em

segmentos normais a 7o;

(iii) Dos dois itens anteriores, segue que (2.1.2) leva a faixa (2.1.1) sobrejetivamente na
regido ). De fato, V (z,y) € Q, (z,y) é a intersec¢do de uma curva fechada simples
Iy e de um segmento ¥y normal a €. Tome n = c e s = sy de tal forma que (2.1.2)

leve o primeiro em I'y e 0 segundo em Xg;

(iv) Todos os pontos da forma (s+k7,ng), k € Z, com ny fixado, sdo levados num mesmo

ponto da regiao €2;

(v) Do item anterior, para cada sy fixado, (2.1.2) é injetora em {(s,n) € R? | s €

[s0,80+T),n € (—0,0)}.

Das propriedades acima, segue que (2.1.2) é um homeomorfismo local e portanto, uma

mudanca de coordenadas local do sistema (2.0.1).

Seja a mudanga de coordenadas (2.1.2). Diferenciando com respeito a ¢, obtemos:

de.  _,ds =~ _,dn  _ -
E - (ps% + (an - P((,D(S,n), (S,TL)),

(2.1.3)
de - ds L dn —
dt

dt A(s,n) ’

(2.1.4)

dn _ Q(¢,9)@, — P(@, V)Y
dt A(s,n) '
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Sabemos que ¢(s,0) = p(s), ¥(s,0) =(s), e como xz = p(t), y=9(t), 0<t<Té

solugao do sistema (2.0.1), temos:

ngz O _ p(s,0),5(5,0)).
_ (2.1.5)
w = Q(4(s,0),9(s,0)),

para todo s, 0 < s < 7. Segue que:

P(p(s,0),9(s,0))¢r,(s,0) = Q(&(s,0),9(s, 0)) 7, (s, 0) =
= @(5,0)7,(5,0) — U (s,0)5,(5,0) = A(s,0). (2.1.6)

Pela condi¢do A(s,n) # 0, concluimos que A(s,0) # 0, para todo s, 0 < s < 7.
Portanto, o lado esquerdo da Eq. (2.1.6) nao ¢ nulo para todo s, 0 < s < 7.

Logo, pela continuidade de todas as fungoes envolvidas e da compacidade do segmento
0 < s <7, segue que, para todos os valores suficientemente pequenos de n e para todo s,
0<s<T:

P(@(s,m),v(s,n))n(s,n) — Q(@(s,n),¥(s,n))(s,1) # 0. (2.1.7)

Como as funcdes @ e ¢ e suas derivadas sio periédicas em s, a relacdo (2.1.7) é
satisfeita para todo s e para valores de n suficientemente pequenos. Podemos assumir
que (2.1.7) ¢é satisfeita na faixa (2.1.1). Para tanto, basta escolher § > 0 suficientemente

pequeno.

Por (2.1.7), o lado direito da primeira equagao em (2.1.4) nao se anula na faixa (2.1.1).

Portanto, as Eqs. (2.1.4) podem ser substituidas por uma tnica equagao diferencial

S — R(s’n), (218)

obtida pelo quociente da segunda equagao de (2.1.4) pela primeira.

A funcao R(s,n) é definida e continua na faixa (2.1.1), e continuamente diferenciavel

com respeito a n em (2.1.1). Assim, ambos Teorema de Existéncia e Unicidade das
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Equacgoes Diferenciais e o Teorema da Dependéncia Continua em Relagao as Condigoes

Iniciais - cf. [48, 31|, sao aplicaveis a Eq. (2.1.8).

Do Teorema de Ezxisténcia e Unicidade segue que, para todo sg, e todo ng, |ng| < 4,

existe uma tunica solugao de (2.1.8)

n = f(s; so,no), (2.1.9)

a qual esté definida em algum intervalo (maximal) (s, s9) contendo o ponto sy e satisfaz

a condigao inicial f(sg; So,m0) = no.
Por (2.1.2) e (2.1.5), segue que R(s,0) = 0.

Em consequéncia, n = 0 é solugao da Eq. (2.1.8) e, consequentemente, o eixo s do

plano (s,n) é uma solucao de (2.1.8).

Todas as solugoes da Eq. (2.1.8), situadas na faixa (2.1.1), evidentemente coincidem
com as solugoes de (2.1.4). Se s = s(t), n = n(t) é uma curva solugdo 4 de (2.1.4) e
(S0,10) € um ponto desta curva, a solu¢ao n = f(s; so, ng) de (2.1.4) é uma equagao de 4

nas coordenadas s, n.

A mudanga de coordenadas (2.1.2) leva ¥ em = = @(s(t),n(t)), y = ¥(s(t),n(t)), a
qual, em virtude da regularidade local de (2.1.2) é uma curva integral do sistema (2.0.1)
situada na regido €, por construcdo. Seja v esta curva. E claro que toda solucdo v de
(2.0.1) em ©Q é a imagem, em (2.1.2), de pelo menos uma curva integral 4 de (2.1.4) na

faixa (2.1.1), ou seja, ¢ a imagem de pelo menos uma curva solugao da Eq. (2.1.8).

A Eq. (2.1.9) de 4, no plano (s,n), pode ser tratada como uma equagao nas coorde-
nadas s,n de 7, no plano (z,y). Posteriormente, usaremos este fato em nossa analise da

funcao sucessao.

Seja [ o segmento da reta normal a 7, contido em € e que passa pelo ponto M, da

curva o correspondente a s = 0. Logo, [ é uma segao transversal de (2.0.1).

Do Teorema de FExisténcia e Unicidade e do Teorema da Dependéncia Continua em
Relagao as Condigoes Iniciais, e também do fato de que n = 0 é solugao de (2.1.8),

obtemos os seguintes resultados:

Proposicao 2.1.1. Toda solugio n = f(s; so,ng) da Eq. (2.1.8), para todo sg, 0 < s < T
e ng suficientemente pequeno, estd definida para todo s, 0 < s < T, e pode ser escrita na

forma n = f(s;0,ng).



44 Problema do centro-foco

Para o sistema (2.0.1), isto significa, em termos geométricos que, toda solugao passando
por um ponto numa vizinhanga suficientemente pequena de 7y cruza a normal [ (para
s = 0) bem como todas as outras normais a 7y, no anel {2, e em seguida, cruza novamente

a normal [ (para s = 7), conforme ilustrado na figura abaixo:

: .
i

Figura 2.2: Interpretacao geométrica da Prop. 2.1.1 para o sistema (2.0.1)

d
Observe que, para n = 0, d_j =1 (veja (2.1.6) e (2.1.4)), e como tanto o numerador

. ~ S ~ .. .
quanto o denominador da expressao para i (2.1.4) nao revertem seus sinais na faixa

ds
(2.1.1), segue que — > 0 em (2.1.1), isto é, um incremento em s corresponde a um

dt

incremento em t, e vice-versa.

Proposicao 2.1.2. Para todo € > 0, existe n > 0, n = n(e), tal que se |ng| < n, entao

1f(5;0,m0)] <&, Vs, 0 < s <.

Isso implica que a parte da solugao de (2.0.1), situada entre dois pontos de intersecgao
sucessivos da curva integral e da segao transversal, estd completamente contido em U, (7,),
se o primeiro ponto de interseccao corresponde a ng, o qual é menor que 7 em termos

absolutos.
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Aplicacao de Poincaré

A aplicacao de Poincaré, também conhecida como aplicacao de primeiro retorno é,
provavelmente, a ferramenta mais basica para o estudo da estabilidade e bifurcagao de
oOrbitas periddicas. Desenvolvida por Poincaré em 1881 - cf. [45], esta técnica oferece diver-
sas vantagens no estudo de EDQ’s, tais como a reduc¢ao de dimensao. A seguir, definimos
formalmente a aplicagao de Poincaré e, em seguida, apresentamos diversas propriedades

importantes que serao utilizadas ao longo da dissertacao.

Definicao 2.1.3. Sejam um campo wvetorial X de classe C", com r > 1 our = w
(analitico), v uma drbita periddica de X passando por um ponto p e ¥ uma se¢do transver-
sal de X em My. Definimos a aplicagao de Poincaré 11 : ¥y — X como a funcdao de
primeiro retorno do fluxo em 3, isto €, para cada ponto de Y pertencente a uma orbita
suficientemente proxima de p, a aplicagao de Poincaré fornece o primeiro ponto em que

a orbita intercepta X num tempo positivo.

Vale ressaltar que, na defini¢ao acima >y ¢ escolhido suficientemente pequeno de modo

que a aplicagao II esteja definida em todos os pontos em .

Proposicao 2.1.4. Seja X um campo vetorial de classe C", com r > 1 our = w
(analitico). Entao, a aplica¢ao de primeiro retorno 11(x) associada a uma orbita fechada

v de X, numa vizinhanga da origem, € um difeomorfismo de classe C" sobre sua imagem

2.

Demonstracao. Seja a aplicagao de primeiro retorno II : ¥y — >, conforme Definigao

2.1.3, com Y uma segao transversal de X.

Seja V uma vizinhanca da origem, dada pelo Corolério 1.2.4. Como ¢(79, p) = p, existe
uma vizinhanga ¥ de p em X, tal que ¢(79,q) € V para todo ¢ € ¥y. Seja & : V — ¥ a
aplicagao definida no Coroléario 1.2.4. Denotemos II : g — %, II(q) = &((70,9))-

Uma outra expressao para a Aplicagao de Poincaré é I1(q) = (10 + 7(¢(70,9)), q),
onde 7 : V. — R é o tempo 7(z) que leva a orbita por z em V para interceptar 3. Do

Teorema da Fungao Implicita, segue que 7 é de classe C.

Destas expressoes, resulta que II é da mesma classe de diferenciabilidade de X.
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A aplicacao inversa II7! : ¥ — ¥ de II é definida tomando-se o campo —X.

Logo, segue que II é um difeomorfismo de classe C". ]

Proposicao 2.1.5. [5] Seja o sistema diferencial analitico planar da forma (2.0.1), e seja

Yo uma orbita fechada de periodo T > 0 deste sistema, parametrizada por

Entao, a derivada da aplicagao de Poincaré ao longo de uma segao transversal normal

alo={xeR?:2="(t) —7(0),0<t <7}, emz=0, é dada por:

T

IT'(0) = exp /[Px'(sO(S)’@/J(S)) +Qy(p(s), ¥(s))l ds | . (2.1.10)

0

Para demonstrarmos esta proposicao, usaremos o seguinte lema:

Lema 2.1.6. Sejam o sistema diferencial analitico planar da forma (2.0.1), e 7o uma
orbita fechada de periodo T > 0 deste sistema. Se § > 0 € suficientemente pequeno, entao
nenhum par de segmentos de retas normais passando por dois pontos distintos de g possui

pontos em comum.

A demonstragao deste lema pode ser verificada em [5] (Appendix, subsection 4, pp.
470 — 471).

Podemos agora, proceder a demonstragao da Proposic¢ao 2.1.5:

Demonstragao. (Proposicao 2.1.5). Conforme discutido na Segao 2.1.1, sejam [ se¢ao

transversal de (2.0.1) passando pelo ponto My da curva fechada g, e f(s; so, 7o) solugdo
da Eq. (2.1.8).

Como s é crescente em t, é claro que a aplicacao de primeiro retorno de Poincaré, I1, na
secao transversal [ é f(7,0,n9). De fato, conforme observagao feita na Proposigao 2.1.1,
em termos geométricos, f(7,0,n0) indica o primeiro ponto em que uma 6rbita intercepta

a segao transversal [ em tempo positivo (de fato, em ¢t = 7). Portanto,

II(ng) = f(7,0,no). (2.1.11)
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Como n = 0 é uma solucdo da Eq. (2.1.8), segue que
I1(0) = f(r;0,0) = 0. (2.1.12)

Por definicao, f(s;0,mn9) é uma solugao da Eq. (2.1.8). Logo,

df (s;0,ng)

ds :R(8>f(8;07n0))'

Diferenciando com respeito a ng, obtemos

0 (df(s;0,n0)\  OR(s, f(5;0,n0)) 0f(s;0,n0)
Ong ( ds ) on Ing

Como R(s,n) é uma func¢do continua com derivada parcial continua com respeito a n, a
derivada mista no primeiro membro da Eq. (2.1.13) é continua e independe da ordem de

diferenciagao - cf. [46], Teorema 17, p. 197. Assim, podemos escrever:

i af(8707n0) — aR(‘S?f(S;O?nO)) af(S’[)?nO) (2 1 13)
ds Ono on ong o
Por defini¢ao, f(0;0,n9) = ny. Portanto,
Of(s:0mo) |y (2.1.14)
8710 s=0

Tomando ny = 0 na Eq. (2.1.13) e integrando com a condi¢ao inicial (2.1.14), obtemos

s

_ OR(s, f(5:0,0))
no:o—exp / o ds | . (2.1.15)

J0f(s;0,n0)

8n0

0

OR(s,0
Por (2.1.12), segue quef(s;0,0) = 0. Assim, o integrando em (2.1.15) é igual a 8(8’ )
n
Por outro lado, diferenciando (2.1.8) com respeito a n resulta em:
OR(s,n) _~[Pagn + Pyl + Q0 + Quinld, — P, + Q25, |
o W (A
on Pyr = Qe (2.1.16)

L PU-Qe 0
(P, — Q)2 On

(P, — Qp,,)
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onde P = P(p,v), P. = P.(p,1), e assim por diante.

De (2.1.5) segue que, para n = 0, P(g,¥)V, — Q(p,1)@, = 0. Consequentemente,

para n = 0, apenas a primeira fra¢do permanece no lado direito da Eq. (2.1.16). Temos

g_f = P(p(s),1(s)), aa—f = Q(p(s), ¥(s))-

Diferenciando com respeito a s, obtemos
©"(s) = Prp(s), ¥(s))#(s) + Pylp(s), (s))'(s),
U(s) = Qu(e(s),1(s))¢'(s) + @, (0(s), ¥ (s))¢'(s).
Logo,

Py(p(s), ()P (s) = ¢"(s) = Polep(s), ¢(s))¢ (s),

(2.1.17)
Q,((s), v ()’ (s) = ¥"(s) — Qe(s), ¥(s))¢'(s).

Tomando n = 0 em (2.1.16) e usando (2.1.2), (2.1.5), e (2.1.17), obtemos apds algumas

manipulacoes algébricas simples:

IR0 _ ol wls) + @y fols) 0(s)) — 220

O primeiro membro desta tltima relagao é o integrando de (2.1.15). Portanto,

8f(3, 07 TLO)
ong

_=ew (/ (P + Q) — (@ + [ (o))} ds)
o= 0 (2.1.18)

/ 2 / 2 s
- [[Z/E% 1 ﬁ’i/g]t exp ( / [P (p(5), ¥(5)) + @y (p(s),1(s))] ds)

0

De (2.1.11) e (2.1.18), tomando s = 7 e lembrando que as fungdes ¢ e ¥ e suas

respectivas derivadas sao periodicas, obtemos a expressao para IT'(0):

df(7;0,np)

I1'(0) = g

. = exp (/[RQ(%O(S)W(S)) + Q;(@(s)7¢(3))] ds)

0
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Nosso proximo passo é definir a fungao sucessao a partir da aplicacao de Poincaré e

estudar suas propriedades.

Funcao sucessao

Definigao 2.1.7. Seja Il(x) a aplicagao de primeiro retorno para uma orbita fechada

de um sistema diferencial analitico (2.0.1). Definimos a fungao sucessao como sendo

Apresentamos a seguir, algumas propriedades da fungao sucessao, relativas a sistemas
diferenciais analiticos da forma (1.2.1), isto ¢, sistemas em que a origem é um ponto singu-
lar isolado nao degenerado, e os autovalores de sua parte linear na origem sao complexos
conjugados A\;» = a £ i, § # 0 (vide Proposicao 1.2.8).

Seja um sistema diferencial analitico da forma (1.2.1). Efetuando-se mudanca de

coordenadas polares

= 0
v = peos(?), (2.1.19)
y = psen(0)
segue que & = pcos(f) — Opsen() e § = psen(d) + Opcos(d), onde & = —, valendo a

dt

mesma notacao para as demais variaveis. Assim,

p =i cos(6) + ysen(0)
2.1.19

(119 cos(0)(apcos(0) — Bpsen(d) + F(pcos(), psen(h)))
+ sen(0)(Bpcos(f) + apsen(d) + G(pcos(d), psen(d))).

Denotando F'(pcos(#), psen(f)) :== F(p,0) e G(pcos(0), psen(d)) := G(p,0) e efetuando

calculos simples, obtemos:

p=ap+ F(p,0)cos(d) + G(p,0)sen(d) = ®(p,0)
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Analogamente,
pb = — i sen(0) + v cos(6)
= —sen(f)(apcos() — Bpsen(d) + F(p,0))+
+ cos(0)(Bpcos(f) + apsen(d) + G(p,0)).
Logo,

N cos(9)G(p,0)  sen(6)F(p,0)
p p

6=p =B+ V(p.0)

Obtemos, deste modo, o seguinte sistema diferencial analitico:

dp
—_— = @
dt <p7 9)7
(2.1.20)
do
i 7}
o B+ ¥(p,0)

onde

O(p,0) = ap+ F(pcos(9), psen(d)) cos(f) + G(pcos(f), psen(d)) sen(h),

G(pcos(0), psen(6)) cos(6) — F(pcos(0), psen(d))
p p

sen(6).

U(p,0) =

Assumiremos que V(0,0) =0, —oo < 6 < +00. Esta condigdo garante a continuidade da
funcao V.
Usando argumentos semelhantes aos empregados na obtengao da Eq. (2.1.8) (vide

se¢do 2.1.1), o sistema (2.1.20) pode ser reduzido para:

dp _ 9(p0)
= R(p.0) = EETINIE (2.1.21)

O sistema (2.1.20) e a Eq. (2.1.21) s@o considerados na faixa —p* < p < 4+p* do plano
(p,0), onde p* é um inteiro positivo suficientemente pequeno.
Efetuando-se calculos simples, constatamos que a fungdo R(p, ) tem derivada parcial

continua com respeito a p em toda a faixa definida acima, e

(2.1.22)
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para todo valor de 6.

Podemos entao, aplicar os Teorema de Fxisténcia e Unicidade e Teorema da Dependén-
cia Continua em Relagdo as Condigdes Iniciais a Eq. (2.1.21), na faixa —p* < p < +p*.

Logo, para quaisquer 6y e po, |po| < p*, existe uma tnica solugao de (2.1.21):

p=f(0,6,p)

satisfazendo a condigao
f(0o, 60, po) = po. (2.1.23)

Convém salientar que, a solugao acima esté definida em algum intervalo (maximal)

(61, 02) contendo o ponto #y. Além disso,
f(0:65,0) =0 (2.1.24)

e assim, p = 0 é uma solugao de (2.1.21).

Por definicao, f(6;0, py) satisfaz 7

= R(f(ga 07 pO)a 9)

Agora, aplicando argumentos semelhantes aqueles empregados na demonstracao da

Proposicao 2.1.5, obtemos:

af(0;0,0)) o

E importante destacar que a Eq. (2.1.21) ndo é afetada pela substituicdo simultanea
de p por —p e de 0 por 6 + . Mais precisamente, se p = p(6) é uma solugao de (2.1.21),

d
P R(p*,6"). De fato,

ese p*=—pel* =0+ m, entao 0

Ao _dp _ _dp

— o — Q — * 9*

A dltima igualdade segue diretamente de (2.1.20) e (2.1.21). Logo, se p = p(f) ¢ uma
solugao da Eq. (2.1.21), entao

d(—p)

cl(€—+7r) = R(—p,0+m) = —R(p,0). (2.1.26)
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De maneira analoga a segao 2.1.1, podemos definir a aplicagdo de primeiro retorno

sobre o raio # = 6y, como

Mg, (po) = foo(p0) = f (6o + 27; 6o, po) (2.1.27)

Portanto, a funcao sucessao é dada por

doy (P0) = foo(po) — po (2.1.28)

Em muitos casos, ndo ha prejuizo em tomarmos 6y = 0 (bastando para isso, fazer uma
rotagdo de 6y no sistema). Entdo, em geral, podemos tomar a aplicacao de Poincaré e a

funcao sucessao como sendo, respectivamente

I(po) = f(2m;0, po)

(2.1.29)
d(po) = IL(po) — po = f(2m;0, po) — po.

Proposicao 2.1.8. Sejam um sistema diferencial analitico da forma (2.1.20) (expressio
de (1.2.1) em coordenadas polares), tal que a origem seja um ponto singular isolado nao de-
generado, I(py) a fungao de primeiro retorno deste sistema definida numa se¢ao transver-
sal 32, e d(po) a fungao sucessao. Entao a derivada da fungao sucessio ao longo da segao

transversal, na origem, vale d'(0) = exp (27?%) — 1.

Demonstracao. As expressoes da aplicacao de primeiro retorno e da fungao sucessao

sdo dadas por (2.1.29). Derivando essas expressoes em relagao a py obtemos:

/ 8f(27r, 07 /)0)
Il (py) = L= P0)
(p0) 8o
, 9f(2m; 0, po)
d(py) = HLEL PO g
(p0) 9o
Para py = 0, e usando (2.1.25), segue que
, df(2m;0,0) ( a)
d0)=——F—1=exp|2n— | — 1.
(0) o P25
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Desta proposicao, segue imediatamente que a expressao da derivada da aplicacao de
e . ..
primeiro retorno em zero vale II'(0) = exp ZWB . Além disso, para sistemas diferenciais

analiticos da forma (1.2.1), com autovalores puramente imaginarios, isto é, com a =
0, 5 # 0, segue que as expressoes das derivadas da aplicagdo de primeiro retorno e da

fungao sucessao, em zero, se reduzem respectivamente a II'(0) = 1, e d’(0) = 0.

Proposicao 2.1.9. Sejam um sistema diferencial analitico da forma (2.1.20) (expressao
de (1.2.1) em coordenadas polares), dg,(po) a fungao sucessao sobre o raio 0 = 6y, e

p = p(0) uma solugao de (2.1.21). Entao

d90(_p) = _d90+7r(p) = _f(HO + 3m; 600 + , P) + p.

Demonstragao. Por (2.1.28), segue que

dgy(—po) = f (6o + 27360, —po) — (—po), (2.1.30)

onde p = f(0; 6y, —po) € solugao da Eq. (2.1.21) para as condigoes iniciais 0 = 6y, p = —po.

Considere a solucao da Eq. (2.1.26) para condi¢oes iniciais p* = —p = pg, 0* = 0+ =

0y + w. Esta solugao tem a forma:

pr=—p=f(0"00+m po) = f(0+ 700+, po).
Portanto, para as condigoes iniciais particulares escolhidas p = —f(0 + m; 6y + 7, po). Mas

a condig¢ao p* = pg, para 0* = 0y + w é equivalente a condigao p = —py para 0 = 6. Em

virtude do Teorema de FExisténcia e Unicidade,
—f(@+ 700+ 7, p0) = f(0;60,—po). (2.1.31)
Por (2.1.30), (2.1.31), (2.1.27) e (2.1.28), segue que

dgy(—po) = f(0o + 275600, —po) — (—po) = —f (6o + 3m; 60 + 7, po) + po
= —[foo+=(p0) — po] = —doy 4= (p0)-

Substituindo p por pg, obtemos a expressao desejada. |
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Proposicao 2.1.10. Nas condigoes da proposicao anterior, se existir ry > 0 tal que, para
todo p, 0 < |p| < r1, dgy(p) > 0 (dg,(p) < 0), entao também existe ro > 0 tal que para

todo p, 0 < |p| < 12, dpy(—p) < 0 (dg,(—p) > 0, respectivamente). Portanto, para todo

p, 0 < |p| <r=min(ry,rs), vale dg,(p)de,(—p) < 0.

Demonstragao. Faremos a demonstragao para o caso em que para todo p, 0 < p < ry,

dg,(p) > 0. O caso dp,(p) < 0 é analogo.

Seja 3 uma sec¢ao transversal local parametrizada por (p,0), 0 < p < 7y, 0 = 6.
Entao, todas as orbitas do sistema (1.2.1), passando pelos pontos da forma (6, p), nao
sao fechadas. De fato, estas orbitas sao espirais que divergem da origem para t — oco.

Logo, todas essas 6rbitas cruzam os raios # =constante, em particular, o raio 6 = 6y + 7.

A aplicagao de primeiro retorno Il . (p) = f(6o + 27; 6y + 7, p) e a fun¢do sucessao
doy+(p) = Igy+r(p) — p est@o a priori definidas para todo p, 0 < |p| < 79, onde 7y ¢ algum

inteiro positivo suficientemente pequeno tal que II e dp,1, estejam bem definidas em ..

Como por hipétese, dg,(p) > 0, segue que para todo p, 0 < |p| < rq, temos dg,(p) >
0. Entao, pela Proposi¢ao 2.1.9, a funcao dg,(—p) = —dg,+(p) esta definida para todo
p, 0 < |p| < ry e é negativa.

Desta forma, para todo p, 0 < |p| < r = min(ry,rs), temos dy,(p)dg,(—p) < 0.

A figura a seguir fornece uma interpretagao geométrica do argumento.

Figura 2.3: Interpretacao geométrica da Prop. 2.1.10
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Proposicao 2.1.11. Nas condi¢oes da proposi¢cao anterior, se existir k tal que
d0)=d"(0)= .. =d"'=0, d"#0, (2.1.32)
entao k € um numero impar.

Demonstragao. Por (2.1.20) e (2.1.21), concluimos que p = 0 ¢ uma solugao do sistema
(2.1.21) e portanto, f(0) = d(0) = 0. Como o sistema (2.1.21) é analitico, pela Proposigao
2.1.4 segue que II e d sao analiticas numa vizinhanca da origem. Usando estes fatos e a

hipotese (2.1.32), segue que a expansao em série de Taylor da funcao sucessao é dada por

d(k)(Po)

Lok ol 1)

d(po) =

Logo, se k for par, d(po) tem o mesmo sinal para todo valor de py suficientemente pequeno,
d™ (po)
|

k deve ser impar. [ |

coincidindo com o sinal de

. Entretanto, isto contradiz a Proposic¢ao 2.1.10. Assim,

2.1.2 Constantes de Lyapunov

Nesta secao, apresentaremos as constantes de Lyapunov, uma das ferramentas fun-
damentais no estudo do problema do centro-foco em sistemas diferenciais com singular-
idades nao degeneradas. Consideramos sistemas da forma (1.2.1), com « = 0, conforme
Proposicao 1.2.8. Observamos que, ap6s mudanca de variaveis e reescalonamento de

tempo convenientes, tais sistemas assumem a forma (1.2.5).

Seja um sistema diferencial analitico da forma (1.2.5), tendo a origem como singu-
laridade nao degenerada (a origem pode ser tomada como ponto singular sem perda de
generalidade, conforme mostrado no Lema 1.2.7), e sua respectiva Aplicagdo de Poincaré,
dada por:

I:UN[0,a) — (0,5),

onde os intervalos [0, «) e (0, 3) sdo subconjuntos do semieixo OX ™.

Para qualquer ponto da forma (x,0) € R?, 0 < z < «, a Aplicacdo de Poincaré fornece

o primeiro retorno (IT(z),0) ao semieixo OX ™, da orbita que passa por (x,0), I1(0) = 0.
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Pela Proposi¢ao 2.1.4, a Aplicagdo de Poincaré do sistema (1.2.1) é analitica numa

vizinhanga U da origem. Além disso, pela Proposi¢ao 2.1.8, I11'(0) = 1.

Entao, a expansao em série de Taylor da Aplicagao de Poincaré, na vizinhanga U da
origem, ¢ dada por:

Mz) =2+ Y Hnn—(!O)x". (2.1.33)

n>2

A Proposigao 2.1.11 assegura que o primeiro termo nao-nulo em (2.1.33), caso exista,
tem grau impar.
11"(0)
n!
por (x,0) é periodica. Como z é um valor qualquer tomado em U N [0, «), com [0, «)

Observe que, se II(x) = =z, isto é, =0, Vn > 2, entdo a oOrbita passando

subconjunto do semieixo OX ™, segue que todas as 6rbitas passando por pontos em U N

[0, ) sado periodicas. Ou seja, a origem é um centro. Por outro lado, se existir k € N*, tal
H?k‘—i—l (O)

2k + 1!
e neste caso, temos um foco. Estas propriedades motivam a seguinte definicao:

que # 0, entao a aplicagao de primeiro retorno nao é igual a fungao identidade

Definicao 2.1.12. [38] O nimero real

H2k+l (O)

para k € N*, é denominado a k-ésima constante de Lyapunov.

Segue das consideragoes acima que, se para algum k£ > 1 temos V3 = V5 = ... =
Vor—1 =0 e Voryq # 0, entdo a origem é um foco. Se por outro lado, todas as constantes
de Lyapunov forem nulas, entao a fungao de primeiro retorno é igual a funcao identidade

e assim, a origem é um centro. Para maiores detalhes, consultar [7].

Para sistemas representados por equagoes da forma (1.2.5), é possivel mostrar que as
constantes de Lyapunov sao polinémios nos coeficientes de F' e G - cf. [5]. Desta forma,
podemos obter as condigoes necessérias para que a origem seja um centro, impondo que

as constantes de Lyapunov sejam nulas.

Vale ressaltar que, no caso em que as fungoes F' e G (Eq. (1.2.5)) sdo polindmios de
grau k fixado, pelo Teorema da Base de Hilbert é necessario calcular apenas um ntmero
finito de constantes de Lyapunov para obter a caracterizacao de uma familia de sistemas

diferenciais. Entretanto, existem obstrucoes significativas nesta abordagem:



2.1 Singularidades nao degeneradas 57

e Obstrugoes computacionais: os algoritmos desenvolvidos para computar as cons-
tantes de Lyapunov precisam manipular extensas e complexas expressoes algébricas,
especialmente para familias de sistemas com uma grande quantidade de paramet-
ros. Mesmo o uso de sofisticadas técnicas, como as ferramentas de algebra simbolica
computacional, ainda nao sao capazes de lidar com a manipulacao algébrica exigida
de maneira satisfatoria. Para ilustrar o tipo e grau das dificuldades encontradas,
considere que para sistemas analiticos genéricos do tipo (1.2.5), V7 é um polinémio
com 526 monoémios nos coeficientes de F' e G, e Vy tem aproximadamente 3800

monomios;

e Obstrucgoes de suficiéncia: o Teorema da Base de Hilbert, embora estabeleca a
existéncia de uma quantidade finita de constantes Lyapunov a serem calculadas para
caracterizacao de um sistema ou familia de sistemas da forma (1.2.5), ndo explicita
que quantidade é essa. Assim, nao temos ideia, na pratica, de quantas constantes
de Lyapunov precisamos calcular para decidir se a singularidade ¢ um foco ou um

centro.

Para ilustrar a complexidade da computacao simbdélica envolvida, chamamos a atencao
para o fato de que, enquanto uma forma geral para a primeira e segunda constantes de
Lyapunov foram obtidas para sistemas analiticos reais planares ja nos anos 40-50 do século
passado - cf. [10], as formas gerais da terceira e quarta constantes de Lyapunov foram
computadas apenas em 2008 - cf. [34], e suas expressoes ocupam cerca de 4 e 45 paginas,

respectivamente.

2.1.3 Algoritmo de Lyapunov

Descreveremos agora, um método computacionalmente mais eficiente - cf. [10, 12].
Este processo, desenvolvido por Lyapunov, é puramente algébrico. A ideia é construir
recursivamente fungoes de Lyapunov que podem ser utilizadas para determinar a estabi-

lidade do ponto singular.

Inicialmente, apresentamos algumas defini¢oes importantes, que serao usadas ao longo

desta secao.

Definicao 2.1.13 (Estabilidade de Lyapunov). Conside um sistema & = f(t,z), onde

f:U — R™ € continua e tal que U C R x R™ € um aberto. Seja p(t) uma dorbita deste
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sistema, definida para todo t > 0. Entdo p(t) é estdvel se Ve > 0,30(¢) > 0 tal que se
Y(t) € uma outra solugdo do sistema e |1(0) — ¢(0)| < J, temos (t) definida para todo
t>0el|(t) —p(t)] <eVt>0.

Definigao 2.1.14 (Estabilidade assintotica). Dizemos que ¢(t) € assintoticamente estdvel
se for estdvel por Liapunov e, além disso, existir um 0 tal que se |(0) — o(0)] < 6 =
Jim 16(0) = o(0)] = 0

Considere H" o espago vetorial dos polindmios homogéneos de grau n nas variaveis x
e .

Seja o sistema:

{mz—y+P@w% (2.1.35)

y=z+Q(z,y).

onde

Ple,y) =Y Pa.y)
Qle.y) = > Qy(a.v)

com Pj, Q; € H’, j > 2. Observe que a origem ¢ uma singularidade isolada de (2.1.35).

Além disso, considere uma funcao V representada formalmente por:

—+00

Vi, y) = %(x2+y2) +Y Vi y) (2.1.36)

=3
onde cada V; € H/, j > 3 e X(z,y) = (—y + P(z,y),z + Q(x,y)) é o campo vetorial
associado ao sistema (2.1.35).

Para determinarmos a estabilidade da origem, analisaremos a derivada de V' na diregao

do campo vetorial X, conforme definicao abaixo:

LxV(z,y)=V(z,y)=VV(z,y) X(z,y). (2.1.37)

Se V(x,y) > 0e V(z,y) =< 0 em alguma vizinhanca da origem, entdao V é chamada

de fungao de Lyapunov para o sistema (2.1.35), em (x,y) = (0,0) - cf. [44].

O teorema a seguir trata da estabilidade do ponto singular para o sistema (2.1.35).
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Teorema 2.1.15. Se V' é uma fun¢io de Lyapunov em (z,y) = (0,0) para o sistema
(2.1.35) em alguma vizinhanga da origem, entdo o ponto de equilibrio na origem € estdvel.

Se, além disso, V < 0, entao a singularidade na origem € assintoticamente estdvel.

A demonstracao deste teorema pode ser encontrada em [16].

A ideia de Lyapunov foi construir recursivamente a fungao V' por meio de sucessivas
aplicagoes do Teorema 2.1.15 ao sistema (2.1.35). Mostraremos que a construgao da fungao
V' produz os coeficientes da expansao de Taylor da fungao sucessao e consequentemente,

fornece as constantes de Lyapunov para o sistema (2.1.35).

Seja o campo vetorial planar R(z,y) = (—y,z) e observe que, se V é uma funcio
definida no plano, entao a derivada de V na direcao do campo vetorial R pode ser vista

como a ac¢ao de um operador diferencial linear em V, definido por:

0 0

Em particular, Lr atua no espago vetorial H" da seguinte forma:

(LRV) (z,y) = —yVa(z,y) + 2V, (z, y).

Aplicando a defini¢do dada pela Eq. (2.1.37), obtemos:

+00 +o00

,CXV(I}y) = (—y+zpj($,y)) <I+Z‘/;x($,y)>
+00 +o00

+ (:r: + Z Q;(z, y)) (y + Y Viy(x, y))

=3

onde os subscritos x e y denotam as derivadas parciais em relagao as respectivas variaveis.
Além disso, se coletarmos os termos do segundo membro desta identidade, de acordo com

seus graus, temos:
LxV(z,y) = xPa(x,y) + yQa(w,y) + (LaV3)(x,y) + O(ll2* + 7). (2.1.38)

com zPs(z,y) + yQa2(z,y) € H>.

As provas dos proximos lemas e teoremas encontram-se em [16].
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Lema 2.1.16. Se n ¢ um inteiro impar, entao Lr : H™ — H™ € um isomorfismo linear.

Pelo Lema 2.1.16, existe algum V3 € H" tal que

(‘CR%)(xvy) = _xP2($7y) - yQQ(fE;y)-

Com esta escolha de V3, os termos de ordem 3 em Eq. (2.1.38) se anulam e portanto

temos:

£XV($, y) :ng,(x,y) + ng(ﬁ,y) + Vz’m(%y)%(%y) + ‘/i%y(xay)Q2(xa y)

- (2.1.39)
+ (LrVa)(2,y) + O([|2* + v°||2).

Lema 2.1.17. Sen = 2k, k € N*, entdo o nicleo da transformacao linear Lr : H™ — H"
tem dimensio um e € gerado por (z* + y?)* € H".
Por este lema, existe um polinémio homogéneo V; € H", tal que a Eq. (2.1.39) assume
a forma:
LxV(a,y) = La(@® + )" + O([l2” +°|3).
onde L, é uma constante com respeito as variaveis x e y.

Se L4 # 0, entao a fungao
1
Viz,y) = 5@ +¢°) + Va(w,y) + V(e y), (2.1.40)

determina a estabilidade da origem. Mais precisamente, se Ly < 0, entao V' é uma funcgao
de Lyapunov em alguma vizinhanca da origem e o ponto de equilibrio ¢ assintoticamente

estavel. Se Ly > 0, entao o ponto de equilibrio é instéavel.

Observacao 2.1.18. FEste resultado sobre estabilidade nao exige que o campo de vetores
X seja analitico. Além disso, os cdlculos formais com V' sao justificados, pois a func¢ao
de Lyapunov dada pela expressao (2.1.40), que € um requisito para aplica¢ao do Teorema

2.1.15, €, de fato, um polindmio.

Por outro lado, se Ly = 0, entao, pelo mesmo procedimento feito anteriormente,
podemos obter uma nova expressao de V', tal que o termo lider de Lx ¢ Lg(z? + y?)® e

assim sucessivamente.

Os teoremas a seguir fornecem resultados bastante tteis com respeito a estabilidade.
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Teorema 2.1.19. Se Ly, = 0, n = 2,.... N, mas Lon,o # 0, entao a estabilidade do
ponto singular na origem estd determinada. Mais precisamente, se Lonio < 0, entao a

origem € assintoticamente estavel. Se Lonio > 0, a origem € instdvel.

Teorema 2.1.20 (Centro de Lyapunov). Se o campo vetorial X ¢é analitico e Lo, =
0, Vn > 2, entao a origem € um centro. Além disso, a série que define V' € convergente
numa vizinhanc¢a da origem e representa uma func¢do cujos conjuntos de nivel contém as

orbitas da equagao diferencial correspondente ao campo X .

Os Teoremas 2.1.19 e 2.1.20 e o algoritmo desenvolvido para calcular a expressao de
V' nos fornecem um método para investigar a estabilidade em sistemas analiticos com

singularidade nao degenerada.

O resultado a seguir nos permite estabelecer uma relagao entre os coeficientes Lo, da

série de V' e a constante de Lyapunov definida em 2.1.12.

Lema 2.1.21. Sejam Vouy1, a € N a k—ésima constante de Lyapunov para o sistema
(2.1.35), e Loy, b > 2 o0s coeficientes de V' construidos como descrito anteriormente. Se

ke N e ng =0,5=1,....k—1, entao Vop_1 = 21 Loy.
O seguinte teorema é consequéncia direta das construgoes feitas até o momento.

Teorema 2.1.22. Seja o sistema diferencial quadrdtico planar

T = /\11’ -y — )\333'2 + (2)\2 + )\5)1@ + )\6]./2,
U =2+ Ay + Aaz? + (203 + M) zy — Aoy,

com Ay = 0. Entao, as trés primeiras constantes de Lyapunov (a menos de uma constante

27 ), nao nulas, sao dadas por:
1. Vi = =X5(A3 — Xg);
2. Vi = XaA(A3 — Xg) (Mg + D3 — Bg);
3. Vs = —=XaM(A3 — Xg)2(A3h — A3 — 2)2).

A seguir, apresentamos os resultados obtidos por Bautin [20] na investigacao dos sis-
temas diferenciais polinomiais de grau 2. Desses estudos, podemos compreender melhor

a observagao anterior a respeito das obstrugoes no estudo de casos mais gerais.
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2.1.4 Campos vetoriais quadraticos no plano

O problema do centro-foco para campos de vetores quadraticos planares foi com-
pletamente solucionado por Frommer [21] e Bautin [10], embora sua investiga¢do tenha
recebido contribuigoes relevantes de diversos outros matematicos (o método de Kapteyn,
por exemplo, que investigou o problema do centro-foco cerca de 20 anos antes de Frommer

e Bautin oferecerem sua solugao, pode ser encontrado em [20] pp. 183-193).

Nesta secao, apresentaremos um teorema devido a Bautin, que possibilita caracterizar
os centros em campos vetoriais quadraticos no plano. Destacamos que o método de-
senvolvido por Bautin permite nao apenas resolver o problema do centro-foco para esses
sistemas, mas oferece ferramentas para investigar a bifurcacao de ciclos limites. Nesta dis-
sertagao, entretanto, nao trataremos desse estudo (o método de Bautin para problemas

de bifurcagao pode ser consultado em [47]).

Counsidere o sistema diferencial:

. 2 2
= + + ,
I. a20I2 a11TyY Clozy2 (2'1_41)
U = baox” + biizy + b2y~
onde
(aw — b01>2 + 4ag1b19 < 0. (2142)

Esta é a forma geral de um sistema diferencial polinomial planar de grau 2, com uma
singularidade isolada na origem, tal que sua parte linear tem um centro em (0, 0). De fato,
é facil ver que a origem é ponto singular de (2.1.41). Mais, se houvessem termos constantes
na Eq. (2.1.41), entdo (0,0) ndo seria ponto singular do sistema. Por outro lado, da
condigao (2.1.42) segue que a parte linear de Eq. (2.1.41) tem autovalores complexos
conjugados A\ o = ax1i3, B # 0.

Deste modo, a Eq. (2.1.41) satisfaz as hipoteses da Proposigao 1.2.8, podendo ser

escrita na forma: %
pri a¢ — Bn+ A + Anin + Axn’,

d
d_Z = B¢ + an + Be(* + Bii(n + Boan®.
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Efetuando uma mudanca de coordenadas do tipo homotetia-rotacao

x = h¢ + k),
y = —k(+ hn

os termos de primeiro grau do sistema permanecem invariantes. O sistema, entao, assume

a seguinte forma:

dx

i = axr — By + Aéoxz + Afyzy + A82y2,
dy . B* 2 B* B* 2
ar = Bz + ay + Byyz” + Biywy + By

E possivel escolher h e k tais que By, + Bj, = 0, a menos que Bog + Bog = Agg + Aga = 0
(para maiores detalhes consultar [20] pp. 184-193), de tal forma que o sistema finalmente

pode ser escrito como

d
d_f =Mz —y — A2 + (22 + As)zy + Agy® = P(z,y),
(2.1.43)
d
d_?i = 24+ My + Aox? 4+ (20 + M)y — Aoy? = Q(x,y).
onde BT =t, A\ = %, B # 0 por (2.1.42).

Os coeficientes A4, A5 sao introduzidos na equagao da forma dada para simplificar as

condigcoes para um centro na origem.

Portanto, o sistema diferencial planar de grau 2 (2.1.41), com uma singularidade iso-
lada na origem e que satisfaz a condi¢ao (2.1.42), pode ser transformado em um sistema,

da forma (2.1.43). De agora em diante, vamos nos referir a esta forma.

Teorema 2.1.23 (Teorema de Bautin). [10/ A origem do sistema (2.1.43) é um centro

se, e somente se, uma das sequintes condigoes for satisfeita:

1. )\1:(), )\3—)\6:0;
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4. M =X = A+ 5(A3 — Xg) = A3hg — A3 — 2A§ = 0.

A demonstragao completa deste teorema pode ser encontrada em [10, 20, 12].
A seguir, discutimos algumas etapas da demonstracao.

Suponhamos inicialmente, que a origem do sistema (2.1.43) é um centro. Na Secdo
2.1.2, mostramos a relagao entre as constantes de Lyapunov e os coeficientes da expan-
sao da série de Taylor da Aplicagdo de Poincaré. Se a origem do sistema é um centro,
entdo pela expressao (2.1.33), segue que a aplica¢do de primeiro retorno ¢ a identidade.
Consequentemente, as constantes de Lyapunov sao todas nulas. Em particular, as trés
primeiras constantes de Lyapunov sao nulas, isto ¢, V), = V3 = V5 = 0. Pelo Teorema

2.1.22, as constantes de Lyapunov do sistema (2.1.43) sdao dadas por:

L Vi=—=X5(A3 = Xe);
2. ‘/Eg = )\2)\4()\3 - )\6)()\4 -+ 5)\3 - 5)\6>7

3. Vs = =XA(As — X6)2(Ashe — A3 — 2X3).

Usando que V; = V3 = V5 = 0, obtemos as quatro condi¢oes dadas no Teorema 2.1.23.
Suponhamos agora, que as condi¢oes 1 — 4 do Teorema 2.1.23 sao satisfeitas.

Escrevendo o sistema (2.1.43) em coordenadas polares x = r cos(6), y = r sen(0):

= M1+ (38X + A5)r?sen(0)cos?(0) + (23 + Ay + Ag)r2sen?(0)cos(0) — Aar?sen?(0)
—A3r?cos3(0),

0= 14 (3)\s+ \y)rsen(h)cos®(8) — (3Ny + As)rsen®(8)cos(8) + \yreos®(6)
—Xersen3(6).

Segue que, numa vizinhanca suficientemente préoxima da origem, a expressao abaixo é

analitica:

dr rh+r*x(0)
gy = & Xy 9.1.44
R(r,0) = 25 == ¥ rya(0) ( )

onde

X1 = — A3c08%(0) + (3Xy + A5)sen(6)cos®(0) + (223 + Ay + Xg)sen?(0)cos(0) — Agysen®(6)
— A3cos*(0),
X2 =33 + Ag)sen(0)cos?(0) — (3A\z + As)sen®(0)cos(0) + Agcos®(0) — Agsen®(0).



2.1 Singularidades nao degeneradas 65

Portanto, podemos expandir R(r, ) em poténcias de r:
R(r,0) = Rir 4+ Ro(0)r* + R3(0)r® + ... . (2.1.45)

onde

Ry = Ay

Ry = x1(0) — Aix2(0);

Ry = (=1)"x1(0)x2(0)"2 + (=1 \ixa (0", k> 2,

isto é, Rr (k > 2) sdo polinomios em sen(f) e cos(f) e nos parametros \;, 1 <i <6.

Se r(0) é uma solugao de (2.1.44), satisfazendo a condigao inicial r(0) = ry, entdo

numa vizinhanga da origem, podemos expandir essa solu¢ao em série de poténcias:
r = v1(0, \)ro + va (0, N)rg + v3(0, \)rp + ... . (2.1.46)
Para 6 = 0, temos r(0) = 1o e desta forma,
o = 7r(0) = v1(0, A\;)ro + v2(0, \)rg + v3(0, \)rp + ...

e consequentemente, v1(0, \;) = 1 e vg(0, \;) = 0 Vk > 2.

Agora, fazendo a substitui¢ao de (2.1.46) em (2.1.45) e comparando os coeficientes das

poténcias de r obtemos:

rdVl

% = UIRI;
d
ave vaRy + 2 By; (2.1.47)
do
dV:
\ d_; = U3R1 + 20102 Ry + U%RZ’)

e assim por diante.

Se 6 = 27w, de Eq. (2.1.46) temos:

7(21) = v1 (27, \i)ro + va (2, Ag)rg + v3 (27, Ay)rp + ... (2.1.48)

A proposicao a seguir nos fornece um resultado importante para completarmos a de-
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monstragao.
Proposicao 2.1.24. As fungoes v (2w, \;), em (2.1.48), sao fungées integrais dos coefi-
cientes A;. Se A\; =0, entao v(2m, \;) se tornam polinémios homogéneos de grau (k —1)

nos parametros \;, i =2, ... ,6. Além disso:

[\]
A
>
I
]
ot
- +
]|
w
S
ot~
N
+
>
flrt
=
Gl

Vg = —%177')\5()\3 - )\6),
?_]5 = 2—117'()\2)\4()\3 - )\6)()\4 + 5)\3 - 5)\6)7
177 = %7‘(}\2)\4()\3 — )\6)2()\3)\6 — 2)\% — )\g)

e 1[1,(3 ) sio fungoes integrais dos ;.

Vale observar que, por recorréncia e pela aplicacao das condi¢oes 1 — 4 do Teorema
2.1.23, obtemos as expressoes de v; a v;. Para a prova de vg, k > 8, sugerimos consultar
[53, 12].

Na Secao 2.1.2, mostramos a relagao entre as constantes de Lyapunov e os coeficientes
da expansao da série de Taylor da aplicagdo de Poincaré (vide (2.1.33)). Observe que as
fungdes v;(27m, \;), @ > 2 definidas acima, sao justamente os coeficientes da expansao da
série de Taylor da aplicagao de Poincaré dada na Eq. (2.1.46), para § = 27. Portanto,
satisfeitas as condigoes 1 —4 do Teorema 2.1.23, segue pela Proposicao 2.1.24 que, todas as

constantes de Lyapunov sao nulas e consequentemente, a origem de (2.1.43) é um centro.

2.2 Singularidades degeneradas linearmente nulas

Singularidades degeneradas podem ser do tipo nilpotente, elementares ou linearmente

nulas - cf. Definicao 1.1.10. Em geral, para pontos singulares degenerados o problema do
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centro-foco pode ser decomposto em duas partes - cf. [1, 38|:

1. problema da monodromia, que consiste em determinar sob quais condi¢oes o ponto

singular ¢ monodroémico;

2. problema da estabilidade, que visa decidir, uma vez conhecido que o ponto singular

¢ monodrémico, se € um centro ou um foco.

De acordo com Andronov at al. [5], pontos singulares elementares podem ser apenas
do tipo sela, no, ou sela-n6 e portanto, nao sao monodrdémicos. O caso de singularidades

nilpotentes sera estudado, em detalhes, no Capitulo 3.

A caracterizacao de centros para pontos singulares degenerados com parte linear iden-
ticamente nula ainda é um caso em aberto. Os resultados obtidos até o momento se

referem a familias especificas de sistemas diferenciais - cf. [38, 24, 9].

Em geral, a investigacao do problema do centro-foco para este tipo de singularidade se
divide em duas modalidades, dependendo da existéncia ou nao de dire¢oes caracteristicas.
No caso em que o ponto singular nao tem dire¢oes caracteristicas, sua estabilidade pode
ser investigada por meio de ferramentas como as constantes de Lyapunov generalizadas,
dentre outras. As principais dificuldades que surgem sao do tipo computacional - cf.
[27]. Na presenga de diregoes caracteristicas, diversas técnicas vem sendo desenvolvidas,
mas nenhuma tao eficiente quanto as técnicas usadas nos casos de singularidades nao

degeneradas e nilpotentes - cf. [38].
Apresentamos a seguir, alguns resultados extraidos de [29].

Seja p uma singularidade degenerada com parte linear identicamente nula que, sem
perda de generalidade, consideraremos como sendo a origem, de um sistema diferencial

analitico. Entao, de acordo com a Proposicao 1.2.11, este sistema pode ser escrito na
z = F(x,y),
_ () (2.2.1)
y =Glz,y),

onde F(x,y) e G(z,y) sao fungdes analiticas numa vizinhanga da origem, com F'(0,0) =
G(0,0) = DF(0,0) = DG(0,0) = 0.

forma

No que se segue, um centro de um sistema diferencial analitico em R? é chamado de

degenerado se puder ser escrito na forma (2.2.1).

Com base nos resultados que serao posteriormente apresentados na Se¢ao 3.2, para os

chamados centros nilpotentes, apresentamos a seguinte defini¢ao:
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Definigao 2.2.1. Suponhamos que a origem do sistema diferencial analitico (2.2.1) seja
um centro. Dizemos que este sistema € limite de centros lineares se existem fungoes
analiticas G1 e Gy em x,y, e, sem termos constantes e lineares em x e y, tais que o

sistema

T =cey+ Fi(z,y) +eGi(z,y,¢), y=—cx+ Fy(x,y)+eGs(x,y,¢) (2.2.2)

tem um centro linear na origem, para todo € # 0 suficientemente pequeno.

A partir desta definigdo, enunciamos o seguinte teorema:

-

Teorema 2.2.2. Suponha que a origem do sistema diferencial analitico real (2.2.1) é
monodromica, e que o sistema € limite de centros lineares da forma (2.2.2). Suponha
ainda que nao existe ponto singular de (2.2.2) tendendo para a origem, quando € tende a

zero. Entao, o sistema (2.2.1) tem um centro na origem.

A demonstragao deste teorema é analoga aquela do Teorema 3.2.5, da Secao 3.2. A
condigao de auséncia de pontos singulares tendendo & origem, quando € tende a zero,
pode ser facilmente verificada usando os termos de menor ordem do sistema perturbado
(2.2.2).

Uma das dificuldades na investigacao do problema do centro-foco para este tipo de
singularidades vem do fato de que este problema pode nao ser algebricamente solivel,
isto é, pode nao existir uma sequéncia infinita de expressoes polinomiais independentes
envolvendo os coeficientes do sistema, de tal forma que seu anulamento simultaneo garanta

a existéncia de um centro - cf. [32].
O proximo resultado trata de centros degenerados que sao limite de centros lineares.
Teorema 2.2.3. Para um centro analitico degenerado, as sequintes afirmacoes sao vdli-

das:

(a) Um centro degenerado hamiltoniano é sempre limite de centros hamiltonianos line-

ares;

(b) Um centro degenerado reversivel no tempo é sempre limite de centros lineares rever-

stveis no tempo;
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(c) Ezistem centros degenerados que nao sao hamiltonianos ou reversiveis no tempo,

que sao limite de centros lineares;
(d) Centros degenerados insoliveis algebricamente nao sao limite de centros lineares;

(e) Existem centros degenerados soliveis algebricamente que néao sao limite de centros

lineares;
(f) Ezistem centros degenerados com diregcoes caracteristicas que sao limite de centros

degenerados sem diregoes caracteristicas.

A demonstragao deste teorema encontra-se em [29].

Como mencionamos anteriormente, ha vérios outros resultados que tratam do estudo

de centros linearmente nulos e nao sao discutidos nesta dissertacao.
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Capitulo

3

Problema do centro-foco:

singularidades nilpotentes

Neste capitulo, vamos investigar detalhadamente o problema do centro-foco em sis-
temas diferenciais analiticos com singularidades nilpotentes. Este problema ainda é bas-
tante estudado, uma vez que, nao existe até o momento, um algoritmo comparavel ao
método de Lyapunov usado no estudo de campos com singularidades nao-degeneradas -
cf. [29].

Duas técnicas bastante distintas serao apresentadas. A primeira, desenvolvida por
Alvarez & Gasull - cf. [1, 2|, utiliza a teoria das formas normais, e aborda o problema da
maneira classica, dividindo-o na investigagao da monodromia e no estudo da estabilidade.
O segundo método, devido a Giacomini, Giné & Llibre - cf. [29], investiga os sistemas
diferenciais analiticos com centros nilpotentes como limite de sistemas com centros do

tipo linear.

3.1 Método de Alvarez-Gasull

Conforme mencionado no Capitulo 2, para pontos singulares degenerados, o problema

do centro-foco usualmente é decomposto em duas partes:
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1. problema da monodromia, que consiste em determinar sob quais condi¢oes o ponto

singular ¢ monodrdémico;

2. problema da estabilidade, que visa decidir, uma vez conhecido que o ponto singular

¢ monodrémico, se € um centro ou um foco.

O problema da monodromia para pontos singulares deste tipo foi solucionado por Andreev
[3], em 1958 e o problema da estabilidade por Moussu [41], em 1982. Nas proximas segoes,
discutimos cada um destes problemas, apresentando demonstracoes mais elegantes dos
teoremas de Andreev e Moussu, que utilizam a teoria das formas normais e a técnica de

blow-up (1,n)-quasehomogéneo, dentre outros.

3.1.1 Problema da monodromia

A solugao para o problema da monodromia, determinada por Andreev [3|, consiste em
analisar todas as possiveis configuracoes topoldgicas que um sistema diferencial nao-linear
planar, com singularidade degenerada nilpotente, pode assumir numa vizinhanca desta
singularidade. Esta andlise extensiva permitiu a Andreev obter condi¢oes necessérias e

suficientes para caracterizagao da monodromia.

A demonstracao deste resultado, apesar de classica, é um tanto extensa e trabalhosa.
Optamos, entdo, por uma demonstracao mais elegante e curta, obtida por Alvarez e Gasull
[1] em 2005.

Seja o sistema diferencial analitico no plano

{ & =Pla,y), (3.1.1)
y =Q(x,y),

e seja p um ponto singular nilpotente deste sistema. Sem perda de generalidade, podemos
assumir que p é a origem (vide Lema 1.2.7). Pela Proposigao 1.2.10, o sistema (3.1.1)

pode ser escrito na forma

{ & o=y+ Xo(z,y), (3.1.2)

y = }/é(xvy)a

onde Xs, Y5 s@o fungoes analiticas cujas séries de poténcias comecam, pelo menos, com

termos de grau 2. Entao, vale o seguinte resultado:
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Teorema 3.1.1 (Teorema da Monodromia para Singularidades Nilpotentes). [3/

Considere o sistema (3.1.2), e assuma que a origem seja uma singularidade isolada. De-

fina as funcoes:

f(@) = Ya(x, F(x))
= az® + O(||z]|**h), a # 0, a > 2

d(x) = div(y + Xo(z,y), Ya(z,y)) ’y:F(z)

Ny + Xo(w,y)) | OYa(z,y))
Ox * dy }

y=F(x)

onde ¢(x) = bz +O(||z]|P*1), b#0, B>1oud =0. A funcioy = F(z) € a solugio de
y + Xa(z,y) = 0 passando por (0,0).
Entao, a origem de (3.1.2) é monodromica se, e somenle se, a é negativo, o € um

nidmero natural impar (o = 2n — 1, para algum n), e vale uma das trés condigoes abaizo:

(7') B>n_1;
(ii) B=n—1eb*+4an < 0;
(iii) ¢ = 0.

Este teorema, que é o principal resultado desta secao, caracteriza a monodromia de
singularidades isoladas em sistemas nilpotentes. Para sua demonstracao, sao necessarias

algumas ferramentas adicionais que apresentamos a seguir.

Definigao 3.1.2. [6/ Seja f : R™ — R™ uma fun¢ao diferencidvel, tal que f(0) = 0, e
seja p um valor reqular numa vizinhanc¢a da origem. Definimos o indice de f na origem

como sendo

indy(f) = Z sgn(Jy(z))

zER™ :zef~1(p)
onde J¢(x) denota o determinante da matriz jacobiana de f no ponto x e sgn € a fungao

sinal.

O proximo resultado, devido a Poincaré - cf. 6], simplifica o calculo do indice no caso

planar.
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Proposicao 3.1.3. Seja C uma curva fechada simples em R? e X um campo vetorial
definido em uma regiao aberta simplesmente conexa de R? contendo C. Seja L uma reta
do plano. Suponha que existe um niumero finito de pontos My, k =1, ...,n de C tais que o
vetor X(My) € paralelo a L. Seja M uwm ponto que percorre a curva C' no sentido hordrio
e p (respectivamente q) o nimero de pontos My, tais que X(M) intercepta a dire¢io L no
sentido hordrio (respectivamente no sentido anti-hordrio). Entao, o indice de X em C' €
Z%. Adicionalmente, o indice de X em qualquer ponto critico isolado p € o indice de

X em qualquer curva fechada simples que nao possui pontos criticos sobre seu trago e que

contém apenas o ponto critico p em seu interior.

Exemplo 3.1.4. O indice de um campo vetorial analitico em um ponto critico isolado

monodréomico € +1.

De fato, numa vizinhanca suficientemente pequena de um ponto critico isolado mo-
nodrémico de um campo vetorial analitico, as orbitas nao possuem direcao caracteristica
(observe que, de acordo com [33], uma singularidade monodréomica de um campo vetorial

analitico é um centro ou um foco).

Logo, tomando-se qualquer curva fechada simples v na vizinhanca do ponto critico e
fixada uma diregao L, ao percorrermos esta curva com um ponto M no sentido hordrio,
existirao sempre apenas dois pontos My e My na curva tais que X(M) intercepta a dire¢do
L no sentido hordrio, e nenhum ponto em que X(M) intercepta a diregao L no sentido
anti-hordrio, de modo que p =2 e ¢ = 0. Ou seja, o indice € +1. A figura a sequir ilustra

o procedimento:

sentido da . Ly X{MQ
trajetoria Y .

do ponto
]

Figura 3.1: Indice de um campo vetorial analitico com monodromia
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O proximo lema nos mostra como a técnica de blow-up (1,n)-quasehomogéneo - cf.

1.4, é eficiente no estudo do problema do centro-foco.

Lema 3.1.5. Considere o sequinte sistema diferencial planar

& =y(=1+Xi(z,y)),

(3.1.3)
g = flz)+ o(x)y + Yo(z,y)y?,

onde

Xi(z,y) = ) dya'y’,

i+j5>1
f(x) _ $2n—l + Zaix%ﬂ-i,
>0
p(x) = b’ + Y b’
i>1

Yo(z,y) = Z eij$iyj7

i+520

com 8 > 1 um nimero natural arbitrdario. Tome o valor de n dado pela expressao f(x) =

2 O([l]*).

Entao, a expressao de (3.1.3) em coordenadas (1,n)—quasehomogéneas - ver (1.4.7) -

€ dada por:

7= Pu0)r7 + Po(O)r™ o+ P3(0)r™ T+ Pa(0)r" T + O(|lr|" ),

. (3.1.4)
0 = Q1(0)r" + Q2(0)r™ + Q3(0)r™ ™ + O(||r||"*2),

onde P;(0) = P;(Cs(6),Sn(0)), para i = 1,....4, e Q;(0) = Qi(Cs(0),Sn(0)), para i =

1,...,3 sao definidos como se seque:
Pi(z,y) = X{ng}bwﬁy%
Py(z,y) = (ag + dio)z™"y + /'\‘/{B:n}bﬂﬁny2 + ey,

Ps(x,y) = (a1 + doo)2” 'y + [Xgnyb1 + Xiponiyb)2"Ty? + e102y® + Xy dor 2™ 'y,
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Py(x,y) = (ag + dso)z”" 2y + [Xs=nyb2 + X(s=ni1301 + X(p=ninblz"T?y* + exa’y?
+Xppoy [d112%"y* 4 e1y?] + sy [dorz®* 1y

Qi(z,y) = 1+ X(p<n_1ybs"t'y,

Qa(z,y) = apz® " + (ego — ndio)xy® + X{g=nybz" 'y,

Qs(z,y) = ax®? + (e19 — ndao)2*y* + [Xip—nybi + Xiponi130]2" 2y — Xjne2)2dp1y®

Demonstragao. Substituindo as expressoes de (1.4.7) e de (3.1.3) em (1.4.8) obtemos

P2l =(r Cs(0))*" " Sn(0)[~1 + Y di;(r Cs(6))'(r" Sn(9))]}
i+j>1
1 Sn(O){(rCs(0)™ ™" + D _ ai(r Cs(0)) ™"
F SO Cs(0)” + 3 bilr Cs(9))]

i>1

+ (7 Sn(B))] Y ey Cs(6)) (7 Sn(0)]}

Efetuando-se os calculos necessérios, chega-se na seguinte expressao:

P o= Z dij’/’n+i+nj Cs2n+i—1(9) Snj—i—l (6) + Z aiTnJriJrl CS2n+i(0> Sn(é))

i+j>1 i>0
+brt CsP(0) Sn®(0) + > bir® T Cs7(0) Sn®(6)
i>1
+ Z eijr"+i+”j+1 Cs'(0)Sn?™3(0)
i+5>0

Destacamos que, considerando-se os indices em cada somatoério, nao existem termos em
r™ na expressao acima. Tomando-se x = Cs(f) e y = Sn(f), obtemos a expressao para 7

apresentada em (3.1.4).

A expressao para 6 é calculada de maneira similar e por isso, vamos omiti-la. |

Lema 3.1.6. O sistema diferencial (3.1.2) pode ser escrito na forma

T = y(l —|—X1(l’,y)),

(3.1.5)
g = flz)+ o(x)y + Yo(z,y)y?,
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com as funcoes f e ¢ definidas no enunciado do Teorema 3.1.1. As funcoes x1 e Yy sao

analiticas na origem. Além disso, X1(0,0) = 0.

Observe que, como a origem ¢é uma singularidade isolada, a fungao f(x) ndo pode ser
identicamente nula. De fato, se f(x) = 0, entao todos os pontos da forma (x,0) seriam
singularidades do sistema (3.1.5), e portanto a origem nao seria singularidade isolada.
Logo, a # 0.

Demonstragao. Mostraremos que a mudanca de coordenadas analitica a seguir, efetua

e 3.1.6
{y:yl‘FF(x)a (310

a transformacgao desejada.

onde y = F(z) é a solugao de y + Xs(z,y) = 0 passando por (0,0)

De fato, aplicando (3.1.6) em (3.1.2), e usando que F(z) = —Xy(z, F(z)), pois y =
F(z) é solugao de y + Xy(z, F(z)) = 0, temos para i:

&=y + F(x) + Xo(z,y1 + F(x))
=y — Xo(w, F(z)) + Xo(z,y1 + F(2))

Xo(z,51 + F(z)) — Xo(z, F(:v))))
n

:?Jl+y1<

Xo(z, 9 + Fl2)) — Xo(z, F(2))

Defina X (x,y;) =
Y1

A funcao X; é analitica. De fato, como X, é analitica por hipétese, podemos obter as
expansoes em séries de Taylor de Xo(z,y1 + F(x)) e Xo(x, F(z)). Nestas séries, os termos

da forma az®, k > 2 sdo idénticos e assim, se cancelam na expressao de X;. Assim,
Xo(z,y1 + F(2)) = Xo(w, F(2)) =y Y @'y,
i+j>1

e portanto,

Xi(z,y1) = Z 'yl

i+j>1
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Para 9, o argumento é semelhante. A seguir, fornecemos um esbog¢o da demonstragao:

i + F(x) = Ya(z, 00 + F(x))
OF (x)
or

= Ya(a, 41 + F(z))

U1 +

& =Ya(z, 91 + F(x))

OF (z)
- Oz

yl[l + Xl(xa y)]

Observe que, como todas as func¢oes na expressao acima sao analiticas, usando suas re-
i 0 érie de Taylor & ivel = 2
spectivas expansoes em série de Taylor é possivel escrever §; = p(z) + y1q(x) + yir(z,y).

Esta forma, entretanto, ndo necessariamente fornece as fungoes ¢(z) e Yy do Lema 3.1.6.

Como y = F(x) & solucao de y + Xs(x, F'(x)) = 0, temos, pelo Teorema da Funcao
ayé(x,FTlﬂ)}l
T
y

Implitica, 82(1‘) = —Xy(z, F(x)) {1
x

-1
Usando que |1+ %’j(@)] = [1 — %f@)) + O(|l(z,v)||?)|, e considerando a
expansao de Ys(x,y; + F(x)) em parcelas respectivamente independente de y;, linear em
y1 e quadrada em y; e rearranjando a expressao de maneira conveniente, obtemos a forma

desejada (3.1.5). n
Procederemos agora a demonstracao do Teorema 3.1.1.

Demonstragao. (Teorema 3.1.1) Distinguimos dois casos, de acordo com a paridade
de a. Em ambos os casos, calcularemos o indice do campo vetorial na origem. Conforme

apresentado no Exemplo 3.1.4, todo ponto critico monodrémico tem indice +1.

Assuma que « seja par. Fazendo uma reparametrizacao, podemos considerar a = 1.
Escolha a curva fechada simples Cs = {2 + 3? = §°}, com § suficientemente pequeno, e

areta L = {z = 0}. Aplicaremos a Proposi¢ao 3.1.3 para calcular o indice na origem.

Primeiramente, observamos que existem apenas dois pontos em Cs com campo vetorial
paralelo a L, M; = (§,0) e My = (—0,0). De fato, para ser paralelo a L, o campo tem
que assumir a forma (0, k), £ # 0. Como X;(0,0) = 0, numa vizinhanga suficientemente
pequena da origem temos (1+ X (x,y)) > 0. Logo, para que & = 0 em (3.1.5), precisamos
ter y = 0. Isso implica que y = f(x) #Z 0. Assim, o campo vetorial associado ao sistema

de equagoes diferenciais (3.1.5) sera paralelo a L se, e somente se, y = 0.

Agora, vamos estudar o campo vetorial na vizinhanga de M;. Para M, o estudo é

analogo.
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Podemos escrever os pontos da curva Cs, numa vizinhanga de M; = (9,0), como M, =
(6 —e,+v20e —€2), 0 < ¢ < §. Como anteriormente, considerando-se uma vizinhanca
suficientemente pequena da origem, temos (1 + X;(z,y)) > 0. Tomando-se os pontos de
Cs em que y > 0, conforme (3.1.5) temos & > 0 e o sinal de y é determinado pelo sinal de

ax®. Como a =1 > 0 e « é par, por hipétese, y > 0.

Assim, se tomarmos 0 < e < § e y > 0, & medida que ¢ diminui (isto é, percorremos a
curva Cs no sentido horario), o campo gira no sentido anti-horério, até que, para e = 0,

temos o ponto M; = (§,0), em que o campo é paralelo a L.

Analogamente, concluimos que o campo gira no sentido horério em torno de Ms.
Portanto, o indice de (3.1.5) na origem é zero e neste caso, a origem nao pode ser mono-

drémica.

Vamos agora assumir que « seja impar. Aplicando a Proposicao 3.1.3 de modo analogo
ao realizado anteriormente, tomando-se a mesma curva fechada simples Cjs e a direcao L,
concluimos que o indice da origem é —sign(a). De fato, para a > 0, a situagdo ¢é idéntica
a anterior, porém o campo em My = (—9,0) teré sentido inverso, pois o sinal de y sera
determinado pelo sinal de x (lembre que o sinal de ¢ é determinado por az®, mas neste
caso, a > 0 e a é impar) , que numa vizinhanga de M, é negativo. Assim, o indice do

campo na origem neste caso sera -1.

Para a < 0, temos ax® < 0 para x > 0 e ax® > 0 para x < 0. Como o sinal de y é
determinado por ax®, nao é dificil de verificar que em M; e M5 o campo gira no sentido

horario. Logo, o indice é igual a +1.

Assim, para « impar, o indice do campo na origem é —sign(a). Portanto, os tnicos
sistemas candidatos a ter a origem como um ponto critico monodroémico sao aqueles com

o impar e a < 0.

Como nem todos os pontos singulares nilpotentes com indice +1 sao monodromicos
- por exemplo, campos vetoriais com singularidade nilpotente do tipo né possuem indice

+1 (- cf. [22] p.116-117) - efetuamos a reparametrizacao:
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renomeando T = x e § = y, obtemos exatamente o sistema (3.1.5), estudado no Lema

3.1.6. Considerando-se as possiveis relagoes entre 5 e n — 1, temos os seguintes casos:

Caso f <n—1. Nesta situagdo, usando as expressoes dadas por (3.1.4) do Lema
3.1.5, temos:

Pi(z,y) = ba"y?;

Py(z,y) = (ao + dio)x™"y;

Py(x,y) = (a1 + doox™ 'y + X{nzz}doﬂ%_l?JZ;

Py(z,y) = (as + dso)z*" Py + Xin=2) [d112*"y + eqy?] + Xin=3} [do1 2" y);
Qi(z,y) = 1+ bz’ Ty,

Q2(x,y) = apz® " + (eoo — ndyo)zy?,

Qs(z,y) = ax®? + (e19 — ndao)z’y* — X{n:2}2d01y3'
onde P;(z,y) = P;(Cs(#),Sn(0)) = P;(#), o mesmo valendo para Q;.
Assim, temos

% X0 i = bCs?(0) Sn2(0)r®+! + O(||r||P*2),
= 7” = .
6 = bCsP () Sn(0)r? + O(||r||P ).

Observe que, nas equagoes (3.1.4), Py, Py, P, sao coeficientes de poténcias de r com ex-
poentes respectivamente n + 1, n + 2, n + 3. Como por hipotese f < n — 1, segue que

n+1>p0+1,i=1,2,3. Procedimento andlogo foi usado para @Q;, i = 2, 3.

Dividindo-se ambas as equacoes por r°:

% _ { = bCs®(0) Sn(0)r + O(||r||?),
6 = bCs"(0) Sn(6) + O(||||).

Fazendo r = 0, obtemos, entao:

7 =0,
0 = bCs”t1(0) Sn(8).
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concluimos que o sistema possui 6 = {0,7/2,7,37/2}, onde T ¢é o periodo das fungoes
Cs(0) e Sn(f), como diregdes caracteristicas. Consequentemente, as trajetorias tendem a,
ou se afastam da origem com direcao definida e portanto, a singularidade nao pode ser

monodromica.

Caso > n — 1 ou ¢ = 0. Aplicando as expressoes dadas por (3.1.4) do Lema 3.1.5,

obtemos:
= Po(0)r" + O(|Ir|"*?),
{ 0 =r"t 4 Q2(0)r™ + O(||r||™*)
Apos divisao por L
= Py (0)r* + O(||r[°),
{ 0 =14 Qa(0)r + O(|r|I"*)

Para r = 0, o sistema nao possui singularidades. Consequentemente, a origem pode ser

um centro ou um nod.

Observamos que as expressoes acima sao validas tanto para a condicao f > n — 1
quanto para ¢ = 0. Neste ultimo caso, usando a expressao de ¢(x) dada em (3.1.3),

tomamos b =b; =0, Vi > 1.

Caso § =n — 1. Analogamente ao efetuado nos dois outros casos, aplicamos as ex-

pressoes dadas por (3.1.4) do Lema 3.1.5 para obtermos:

{ = (b CS(6) S(0)) + POy + O™,
6 ="' (1+bCs™(6) Sn(B)) + Qx(0)r" + O(||r||"*)

Dividindo por 7"~ obtemos:

i =r(bCs’(0) Sn*(0)) + O(|Ir|1?),
0 =1+bCs"(0)Sn(0) + O(||r|)

Para r = 0, considere a func¢ao g(d) =1+ bCs"(6) Sn(0).

Usando a Propriedade 1 da Proposigao 1.4.12, podemos rescrever a fun¢ao como g() =
Cs*™(0) +nSn?*(6) + bCs™(6) Sn(f). Fazendo a substituicio:

Cs"(0) =t,
Sn(0) = w,
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obtemos g(t,w) = t* + nw? + btw z n(%)? +b(%) 4+ 1. Observe que, se Cs"(0) =t = 0,

entdo g(f) =1 #0.

w
O discriminante desta fung¢ao do segundo grau em n & A\ = b — 4n. Distinguimos

entao trés possibilidades:

(i) Se b* —4n < 0, a fungdo g(#) nao se anula. Logo, usando argumento similar ao caso
anterior (8 > n— 1), concluimos que o sistema nao tem diregdes caracteristicas, isto

é, a origem é monodrdmica;

(ii) Se b* —4n > 0, g(f) apresenta quatro zeros simples, ou seja, admite separatrizes e

consequentemente, nao pode ser monodromica .

(iii) Se b* — 4n = 0, entdo g(f) ndo muda de sinal e possui duas raizes duplas. Essas
raizes representam singularidades degeneradas do sistema e para determinar se neste

caso hd monodromia, efetuamos uma analise mais detalhada, a seguir.

Efetuando uma nova mudanca de coordenadas r = z, w = %, o sistema resultante, apos
divisao por 2" ! é: !
& = zw(=1+ O((|(z,w)|),
{ w=1+bw +w? + O(||(z,w)]|).

Observe que o ponto (x,w) = (0, ;71;) é uma singularidade semi-hiperbolica deste sistema.
Esta singularidade, de fato, é do tipo sela-n6. Em particular, para o sistema acima existem
infinitas 6rbitas tendendo a esta singularidade. Em consequéncia, a origem nao pode ser

monodromica.

Desta forma, concluimos que o nico caso de monodromia, para 5 = n — 1, ocorre sob

a condicao b — 4n < 0. n

3.1.2 Constantes de Lyapunov generalizadas

As constantes de Lyapunov generalizadas buscam estender a ideia empregada por
Lyapunov na caracterizac¢ao de centros em sistemas com singularidade nao degeneradas (
- cf. [37]), para sistemas que possuem ponto singular isolado degenerado. Neste trabalho,

vamos nos restringir ao estudo das constantes de Lyapunov generalizadas para pontos
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singulares nilpotentes. O caso de sistemas com pontos singulares linearmente nulos ainda é
um problema em aberto, apesar de ja existirem alguns resultados utilizando constantes de

Lyapunov generalizadas em familias particulares de sistemas (ver por exemplo [38, 24, 9]).

Na segao anterior, mostramos no Lema 3.1.5 que o sistema (3.1.3), em coordenadas
polares, é expresso por (3.1.4). A demonstragao do Teorema 3.1.1 nos assegura que, no
caso monodromico, a componente 6 em (3.1.4) nao se anula em uma vizinhanga do ponto
singular, a excegao deste proprio ponto. Portanto, o sistema diferencial (3.1.4) pode ser

escrito, nesta vizinhanca da origem como:
dr i Ri(0)r (3.1.7)
—_— = i T, .
do —

onde R;(0),1 > 1 sao fungdes T-periddicas, T sendo o periodo das coordenadas (1, n)—qua-
sehomogéneas (vide Definigdo 1.4.10 e Eq. (1.4.7)).

Considere a solug¢ao da Eq. (3.1.7), tal que r = p para § = 0. Podemos escrevé-la

CcOo1mo

r(0,p) = 3 _uil0)s', (3.1.8)

com u1(0) = 1,4;(0) =0, Vi > 2, pois 7(0,p) = p = Zuz(O)p’
i=1
Consequentemente, a aplicacao de primeiro retorno é dada pela série:

H(p) = > w(T)p'.

Para um dado sistema, o tinico termo significativo é o primeiro que faz com que a apli-
cagao de primeiro retorno seja diferente da aplicagao identidade. Este termo determinara
a estabilidade do sistema. Por outro lado, se considerarmos uma familia de sistemas com

dependéncia em parametros, cada um dos u;(T") dependera destes parametros.

Definicao 3.1.7. Definimos a k-ésima constante de Lyapunov generalizada, denotada por
Vi, como sendo o valor de uy(T), assumindo uy(T) =1 e us(T) = ... = up—1(T) = 0. Ou

seja, Vi = up(T), u1(T) =1 e w;(T) =0, Vi,2 <i <m — 1.

Observe que o sistema (3.1.2) tem um centro na origem se, e somente se, II(p) = p,
istoé, Vi=1eV, =0, Vk > 2.
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As constantes de Lyapunov generalizadas também possibilitam investigar bifurcagoes

de ciclos limites a partir da origem. Nao abordaremos este estudo na dissertagao.

3.1.3 Problema da estabilidade

Uma vez solucionado o problema da monodromia, precisamos investigar o problema da
estabilidade, isto é, dado um sistema com singularidade monodroémica nilpotente isolada,

desejamos determinar se esta singularidade é um foco ou um centro.

O problema da estabilidade foi resolvido por Moussu [41], em 1982. Usaremos uma
abordagem distinta da originalmente adotada por Moussu, baseada em artigo de Gasull
& Alvarez [2], de 2006.

Seja um sistema diferencial planar analitico, com singularidade nilpotente p, que, sem
perda de generalidade, assumiremos como sendo a origem (Lema 1.2.7). Pela Proposigao

1.2.10, este sistema pode ser escrito na forma

{ i =—y+ Xs(z,y), (3.1.9)

y = Y2($,y)7

onde X5, Y5 sao fungoes analiticas cujas séries de poténcias comecam em termos de segunda

ordem ou superior.

Takens [51] provou que um sistema com parte linear nilpotente, isto é, sistema da

forma (3.1.9), pode ser formalmente transformado em um sistema Liénard generalizado:

{x - (3.1.10)
y = a(z)+ybx),

onde a(z) = a,_1z* (1 + O(||z)), s > 3 e b(z) com b(0) = 0 séo séries de poténcia
formais. Além do artigo original de Takens [51], a demonstracao deste resultado também

pode ser encontrada em [8|, p.82-83.

Em 2002, Strézyna & Zotadek [50] provaram que esta forma normal pode ser obtida

por meio de mudanca de coordenadas analitica.
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Lema 3.1.8. Numa vizinhanca da origem e apos uma mudanca de coordenadas e repa-

rametriza¢ao do tempo, o sistema (3.1.10)

T = -Y,

j = a(x) +yb(x),

com a(z) = 2" agn_1 + O(||x]))), azn_1 > 0, pode ser transformado em:

T = -y,

| ’-t 4 b (3.1.11)
y == x),

onde b(z) € uma fungao analitica fornecida na demonstragao do lema.

Demonstracao. Efetuamos as seguintes mudangas de coordenadas e reparametrizacao

u= /2n /(:E a(s)ds = ®(z) = v X/as,—1 + O(||2])),

do tempo:

(3.1.12)
dt P (age 2%+ O([lx [P /e
dt; — a(z) azn—1221 + O(||z]|?™)
= ay/ 4+ O(||z])).

Temos entao:

1 _q
du 1 v 2n
ikl 2n< n/o a(s)ds) na(z) &

2n—1

— [at) (20 [ ats)as) o )] ()

(3.1.12) (9
=" a(x) u D (—y).

du du dt

Agora, u' = — = ——.
& dt,  dt dty

Efetuando as substituicoes convenientes, obtemos u' = —y.
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Analogamente, temos:

Sy dy_dyat
dtq dt dt,
u2n—1

= & fa(x) + yb()]

e ey [

Ou seja,

{ u' =y,

v =ut A+ yb(u),

u (@ (u))
(P~ (u))

fungdes analiticas), como desejado.

com b(u) =

fungao analitica numa vizinhanga da origem (composi¢ao de

Proposicao 3.1.9 (Caracterizagao de Centros). Considere o sistema analitico

T = -Y,
(3.1.13)
g ="+ yb(x),

com b(z) = E bja’, e assuma que a origem € uma singularidade monodromica deste
jzB
sistema, isto €, uma das sequintes condi¢oes € satisfeita:

(i) p>n—1,
(i) B=n—1¢ebj—4n <0,
(iii) b(x) = 0.

b(z) + b(—x)

0.
2

Entao, a origem € um centro se, e somente se, b°(x) :=

Demonstragao. Do Teorema 3.1.3, segue que as condi¢oes de monodromia estao satis-

feitas para o sistema (3.1.13).
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Suponha que b°(x) = 0. Aplicando a mudanga de coordenadas x = —Z e a reparame-
trizacao do tempo t = —t, obtemos:
dr drdt  dT ,=—z dx

& drdi At d Y

Analogamente,
dy dydt  dy

At~ dtdt di
Como b°(x) = 0 por hipotese, segue que b(x) = —b(—x) = —b(Z). Portanto,

—% = ()2 4 y(=b(@)) = —(2)*"" — yb(2))

d
Logo, &Y _ gt + yb(z). Ou seja, obtemos o mesmo sistema.

dt
Usando o Critério de Reversibilidade de Poincaré ( - cf. [44], Teorema 6 p.145),

concluimos que a origem do sistema (3.1.13) é um centro.
Reciprocamente, suponha que a origem seja um centro. A prova é feita por contradicao.

Assuma que b¢(x) = 2% (by+O(||z||)), para algum by # 0. Defina b°(z) = b(x) —b(x).
Entao, dado um sistema analitico (3.1.13), podemos construir, a partir deste sistema, o
seguinte sistema

ey (3.1.14)
g = ybo(x).

Observe que o sistema (3.1.14) possui (b°)¢(x) = 0 por construgdo. Ja demonstramos que

sistemas com tal condi¢ao possuem um centro na origem.

Lembremos que, se p € R? é um ponto singular de um sistema diferencial analitico
planar, entao p é um centro se, e somente se, existe uma integral primeira C'* definida
em alguma vizinhanca de p - cf. [39]. Assim, se a origem de (3.1.14) é um centro, entao
existe uma fungao V = V(z,y) : U C R* — R, U uma vizinhanga da origem, tal que

: 0
V(z,y) = k, sdo curvas integrais de (3.1.14). Logo, V (z,y) = a—x + a—y
4 Y

Portanto,

V(w,y) = (=21 = yb*(2))(=y) + (=y) (@™ + yb(«))
= y*a” (b + O(||[]))
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Deste modo, V nio muda de sinal numa vizinhanca da origem. No entanto, pelo Teorema
de Lyapunov - cf. [52], a origem nao pode ser um centro, contradizendo nossa hipotese.

Logo, e segue o resultado. |

Finalmente podemos enunciar o principal teorema desta secao.

Teorema 3.1.10 (Teorema da Estabilidade para Singularidades Nilpotentes e Calculo das
Constantes de Lyapunov Generalizadas). Seja um sistema analitico planar, com uma sin-
gularidade nilpotente monodréomica. Entao, existe uma mudanca de coordenadas analitica,

tal que o sistema pode ser escrito como:

T = -Y,

' v o) (3.1.15)
y =z yb(),

com b(z) =0 ou b(x) = Z bz, bg # 0 e satisfazendo uma das sequintes condigoes:
izB

(i) B>n—1,

(i) B=n—1ebj—4n <0.
Além disso:

1. Se b(z) = bv°(x) + 2% (by + O(||z]])), com by # 0, e b°(x) == M, entdo a

primeira constante de Lyapunov generalizada significativa é:

(a) Vo_pioy = K by, onde ou 5 >n—1, ouf =n—1ef éimpar. K = K(n,l,b,_1)

¢ uma constante positiva fornecida na demonstra¢ao;

2()[371’
ny/4n — b%

2. A origem é um centro se, e somente se, b°(x) = b(x) — b°(x) = 0.

(b) Vi = exp onde f =2l =n—1.

Para provar o Teorema 3.1.10, apresentamos um importante resultado, inspirado em
[19, 54]. Este resultado fornece uma maneira de computar a primeira constante de Lya-
punov significativa para um sistema definido em um cilindro, aproveitando-se de um centro

“nas proximidades” do referido sistema.
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Proposicao 3.1.11. Seja uma equacao diferencial ordindria analitica, da forma

= S.0) + ™ (w(6) + O(Irl)), m > 1, (3.1.10)

definida em um cilindro (r,0) € R x R/[0,T] e assuma que a equagdo

dr
= 5(r,0) = r(5:(0) + O(|I ). (3.0.17)

€ tal que r = 0 € uma solucao periodica, e além disso, que todas as solucoes nas vizinhangas

desta solugdao também sao periddicas (r =0 é um centro).

Entao:

T
(a) se m =1, entio V| = exp (/ v(0) d@) ;
0
(b) se m > 1, entdo

(b.1) Vi =1;
(b.2) Vi=0,Vi=2,..,m—1;e

T
(b.3) Vm:/ v(g)e(m—l)f(fsl(w)dw do.
0

Demonstragao. Por meio de procedimento similar ao realizado em [19, 54|, expressamos

(3.1.16) em um novo sistema de coordenadas (R, ), onde R = F(r,#) uma mudanga de

coordenadas tal que — = 0. Vamos construir esta mudanca de coordenadas.

de
A ideia geométrica ¢ associar a cada ponto da orbita periodica de (3.1.17), o valor da
intersecgao da orbita com a reta § = 0. Mais concretamente, seja ¢ (6; (6y, ro)) a solugdo

de (3.1.17), tal que r = ry, quando 6 = . Entao, definimos:

R=F(0,r) = o(~0; (6,7)), (3.1.18)
a Eq. (3.1.17) se escreve como % = 0.

A inversa da mudanca acima é dada por:

r=G(0; R) = ¢(0; (0, R)), (3.1.19)
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que toma um ponto na reta § = 0 de coordenadas (0, R), e leva ao ponto ¢(0; ¢(0; (0, R))),
da orbita periddica ¢ de (3.1.17). Escrevendo

©(0; (0, R)) = R(u1(0) + O(|| RI|)), (3.1.20)
obtemos ;
u1(0) = exp (/o Sl(w)dw) : (3.1.21)
De fato, como ¢ é solugao da Eq. (3.1.17), temos:
L (o(6: (0, 7)) = (0: 0, R)S:(6) + Ol (6; 0, R) )

que pode ser reescrita, por (3.1.20), como

d%(R(ul(@) +O(|IR]]) = R(ux(9) + O R)S1(0) + O(ll(6; (0, R))|I]

Agora, efetuando a Regra da Cadeia no primeiro membro da equacao acima e usando o
fato que 0 = 0, obtemos, com mais algumas operacoes algébricas simples no segundo

membro, o seguinte resultado:

d
Eul (0) = U1 (0)51 (9)

e integrando a expressao acima, obtemos (3.1.21).

A expressao (3.1.21) prova que (3.1.18) e (3.1.19) sao de mudangas de coordenadas, e

também que

r=G(0,R) = R(ui(0) + O(||R||);

R= ) =7 (s our))

Das relagoes acima, temos:

S =510 = = (o + 0l ) rsu6) = -2 s(0). - (31.2)
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Vamos escrever Eq. (3.1.16) neste novo sistema de coordenadas:

drR _ OF(,r) OF(0,r)dr

do o0 or do
= OO OO0y + v (0t6) + O
_OF(0,r) OF(0,r) oF(,r) . 1
=g T, 80 0) + —— =" (w(0) + O(|r[])] (3.1.23)
e CORTI( A L R0

= R™(ul" " (0)v(0) + O(|| RII))-

Como em 6 = 0 as duas coordenadas r e R coincidem, nés calculamos a aplicagao de
Poincaré de 8§ = 0 até # = T na ultima variavel. Agora, escrevendo a solug¢ao comegando

em R =r = p quando 6 = 0, como

R(6,p) = > wi(6)p', (3.1.24)

i>1

com wy(0) =1 e w;(0) =0, Vi > 1, pois R(0,p) =p = Zwi(O)pi.

i>1
Se m = 1, pelas Eqgs. (3.1.23) e (3.1.24) temos aa—]; = R(v(0) + O(|R])) =

=Y s wi(0)p' (v(8) + O(||R]))). Por outro lado, derivando a Eq. (3.1.24), temos % =

. dw; . .
wi(0)p", w, = —. Igualando estas duas expressoes segue que > w.(0)p' =Y w;(0)p'(v(0)+
; (O)p wi= o T Xp gue ; [(0)p ; (0)p'(v(0)

O(||R|))- Dai, tomando i = 1 resulta em w}(0) = w;(0)v(f) e entao w;(f) pode ser facil-

mente obtida.

Se m > 1, entao efetuando-se operagoes anélogas aquelas do caso anterior temos

> wi(0)p' = (O wi(0)p")" (up"} (0)v(8)+O(||R||)) e portanto, segue que w}(6) = 0, Vi =

i>1 i>1

1,...,m—1. Como wi(0) =1 e w;(0) =0, Vi > 1, seque que wi(f) = wy(0) = 1 e

Para i = m, w!, () = w,,(0)u](0)v(6). Logo,

Como V,,, = w,(T'), o resultado segue. [
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Demonstragao. (Teorema 3.1.10) Conforme ja comentado no inicio desta se¢do, a
existéncia de uma mudanca de coordenadas analitica que possibilita escrever um sistema
analitico planar, com uma singularidade nilpotente monodrémica, na forma (3.1.15) é

provada em [50].

Para dar a expressao das constantes de Lyapunov generalizadas da forma normal

(3.1.15), vamos escrever este sistema usando coordenadas (1,n)-quasehomogéneas (z,y)

{ x =rCs(0),
y =r"Sn(6).

Lembramos que um sistema diferencial analitico planar da forma

t = X(z,y),
gy =Y(x,y).
se escreve, em coordenadas (1,n)-quasehomogéneas como

. xQ 14(($,y) y) (xvy)
=
T2n71 ’

x)’(m,y)-—-ny)((m,y)
rn+1

0 =

conforme apresentado pela expressao (1.4.8), na Secao 3.1.1.

Para o sistema (3.1.15), temos

(rCs0)>»1(—=r"Snf) + (r"Snh) | (rCs6)*~ + (r"Snf) + Z b;(r" Cs6)

j=B

r= r2n—1

= b Sn*0Cs oritt,

jzpB
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(rCs#) |[(rCs@)*~1 + (r"Snb) Z b;(r" Cs0)’ | —n(r"Snf) (—r" Sno)

; Jj=B
6) - rn—i—l

="' Cs™ 0 +Sn6CsO Y b;(r"CsO) +nr" ' Sn 0

Jj=B
=" (Cs? 0 +nSn%0) + > byrd Sng Os7t g RN e N S0 g G G,
Jjzp Jjzp
> b Su*6 C’ orit!
Assim dr_ sz
Tdf 1y Z b;r? Sn g Cs/ ! 0
JjzB

Dividindo o numerador e o denominador por r*~!, temos entao:

> b Sn?6Cs gr>

dr i>B 1—n+j
= =T(r,0) = — ) (3.1.25)
dg L+ b;Sn6Cs’"" 6

izp

Considere agora, a nova equagao diferencial

> bSn’0Cs o>

dr j>B, j fmpar L
—_— = S(T, 0) = ’ - T TH*j. (3126)
de L+ ) bSnfCs™e

j=>B, j impar

Observe que (3.1.26) é expressao de algum sistema da forma (3.1.13), em coordenadas
polares generalizadas, em que todas as poténcias de x em b(z) possuem grau impar, por
construgao. Assim, pela Proposicao 3.1.9, segue que a origem é um centro para Eq.
(3.1.26).

Para aplicarmos a Proposigao 3.1.11, vamos calcular T'(r, ) — S(r, §). Lembramos que,
por hipotese, by # 0 e vale uma das condigoes, > n —1ou f =n — 1. Como 2] > (3,
segue que 2] > n — 1. Entao

T(r,0) — S(r,0) = byur> "2 (5(0) + O(||F]]) , (3.1.27)
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onde )
SH2QCS2l9, sef>n—1,
Sn?6Cs? 6 B
0(0) =4 T30, SnoCege ScA=n—1L e péimpar,
Sn%26Cs?o

sef=2l=n—1.

( 1+b,1Sn6Cs" 0’

De fato, considere as expressoes de T'(r, ) e S(r, §) dadas, respectivamente, pelas Eqs.
(3.1.25) e (3.1.26). Considere ainda, a aproximagao (1+O(]|r|]))™' =~ (1 —=0O(||r|))), valida
numa vizinhanga suficientemente pequena da origem. Vamos entao, analisar separada-

mente cada um dos casos.

Caso 1: > n—1. Em ambos os denominadores das expressoes (3.1.25) e (3.1.26),
omenor grauem r é 1 —n+ = —(n—1) > 1. Assim, utilizando a aproximagao men-
cionada acima, podemos considerar os denominadores de T'(r,6) e S(r, ) como unitarios,
numa vizinhanga suficientemente pequena da origem. Como os indices de b; de S(r, )

sao todos impares, entdo a diferenga 7T'(r,0) — S(r,0) = Z b; Sn? 0 Cs? Or* =" =
j>2l, j par

boyr2 2 (Sn2 6Cs? 60+ O(HTH»

Caso 2: f=n—1e [ impar. Em ambos os denominadores das expressoes de T'(r, 0)
e S(r,0), omenor grauemr é1—n+ g =p—(n—1)=0. Logo, os denominadores de
(3.1.25) e (3.1.26) sdo, respectivamente, da forma [1+b,_; Sn 6 Cs" 0 + b, Sn§ Cs" ™ Or +
e[l +b,.1Sn0Cs"0 + b,y SnOCs"20r* + ...]. Para computar T(r,6) — S(r,0),
precisamos calcular o minimo multiplo comum entre essas expressoes. Efetuando-se um
calculo simples, obtemos (1+b,,_1 Sn 0 Cs" 6)*+O(||r||), que pode ser aproximado para (1+
b,_1Sn 6 Cs™ )% numa vizinhanga suficientemente pequena da origem. Para o numerador,

o célculo é similar.

Caso 3: f=2l=n—1. O procedimento é andlogo ao realizado nos dois casos
anteriores, observando-se que neste caso, como [ é par, o denominador de S(r, ) nao

possui termo da forma b,,_; Sn 6 Cs" 6.

Precisamos ainda, calcular, em cada um dos casos acima, a expressao S(r,0) =
r(S1(0) + O(]|r]])). Nos Casos 1 e 3, S1(f) = 0. De fato, da Eq. (3.1.26) e usando a
aproximagao (1 + O(||7]]))™! =~ (1 — O(||r]|)), segue que o menor grau de r em S(r,0) ¢



3.1 Método de Alvarez-Gasull 95

k=j—(n—2),comj=f,se for impar, ou j =+ 1, se 8 for par. No Caso 1, temos
B>n—1
f>n—1 Dai,k=j—(n—2) > 2 e consequentemente, S(r,0) ndo possui termos
=n—1

B
lineares em r. Para o Caso 3, § é par, o que implica k = j—(n—2) = f+1—(n—2) > 2

e assim, tal como no primeiro caso, S(r,#) nao possui termos lineares em 7.
No Caso 2, como 3 = n — 1 é impar, o grau da variavel r no primeiro termo de S(r, 6)

ék=p—(n—2)=1. Assim,

0) = b, 1Sn2HCs" 1
N T 14 b, 1 Sn0Cs" 6

(3.1.28)

Finalmente temos todos os requisitos para aplicar a Proposicao 3.1.11.

Se =2l =n—1 (Caso 2), entdao da Eq. (3.1.27) segue que m =2 —-n+2l =1e
portanto,

(3.1.29)

2 p 12
V, = exp Sn“ 60 Cs™ 6 }

1+b,.:Sn0Cs"0
Nos Casos 1 e 3, 2 > n —1 e portanto, da Eq. (3.1.27), segue que m = 2 —n+2[ > 1.
T
Consequemente V) =1, Vo= ... =V .00 =0e V2 —n+2] = bgl/ w(#) db, onde
0

Sn?60 Cs? 6, se >n—1,
w(9) - 2 21 0
Sn” 6 Cs™ fexp [(1 —n+21) [ Si(v)d]

—n—1 ..
(1+bp—1Sn6Cs"0)? , se f=n—1, e [ ¢éimpar,

onde S;(¢) ¢ dada em (3.1.28).

As expressoes acima fornecem a demonstragao para o item (1) do Teorema 3.1.10, pois
w(#) é de fato, uma fungdo nao negativa (composi¢ao de fungdes quadraticas e exponen-

cial).

Para finalizar a demonstracao, calculamos explicitamente as integrais acima, em dois

dos trés casos.

Segue que:

né
Para computar a expressao (3.1.29), introduzimos a variavel z = oo
s

Sn?6Cs? 6 b, 122 Cs? e Cs"th (Csn 0= raz) b, 122 Cs* e

1+0b,_1Sn60Cs"0 (cs;?n + b,_17) Cs*" 0 (14 by_12 +na?) Cs™ 0’
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Além disso,

Defia6 Cs?1OCs" O — Snd nCs" ' H(— Sn o)

dor =~ = 5 de
Cs 0

Cs" 1 9(Cs™ § + n Sn* 9)

= 5 de
Cs™ 0
1

=———df

CSn+1 0

isto é, df = Cs""' 6 dx.

Substituindo as expressoes acima em (3.1.29), obtemos

+o00 2 3n—1
Vi =2 / bna 0 5T 0 g gy
oo (14 by +na?)Cs™ 0

+oo 2b _1332
= . Cs* 6 d
/_OO (14 by_12 + na?) i v

/+oo 2bn—1132 q
= X
oo (T4 by 12+ n2?)(1 + na?)

2bn_1ﬂ'
=exp | —mm—————|.
P ny/4n — b2,
Quando g > n — 1, obtemos

v L)
\/ﬁ F(3n+23j+1)

20

T
Vanyor = by / Sn?0Cs* 0 df =
0

onde usamos a Proposi¢ao 1.4.12.

A demonstracao da afirmagao (2) do Teorema 3.1.10 é resultado direto da Proposigao
3.1.9. -

Essencialmente, o método apresentado neste capitulo faz uso da teoria das formas
normais para computar as constantes de Lyapunov generalizadas, que por sua vez sao
utilizadas para resolucao do problema do centro-foco para singularidades nilpotentes.
Apesar de interessante, esta abordagem é computacionalmente dispendiosa, conforme

ilustraremos em detalhes, no Capitulo 4.

Apresentamos a seguir uma outra técnica, que investiga o problema do centro-foco
para singularidades nilpotentes utilizando o método de Lyapunov para caracterizagao de

centros em singularidades nao degeneradas.
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3.2 Método de Giacomini-Giné-Llibre

Seja p € R? um ponto singular de um sistema diferencial em R?. Se p é um centro,
um problema interessante consiste em verificar a existéncia de uma integral primeira H
definida em alguma vizinhanga U de p (i.e. uma func¢do nao constante H : U — R tal que

H ¢ constante sobre as orbitas do sistema diferencial).

Mais especificamente, vamos assumir um sistema diferencial analitico com um centro
em p. Entao, sabe-se que existe uma integral primeira C'*° definida em alguma vizinhanca
de p, ver [39]. Também é conhecido que existe uma primeira integral analitica definida
em U\{p}, para alguma vizinhanca U de p, ver [35]. Mas, em geral, essa integral primeira
analitica nao pode ser estendida a p. De fato, fixado um sistema diferencial analitico em
R? com um centro em p, ainda ¢ um problema em aberto a caracterizacao da existéncia
de uma integral primeira analitica numa vizinhanca de p, ou como usualmente dizemos,

uma integral primeira analitica local em p - cf. [27].

Seja p € R? um ponto singular de um sistema diferencial analitico em R?, e assuma
que p é um centro. Sem perda de generalidade, podemos assumir que p é a origem do
sistema de coordenadas. Entao, pelas Proposicoes 1.2.8, 1.2.10 e 1.2.11, o sistema pode

ser escrito em uma das trés formas seguintes:

T =—y+ Fi(z,y), y =+ Fy(z,y); (3.2.1)
T =y+ Fi(x,y), v = Fy(z,y); (3.2.2)

onde Fi(x,y) e Fy(x,y) sdo fungdes reais analiticas sem termos constantes e lineares,

definidas numa vizinhanca da origem.

No que se segue, um centro de um sistema diferencial analitico em R? é chamado
de linear, nilpotente ou degenerado se, ap6s uma mudancga de coordenadas afim e um
reescalonamento de tempo, puder ser escrito na forma (3.2.1), (3.2.2) ou (3.2.3), respec-

tivamente.

O estudo dos centros lineares, em termos da existéncia de uma integral primeira

analitica, é¢ devido a Poincaré [45] e Lyapunov [36], ver também Moussu [42].
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Teorema 3.2.1 (Teorema do Centro Linear). O sistema diferencial analitico real (3.2.1)
tem um centro na origem se, e somente se, existe uma integral primeira analitica local da
forma H = 22 +y* + F(z,y), definida numa vizinhanca da origem, onde F possui termos

de grau maior ou igual a 2.

O Algoritmo de Lyapunov - cf. 2.1.3, consiste justamente em determinar quando um
sistema da forma (3.2.1) tem uma integral primeira analitica local na origem, e conse-

quentemente, um centro neste ponto.

Para centros nilpotentes, apresentamos o teorema a seguir, em que o Algoritmo de

Lyapunov ¢é utilizado para investigar o problema do centro-foco.

Teorema 3.2.2 (Teorema do Centro Nilpotente). Suponha que a origem do sistema dife-
rencial analitico (3.2.2) seja um centro. Entao, existem fungoes analiticas G e Ga, cujas

expressoes sao fornecidas na demonstracao, tais que o sistema
=y~ Fi(z,y) +eGi(x,y), y=—cx+ Fy(x,y) + eGao(x,y) (3.2.4)
tem um centro linear na origem, para todo € > 0.
Para demonstrarmos este teorema, vamos precisar de alguns resultados preliminares,

que apresentamos a seguir.

A caracterizacao dos centros nilpotentes em termos da existéncia de uma simetria é

devida a Berthier e Moussu - cf. [11] (ver também [50]), que obtiveram o seguinte teorema:

Teorema 3.2.3. Se o sistema analitico (3.2.2) tem um centro na origem, entdo eriste
uma mudanga de coordenadas analitica, tal que, o novo sistema também apresenta a forma

(3.2.2) e € invariante pela mudanca de coordenadas (x,y,t) — (—x,y —1t).

De [15], se o sistema analitico (3.2.2) tem um centro na origem e existe uma mudanca
de coordenadas analitica tal que o novo sistema também apresenta a forma (3.2.2) e é
invariante pela mudanga de coordenadas (z,y,t) — (—z,y —t), entdo o sistema tem uma

primeira integral analitica definida numa vizinhanca da origem.

Também precisaremos do proximo teorema, extraido de [44] p. 145:
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Teorema 3.2.4. Seja E C R? aberto contendo a origem, e seja f € CYE), f(0) = 0.
Se o sistema nao linear & = f(x) é simétrico com respeito ao eixo x ou ao €ixo y, € se a
origem for um centro para a parte linear do sistema, entao a origem de & = f(x) € um

centro.

Demonstragao. (Teorema 3.2.2) Assuma que a origem do sistema (3.2.2) é¢ um centro.
O Teorema 3.2.3 e sua demonstracao nos garantem que, para todo centro nilpotente
(3.2.2), correspondendo a um campo vetorial analitico X (x,y), existe uma mudanga de

coordenadas analitica (x,y) — (u,v) da forma
r=u+.. y=v+.. (3.2.5)
tal que X (z,y) escrito nestas novas variaveis ¢ um campo vetorial da forma
Y (u,v) = (v+ Fi(u,v), Fy(u,v)), (3.2.6)

onde Fi(u,v) e Fy(u,v) sao fungdes analiticas com termos de segundo grau em u e v e

o sistema diferencial associado ¢ invariante sob a mudanca de coordenadas (z,y,t) —
(—x,y —1).

Considere agora a seguinte perturbagao do campo vetorial (3.2.6):
Y. (u,v) = (v+ Fy(u,v), —eu + Fy(u,v)), (3.2.7)
com ¢ > 0. Entao,

0 1
DJ}@(O,O):( 0>:€>O,
—&

e os autovalores da origem sao +./ci. Consequentemente, a origem é um centro para a
parte linear de (3.2.7). Disto, e do fato de que o sistema diferencial associado ao campo
vetorial (3.2.7) ¢ invariante sob a mudanga de coordenadas (z,y,t) — (—x,y — t) (pois
o sistema nao perturbado é invariante), segue do Teorema 3.2.4 que a origem do campo

vetorial (3.2.7) é um centro linear, Ve > 0.
Observe que, a mudanga de coordenadas (3.2.5) preserva a parte linear do campo, pois

0
seu jacobiano é da forma ( ) . Assim, a mudanca de coordenadas inversa de (3.2.5)
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pode ser escrita como:

{ u=z+ fi(z,y), (3.2.8)

V=Y + fQ(l',y),

onde fi(z,y), fa(x,y) sdo fungdes analiticas sem termos constantes ou lineares. Diferen-
ciando (3.2.8), obtemos

i = (1 + —afl(x’y)) i+ —afl(x’y)y

ox dy 7

(3.2.9)
. Of(x,y) . Ofa(r.y)\ .
b= (1+8—y)y,

Aplicando as expressoes de u e v dadas pelas equagoes associadas ao campo perturbado

(3.2.7), em (3.2.9), , e efetuando-se os calculos necessarios, obtemos:

y = —cx + Fy(z,y) + eGo(x,y),
onde
Gr) = (o + ol ) DY),
Y (3.2.11)

Gato) = (G filea) D fie))

Observe que, GG; e G4 sao funcoes analiticas, pois f; € uma funcao analitica.
) )

Seja X.(x,y) o campo vetorial associado ao sistema (3.2.10). Uma vez que Y:(u,v)
tem um centro linear na origem, para todo € > 0, o mesmo vale para X.(x,y) e assim,

concluimos a demonstracao. [ |

De modo simplificado, o teorema acima nos diz que um centro nilpotente analitico é
limite de centros lineares analiticos. Do Teorema do Centro Linear, segue que o sistema
(3.2.4) admite integral primeira local H.(z,y) em (0,0), para todo £ > 0. Além disso, se
H(z,y) = El_i}r(% H_(z,y) existe e estd bem definido numa vizinhanga de (0,0), entao H ¢

integral primeira local de (3.2.2).

Logo, o Teorema do Centro Nilpotente reduz o estudo dos centros nilpotentes para o

caso dos centros lineares. Podemos aplicar o Algoritmo de Lyapunov - cf. 2.1.3, ao sistema
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(3.2.4), buscando integrais primeiras analiticas da forma H = (ex? + y*)/2 + F(z,y,¢),
onde F' comecga com termos de ordem maior ou igual a 2 nas variaveis x e y. As constantes

de Lyapunov Vy, sao determinadas a partir de (2.1.21).

-

Teorema 3.2.5. Suponha que a origem do sistema diferencial analitico real (3.2.2) é
monodromica, e que o sistema € limite de sistemas com centros lineares da forma (3.2.4).
Suponha ainda que nao existe ponto singular de (3.2.4) tendendo para a origem, quando

e tende a zero. Entdao, o sistema (3.2.2) tem um centro na origem.

Demonstragao. Considere um sistema analitico da forma (3.2.2), que denotaremos por
(P,Q), tendo a origem como ponto singular monodrémico. Suponha que este sistema seja

limite de sistemas com centros lineares da forma (3.2.4), denotados por (FP:, Q.).

Como a origem por hipotese é singularidade monodromica de (P, Q), se S é uma
curva suficientemente pequena com extremidade na origem, entao a aplicacao de primeiro
retorno 1T : S — S, associada ao sistema (P, () estd bem definida e o termo lider de
sua expansao de Taylor é linear, basta escolher convenientemente uma curva algébrica

semi-transversal, que pode ter uma singularidade no ponto singular - cf. [40].

Por hipétese, a aplicagao de primeiro retorno Il : S — S associada ao sistema (P:, Q.)
é a identidade, Ve > 0. Logo, pelo Teorema da Dependéncia Continua em Relagao as

Condigoes Iniciais, seque que I = lim,._o+11.. m

A condigao de auséncia de pontos singulares tendendo a origem, quando ¢ tende a zero,
pode ser facilmente verificada usando os termos de menor ordem do sistema perturbado
(3.2.4).

Os Teoremas 3.2.2 e 3.2.5 podem ser usados para detectar centros nilpotentes de
sistemas diferenciais analiticos, por meio da aplicacao do Algoritmo de Lyapunov - ver
Secao 2.1.3. No caso particular de sistemas polinomiais, o método é descrito a seguir.
Considere o sistema (3.2.2), com F; e F, polindmios sem termos constantes ou lineares
contendo um conjunto de parametros arbitrarios e tais que a origem é um ponto singular
monodromico. Nestas condi¢oes, de acordo com o Teorema 3.2.2, para detectar os centros

do sistema precisamos considerar o sistema perturbado
& =y+ Fi(z,y) +eGi(z,y), y = —cx+ Fy(z,y) + £Ga(x,y) (3.2.12)

onde (1, G5 sao fungoes analiticas comecando com termos quadraticos em x e y.
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Aplicamos entao o Algoritmo de Lyapunov para determinar condi¢oes necessérias para
que a origem do sistema (3.2.12) seja um centro. Em geral, estas condigoes sao satisfeitas
escolhendo-se convenientemente os coeficientes das fungoes analiticas G e G5. Quando
isto nao é possivel, devemos fazer uso dos paradmetros do sistema polinomial nao pertur-
bado da forma (3.2.2). Deste modo, obtemos condi¢bes necessérias para a existéncia de

um centro da origem deste sistema.

Condigoes suficientes de centros para um sistema nao perturbados da forma (3.2.2)
sao obtidas em um numero finito de passos, pois o Teorema da Base de Hilbert assegura
que este processo é finito. A cada vez que encontramos uma condigdo necesséria para
que a origem do sistema nao perturbado (3.2.2) seja um centro, precisamos conferir se
este sistema tem efetivamente um centro na origem. Como o ntmero de passos é finito e
para a determinagao de cada constante de Lyapunov do sistema perturbado (3.2.12) nos
precisamos de apenas um jato finito, a perturbacao necesséria para detectar os casos de

centro sao polindmios, isto é, as fungoes GG; e G5 sao polinémios.

No Capitulo 4, exibimos exemplos de aplicagao do Teorema 3.2.2 na investigacao de

centros em familias de sistemas diferenciais analiticos.



Capitulo

4

Aplicacoes

Esta secao ¢ dedicada a aplicagao das duas técnicas apresentadas nesta dissertagao
para investigagao do problema do centro-foco em sistemas diferenciais analiticos planares

com singularidades nilpotentes.

Primeiramente, utilizamos os Teoremas 3.1.1 e 3.1.10, desenvolvidos por Alvarez &
Gasull - cf. |1, 2], que fazem uso da teoria das formas normais para calcular as constantes
de Lyapunov generalizadas, para uma familia de sistemas diferenciais planos fixada. Em
etapa posterior, aplicamos o Teorema do Centro Nilpotente (Teorema 3.2.2), devido a
[29], que investiga centros nilpotentes como limite de centros do tipo linear para uma

segunda familia.

A aplicacao das duas técnicas nos possibilitou avaliar sua eficiéncia, bem como iden-
tificar possiveis dificuldades, tais como o custo computacional envolvido. Vale destacar
que a primeira familia de sistemas diferenciais analiticos que investigamos ¢é bastante con-
hecida, tendo sido estudada anteriormente por Gasull & Torregrosa - cf. [23, 25|. Nossos
resultados coincidem parcialmente com os apresentados nestes dois trabalhos, a excecao de
uma das condi¢oes para centro do sistema. Comentaremos mais a respeito deste assunto

ao final deste capitulo.

Para efetuar os calculos necessérios, utilizamos os softwares Maple® v.14.0 e
Mathematica® v.8.0, em um PC-Pentium 2.84GHz 4GB RAM. A seguir, apresentamos

os resultados obtidos.
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4.1 Método de Alvarez-Gasull

Nesta secio, aplicaremos os Teoremas 3.1.1 e 3.1.10, devidos a Alvarez & Gasull - cf.

[1, 2], para caracterizacdo do sistema diferencial apresentado a seguir:

{ &= —y+ psox® + praxy, (4.1.1)

J =2+ quort + g1y + oy’

onde p;;, ¢ ; € R.

Problema da Monodromia

Para aplicarmos o Teorema 3.1.1, precisamos que o sistema (4.1.1) seja escrito na

forma

T = Y+ X2($,y),
y = Yv2<x7y)7

com Xs, Ys fungoes analiticas cujas séries de poténcias comecam, pelo menos, com termos

de grau 2. Para isso, basta efetuarmos a mudanca de coordenadas x = —x no sistema
(4.1.1) obtendo

(4.1.2)

T =y — ])3,0553 — P1,12Y,
§ = =2+ quor* + q217%Y + qo2y?,

e portanto, temos Xo(z,y) = —p3,0x3 —prary e Yao(r,y) = —23 + Q4,0£U4 + q2,1$2y + qO,2y2-
Utilizando a notacdo do Teorema 3.1.1, e com auxilio do Maple®, obtemos as funcoes
f(z) e ¢(z) para o sistema (4.1.1):

f(@) = Ya(z, F(2)) = az® + O(||z[|**), a # 0, & > 2,

f(@) = =2+ quoz* + go1psox® + (Q2,1p3,0p1,1 + QO,2p3,02) 2%+ O(||z|").

¢(x) = div(y + X2($ay)>y2($ay))‘yzp(x)
= b2’ + O(||z]|”*"), b#0, B>1 ou ¢ =0,

(4.1.2) .
=" ¢(x) = (—3p30+ q1) 2% + (2402030 — P11P30) z® + O(H-’JEH4)

onde a funcdo y = F(x) é a solug¢do de y + Xs(x,y) = 0 passando por (0,0).
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Consequentemente, temos a = —1 < 0, « = 3, n = —“;“1 = 2. Como a funcao ¢ é
da f ()—— —32+ 1’13 — 26]0,23 + 2 ()—_0<:>
a forma ¢(x T ! x“, segue que ¢(x) =

P30 1 1, 1z 1 L 2,17, Segue q

D30 = q21 = 0. Esta relacao, de fato, sera a primeira condi¢ao de centro para o sistema

(4.1.2), como veremos mais tarde.

Se ¢(x) # 0, entdao f = 2. Entdo, 2 = > n — 1 = 1, e consequentemente, o sistema

(4.1.2) satisfaz a condigao (i) do Teorema 3.1.1.

Portanto, o sistema (4.1.1) satisfaz as condigoes do Teorema 3.1.1, e desta forma,
possui uma singularidade nilpotente monodrémica na origem. A seguir, apresentamos os

detalhes.

Problema da Estabilidade

Para aplicarmos o Teorema 3.1.10 e caracterizarmos os centros deste sistema, ¢ neces-

sario realizar alguns passos preliminares.

Forma Normal

Utilizando o Teorema da Forma Normal, obtivemos, com o auxilio do Maple®, a forma

normal do sistema (4.1.1), com truncamento de ordem 7:

{x - (4.1.3)
y = alz)+yb(z),

onde:

1 3 5 1

3
a(x) =1° + (—5 qo,2 — 5291,1 + Q4,o)$4 + (g2,1p3,0 + 5]91,1610,2 + ZP1,12 + 1 CI0,22

15 1 )

5
— 4,090,2 — 2 6_14,0101,1)$5 + (—Z 101,1610,22 - §P1,12QO,2 3 CI0,23 + 6 C]4,0Q0,22

3 3

3 3 13 2 2N 6
+ 3 qu,0P1,190,2 — me 5 42,1P3,0P1,1 — 5 q2,1P3,090,2 + G qa0P11° + Qo2Pso”)x

3

+ (p114 3+§p %Go.2° + 3 G21P3,001,14 +iq Y+ St —gq qo,2°
1,190,2 15 Pradoe 21P3,0P1190.2 + 55 d0.2 5 P11"d02 = 3 44090,2
5 43

13 10

5
3 2 2 2 4
- — - + — - + -
3 da0P1,1 3 da,0P1,1 40,2 3 42,1P3,0490,2 3 4d4,0P1,140,2 120 P11

4

+ g C]2,1p3,0p1,12 -2 QO,22P3,02 - QO,2P3,02291,1)$7

(4.1.4)
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5(@ = (3p30 + q2.1)7* + (—Qo2p3.0 — G2.1G02 — 2P1.1P3.0 — G2.1P1.1)T° + (2P1.1P3.000.2

5) 9 1 9 3 7 , 11 o\ 4
+ 2 PLPso = 902730 + 5 21P11490,2 + 1o 421711 + 1o 121902 )x
+ (—%p370p1713 - g(]z,1QO,23 - }lqllpl,lg - 2P3,0p1,12%,2 - ;p3,0p1,1QO,22
3 7 9 7 9\ 5 22 137 4
+ qo2"P3,0 — 7 219027 P11 — G 42,1q0,201,1°) 2" + (—E do2 P30 T+ 130 42,190,2
31 PR 4 11 3 55 9 5 13 3
+ 360 q2,1P11 + Epl’l P30 + 1 Go,2"P3,0P1,1 + 21 Qo2 P30P1,1” + Epl,l P3,090,2
+ % 42,1902°P11 + % 42,1902°P11° + 5/8 @2111,1°qo,2) 2" + (—% 42,190,2°
1 5 1 5 53 5 25 5 3 29 4
- E 42.1P11 — %pl,l P30+ % qo,2 P3,0 — ﬁ 42,1490,2 P11 — 1—5 42,1490,2 P1,1
31 4 49 3 9 DD 3 5 19 9 3
- EO q2,1490,2P1,1 — ﬂ q2,190,2 P11 — ﬂ qo,2 P3,0P1,1 — E qo,2 P3,0P1,1
11 4 19 N
~ 30 qo,2 P3,0P1,1 — 20 q0,2P3,0P1,1 )x

(4.1.5)

Aplicagao do Lema 3.1.8

De (4.1.3), segue que a(x) = z3(1 + O(||z||)). Logo, 2n — 1 = 3, isto ¢, n = 2. Po-

demos entao escrever a fungao ®'(u), do Lema 3.1.8, para o sistema (4.1.3): ®(z) =
zy/1+ O(||z]]).

Utilizando o Maple® para:
e expandir a fungio ®~!(u) em série de Taylor até ordem 7,e
e calcular a forma normal de ®~!(u) até o grau 7,

obtemos o sistema:

r =Yy,
y =z 4 yb(x),

onde b(x) é dado por:

b(x) =Y bjal, by #0

j=B

=Az? + Bz + Cx* + D2° + ExS.
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onde A, B,C, D, E/ sao fungoes de p; ;, ¢; j, dadas no Anexo A.

Teorema 3.1.10

Com os resultados obtidos, finalmente podemos aplicar o Teorema 3.1.10.

Da expressao de b(z), obtida anteriormente, segue que 5 = 2l = 2 e portanto, 2 =

B >mn—1=1. Desta forma, estamos na condigao 1.(a) do Teorema 3.1.10.

Segue que 2—n—+2] = 2 e desta forma, a primeira constante de Lyapunov generalizada

significativa é V5. Efetuando-se os célculos necessarios, com o auxilio do Maple®, obtemos

Vo = Ky(3p30 + qa,1)-
1
Procedendo de forma analoga, obtemos V, = K4(—§QQ,1(2(]0,2 +p1.1) (P11 —Qo2—q10)) €

1 . ,
Ve = K6(2—MSQ2,1(2%,2+P1,1)(4(]0,2+9Q4,0)(394,0(]0,2+6QZ,0+2q;,1))- Se a origem ¢ um centro,

todas as constantes generalizadas sao nulas. Assim, obtemos as seguintes condigoes:

(a) P30 =¢q21 = 0;
(b) p11+2g02 = g1 + 3ps0 = 0;
(c) 4p11 + 5qa0 = @21 + 3p30 = 4q02 + 9qs0 = 0;

(d) P11 —qo2 — Quo = 61?%,0 + Qo,2q4,0 + QQio = (2,1 + 3p3,0 = 0.

Discussao dos resultados

A técnica de Alvarez & Gasull - cf. [1, 2] faz uso da teoria das formas normais para
calcular as constantes de Lyapunov generalizadas. A aplicagao desta técnica numa familia
concreta de sistemas diferenciais nos permitiu identificar alguns aspectos importantes, que

destacamos a seguir.

e Truncamento da forma normal: a aplicacao da técnica exige truncamento da
forma normal até ordem conveniente. Entretanto, o método nao explicita qual deve
ser esta ordem. Outros truncamentos necesséarios, como a ordem da expansao da
série de Taylor da fungao inversa ®~! (vide Lema 3.1.8), também requerem cuidado,
uma vez que truncar a série em ordem muito baixa pode resultar em expressoes que

nao contemplam todas as condicoes de centro do sistema analisado;
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e Custo computacional: a aplicagao da técnica mostrou-se computacionalmente
dispendiosa. A obtencao da forma normal e da funcao inversa ®~!, bem como os
demais calculos necessérios a aplicacao do Teorema 3.1.10, demandaram consideravel
tempo de execucao do computador utilizado para a pesquisa - PC Pentium 2.84GHz
4GB de RAM. Para os céalculos com formas normais truncadas em grau maior que
9, e com expansao de Taylor de ®~! superior a 8, foi preciso recorrer a maquina

com mais recursos, nesse caso, um MacAir i7 1.8GHz dual chip 8GB de RAM;

e Constantes de Lyapunov generalizadas: a afirmagao (2) do Teorema 3.1.10
fornece condigOes necesséarias e suficientes para que a origem seja um centro. Na
prética, no entanto, calculamos as constantes de Lyapunov generalizadas e verifi-
camos as condi¢oes para que sejam iguais a zero, uma vez que a origem é um centro
se, e somente se, todas as constantes forem nulas. Entretanto, o método também
nao fornece a quantidade de constantes generalizadas que precisam ser calculadas

para obter todas as condicoes de centro de um dado sistema.

Com relacao aos resultados obtidos para a familia de sistemas diferenciaveis analiticos
(4.1.1), destacamos que nossos resultados diferem dos apresentados por Gasull & Torre-
grosa - cf. |23, 25|, em uma das condigdes, a saber, a condi¢ao (¢). Em seu lugar, os
referidos autores apresentam a condicao 2p; ;1 + quo0 = @21 + 3p30 = 4902 + 9¢40 = 0.
Nao identificamos erros em nossos calculos e tampouco fomos capazes de mostrar que a
condi¢ao obtida em nossos trabalhos ou aquela apresentada por Gasull & Torregrosa nao é
valida. Vale observar que, devido a dificuldades computacionais, a investigagao da mesma
familia de sistemas diferenciais segundo a abordagem apresentada na proxima se¢ao, nao

pode ser concluida.

4.2 Método de Giacomini-Giné-Llibre

Nesta segao, discutimos a aplica¢ado do Teorema do Centro Nilpotente (Teorema 3.2.2)
- cf. |29], que investiga centros nilpotentes como limite de centros do tipo linear. Para
tanto, vamos aplicar o método para uma familia fixada de sistemas diferenciais proposta
em [29]. Vale ressaltar que os resultados obtidos em [29] coincidem parcialmente com
os apresentados abaixo, devido a uma diferenca nas expressoes de G e (5, corrigida
posteriormente pelos autores do paper. Para efetuar os célculos, utilizamos os softwares
Mathematica® e Maple®.
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Considere a seguinte familia de sistemas:

{:t::—y+x2+kﬂw, (12.1)

y = kllL’Q — 5(33, ]{?17 ]{?2 € R.
Vamos aplicar o Algoritmo de Lyapunov - cf. 2.1.3 ao sistema perturbado abaixo:

& = —y+ 2+ kry +eGi(x,y),
Y =k1$2—$3+8G2($,9);

7 7

onde ¢ > 0, e Gy(z,y) = Z ai vy, Go(z,y) = Z bijz'y’. Vale ressaltar que, nas
i+j>2 i+j>2

expansoes de G e Gy nao encontramos mondmio da forma ay?, o € R, devido & forma

como foram definidas em (3.2.11). Utilizando o software Mathematica®, obtivemos a

primeira constante de Lyapunov:

1
Vi =
8¢

3
5
+ (—aq1 + 3agg + 2ag0b2g + b11bag + boy — <120/€2)€2 + (a12 — arras + 3bo3) 53]-

[2 kl -+ (2 bgo —+ 2@20k1 + blllﬁ - kg) g

Observe que V; possui apenas coeficientes dos termos quadraticos e ctbicos das fungoes
G, e Gy. Para que Vj se anule, precisamos que todos os coeficientes de cada poténcia
de ¢ seja zero. Assim, obtemos a condicao necessaria para centro k; = 0 para o sistema
(4.2.1) e para uma perturbagao arbitraria. Também obtemos as condigoes byy = ko/2,

by = aj — 3azy — 511520 € 503 = (—a12 + a11a20)/3.

A segunda constante de Lyapunov é:

1
192¢

Vy =

%[—361@52 +O(l=|)].

Na expressao de V5 temos contribuigoes dos coeficientes dos termos de grau 2 até grau 5
de Gl e GQ.

Assim, as condigoes k; = ks = 0 s@o necessérias para que a origem do sistema (4.2.1)

seja um centro. Estas condigoes também sao suficientes, como mostraremos a seguir.
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Proposicao 4.2.1. O sistema
(4.2.2)

tem um centro nilpotente na origem.

Demonstragao. Primeiramente, vamos aplicar o Teorema 3.1.1 para verificar que a
origem do sistema (4.2.2) ¢ monodromica. As fungoes f(z) e ¢(z), conforme Teorema

3.1.1 neste caso sao bastante simples:

Seque que a = -1 <0, a =3, n=2,b=2epf =1. Assim, B =1 =mn—1c¢e
b?> + 4an = —4 < 0 e pela condigao (ii) do Teorema 3.1.1, a origem do sistema (4.2.2) é

monodromica.

O proximo passo é mostrar que a origem do sistema (4.2.2) é de fato um centro. Com

o auxilio do Maple®, escrevemos o sistema (4.2.2) na forma:

r =Y,
g =2 +y(-2uz).

Logo, b(z) = —2z, isto &, b°(x) = 0 e pelo item 2 do Teorema 3.1.10, a origem é um

centro. -

Vale salientar que, apesar da origem do sistema (4.2.2) ser um centro, este sistema
nao possui uma primeira integral analitica local, e nem uma primeira integral formal
definida na origem - cf. [15]. Esse Exemplo portanto, ilustra a impossibilidade de esten-
dermos o Teorema do Centro Linear - cf. Teorema 3.2.1, para sistemas com singularidades

degeneradas.

O procedimento apresentado no exercicio anterior para investigacao de centros nilpo-
tentes é usual na literatura. Ou seja, uma vez obtidas condi¢oes necessarias para a sin-
gularidade ser um centro, utilizamos outros resultados e técncas que nos permitam obter

condig¢oes condigoes suficientes. Tais resultados, em geral, sao especificos para a familia
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a ser investigada. Este fato é uma das grandes dificuldades na caracterizacao de centros

nilpotentes.
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Capitulo

5

Conclusoes

O estudo de duas técnicas distintas para investigacao do problema do centro-foco em
sistemas analiticos com singularidade nilpotente nos permitiu conhecer, em profundidade,
este que é um dos problemas cléssicos da teoria qualitativa das EDO’s. A aplicacao das
técnicas em familias concretas de sistemas diferenciais possibilitou verificar as dificul-
dades computacionais e demais obstrugoes, bem como avaliar a eficiéncia de cada um dos

métodos.

Pretendemos dar continuidade ao estudo de sistemas diferenciais analiticos planares
com centros do tipo nilpotente e degenerado com parte linear identicamente nula , em
particular, sistemas diferenciais polinomiais de grau 3 e 4. Conforme observado em [26],
o problema do centro-foco estd fortemente relacionado ao 16° Problema de Hilbert e
a caracterizacao de sistemas diferenciais com integral primeira. Deste modo, também
pretendemos investigar questoes relacionadas a bifurcagao de ciclos limites e a sistemas

diferenciais com integral primeira local.
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Apéndice
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