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THE ROLLING BALL PROBLEM ON THE SPHERE

LAURA M. O. BISCOLLA, JAUME LLIBRE AND WALDYR M. OLIVA

Abstract. By a sequence of rolling motions without slipping or twisting along arcs of
great circles outside the surface of a sphere of radius R, a spherical ball of unit radius

has to be transferred from an initial state to an arbitrary final state taking into account
the orientation of the ball. Assuming R > 1 we provide a new and shorter prove of the
result of Frenkel and Garcia in [4] that with at most 4 moves we can go from a given
initial state to an arbitrary final state. Important cases such as the so called elimination

of the spin discrepancy are done with 3 moves only.

1. Introduction and statement of the results

The rolling movements of a spherical ball B of unit radius over an oriented connected
smooth surface S embedded in R3 suggest the consideration of some special kinematic (vir-
tual) motions. A state of the ball is defined to be the pair formed by the point of contact
between B and S and a positive orthonormal frame attached to B. Assume that the ball
B rolls freely on S, i.e. S ∩ B is the singleton of the contact point. So the set of all the
states is identified with the manifold M = S × SO(3), where SO(3) denotes the group of
orthogonal 3 × 3 matrices.

A move is a smooth path on M corresponding to a rolling of B on S without slipping
or twisting along a geodesic of the surface S. No slipping in the rolling means that at each
instant the point of contact between B and S has zero velocity; no twisting means that, at
each instant, the axis of rotation must be parallel to the tangent plane of S at the point of
contact.

According with John M. Hammersley the following problem was proposed by David
Kendall in the 1950s: What is the number N of moves necessary and sufficient to reach
any final state of R2 ×SO(3) starting at a given initial state? In an interesting paper Ham-
mersley [6] shows that N = 3. Recently we have provided a new and short proof of this
result, see [3].

The following historical considerations we quote from [6] p.112: The original version of the
question set (by David Kendall in the 1950s) for 18-year-old schoolboys, invited candidates
to investigate how two moves, each of length π, would change the ball’s orientation; and to
deduce in the first place that N ≤ 11, and in the second place that N ≤ 7. Candidates scored
bonus marks for any improvement on 7 moves. When he first set the question, Kendall knew
that N ≤ 5; but, interest being aroused amongst professional mathematicians at Oxford, he
and others soon discovered that the answer must be either N = 3 or N = 4. But in the
1950s nobody could decide between these two possibilities. There was renewed interested in
the 1970s, and not only amongst professional mathematicians: for example the President of
Trinity (a distinguished biochemist) spent some time rolling a ball around his drawing room
floor in search of empirical insight. In 1978, while delivering the opening address to the
first Australasian Mathematical Convention, I posed the problem to mathematicians down
under; but I have not subsequently received a solution from them. So this is an opportunity
to publish the solution.

1991 Mathematics Subject Classification. Primary 58E25, 93B27.
Key words and phrases. Control theory, rolling ball problem.

1

This is a preprint of: “The rolling ball problem on the sphere”, Laura M. O. Biscolla, Jaume Llibre,
Waldyr M. Oliva, Sao Paulo J. of Math., vol. 6(2), 1–9, 2012.



2 LAURA M. O. BISCOLLA, JAUME LLIBRE AND WALDYR M. OLIVA

Hammersley [6] p.130 and Jurdjevic [7] are also interested in the same problem but when
the spherical ball of unit radius rolls without slipping or twisting through arcs of great circles
outside a sphere S2 of radius R > 1. In this case the manifold of states is identified with the
set S2 × SO(3). In the more general case M = S × SO(3) one asks: What is the minimum
number N(S) of moves sufficient to reach any final state of S × SO(3) starting at a given
initial state? For the case S = S2 (the sphere of radius R), it is known that N(S2) is finite
if R ̸= 1, see Jurdjevic [7] pages 165–169 (section 5.1) and Biscolla [2]. In fact, from the
results of this last paper it can be proved that the number N(S) is finite when the unit
ball rolls without slipping or twisting along geodesics of an analytic oriented connected and
compact surface of revolution which has everywhere Gaussian curvature different from 1.

From now on we assume that all rolling motions are done outside the surface of the sphere
S2.

Recently, Frenkel and Garcia [4] proved that if S2 is a sphere of radius R > 1, then
3 ≤ N(S2) ≤ 4. In Theorem 8 of this paper, it is proved, for any R > 1 and only three
moves, the so called “elimination of the spin discrepancy” (see [6]). We also provide a new
and shorter proof of the result of Frenkel and Garcia [4], that if R > 1, with at most 4 moves
we can go from a given initial state to an arbitrary final state (see Theorem 7).

We remark that the rolling ball problem on the sphere has special interest in control
theory and in robotics, see [7].

The paper is organized as follows. In section 2 we recall the Euler angles and using these
angles can get an easy representation of the elements of SO(3). In section 3 we show that
four moves are sufficient on S2 with R > 1. In section 4 we see two important cases in which
3 moves are sufficient on S2 including the elimination of the spin discrepancy .

2. Euler angles

According to Euler’s rotation theorem, any rotation of R3, i.e. any element of the SO(3),
may be described using three angles. If the rotations are written in terms of rotation matrices
R3(a), R1(b) and R3(c), then a general rotation M ∈ SO(3) can be written as

M = R3(c)R1(b)R3(a),

where

R3(a) =




cos a sin a 0
− sin a cos a 0

0 0 1


 , R1(b) =




1 0 0
0 cos b sin b
0 − sin b cos b


 ,

The three angles a, b and c are called Euler angles. There are several conventions for Euler
angles, depending on the axes about which the rotations are carried out. The so–called
x–convention is the one we use, being also the most common definition. In this convention
a rotation is given by Euler angles (a, b, c) where the first rotation is by an angle a about
the z–axis, the second is by an angle b in [0, π] about the x–axis and the third is by an angle
c about the z–axis.

The Euler angles are also related to the quaternions, which was the approach used by
Hammersley to study the rolling ball ball problem in the plane (see [6]). For more details
about the Euler angles see for instance [5].

A state (P, M) ∈ S2 × SO(3) of the spherical ball on the surface of the sphere S2 means
that the contact point of the ball with the sphere is the point P of S2 and its orientation is
given by the rotation matrix M or its associated orthonormal frame (I, J,K) of R3, where
the vectors I, J and K are the first, second and third column of the matrix M , respectively.
Moreover the state (P,M) is also denoted by (P, (I, J,K)).

We denote by (i, j, k) the orthonormal frame (I, J,K) associated to the 3 × 3 identity
matrix Id.
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3. Four moves are sufficient on S2

Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2}. The next proposition and their corollaries
essentially follow [4].

Proposition 1. Let {i, j, k} be the frame attached to the unitary ball of center C = (0, 0, R+
1) with the vector k orthogonal to the sphere S2 of radius R going from C to A = (0, 0, R+2).
Assume that the ball rolls along the meridian M of S2 defined by the plane j–k. If after a
rolling the vector k goes to a vector u making an angle α with k, then the distance s (along
the meridian M) is equal to s = Rα/(R + 1), and the point A goes to a point Ā, such that
u is the vector from C̄ (the new position of the center of the ball) to Ā.

Proof. It is easy to check that α = s + s/R. So we get that s = Rα/(R + 1). �

Given two points P and Q on S2 the distance between P and Q, d(P,Q), is the length of
the small arc of the great circle containing P and Q. In particular if P and Q are two points
on S2 whose angle between them is 2π/(R+1), the distance d(P,Q) is equal to 2πR/(R+1).

When rolling a ball from an initial state (P, M) in S2 × SO(3) to a final state (Q,M) it
is considered that P goes to Q along the arc of small length of the great circle containing P
and Q.

Hereafter when we say that a distance between two points is larger than 2πnR and smaller
than 2π(n + 1)R we mean that we have done more than n and less than n + 1 turns on
the sphere along the great circle. With this definition we have that d(P, P ) = 2πnR with
n = 0, 1, 2, . . .

Corollary 2. If we start rolling the ball at the north pole of the sphere S2 with the orientation
M ∈ SO(3), then the curves on S2 on which the orientation of the ball is M are parallels at
a distance 2πnR/(R + 1) of the north pole for n = 1, 2, . . . It can happen that some of these
parallels can be reduced to the north or south pole (if R + 1 divides 2n).

Proof. When the ball starting to roll at the north pole reaches in one move a point of the
parallel whose distance to the north pole is 2πnR/(R + 1), the ball has done exactly n
complete turns. Therefore, the corollary follows. �

Corollary 3. Rolling the ball from the initial state (P, {i, j, k}) along a great circle of length
πR/(R + 1) + 2πnR/(R + 1), with n a positive integer, then the orientation of the ball at
the final state is given by an orthonormal frame of the form {I, J, −k}.

Lemma 4. Let γ and σ be two great circles of S2, and let P0 and Q0 be two arbitrary points
on γ and σ respectively. Consider Sγ (resp. Sσ) to be the set of points Pn of γ (resp. of
σ) which are at distance 2πnR/(R + 1) of the point P0 for n = 1, 2, . . . Then the distance
between the points of Sγ and Sσ is smaller than 2πR/(R + 1).

Proof. If γ coincides with σ the proof is trivial. Assume that γ is different from σ. Let A
be one of the two points of the intersection between γ and σ. Clearly there are points of Sγ

whose distance to A is at most πR/(R+1) and let Pr be one of such points. Similarly there
is a point Qs of Sσ whose distance to A is at most πR/(R + 1). Then the distance between
Pr and Qs is smaller than 2πR/(R + 1). �

Lemma 5. Let R > 1, M ∈ SO(3) and P, Q ∈ S2 with P ̸= Q. If the distance between P
and Q is smaller than 2πR/(R+1) we can go from the initial state (P,M) to the final state
(Q,M) with 2 moves; otherwise we need 3 moves.

Proof. Without loss of generality we can take P as the north pole of S2. By Corollary 2
and Lemma 4 it is clear that with one move we may assume that on the sphere the distance
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d(P,Q) between P and Q is less than or equal to 2πR/(R + 1). We claim that given two
different points P and Q we have that

d(P,Q) ≤ 2πR

R + 1
implies CP ∩ CQ ̸= ∅,

where CP =
∞∪

n=1

CPn with

CPn =

{
X ∈ S2 : d(X,P ) = n

2πR

R + 1

}
.

Now we consider the following two cases.
Case 1: R is irrational. Then the set of parallels CP and CQ are dense in S2, and since
P ̸= Q they intersect. So the claim is proved in this case.
Case 2: R is rational. Then the set of parallels CP and CQ is finite. Let γ be the great circle
passing through P and Q. The intersection of γ with CP is a finite set of equidistant points
on γ which are located symmetrically with respect to the diameter of γ passing through P .
If some of the points of γ ∩ CP different from P are located in the closed north hemisphere
of S2, it is clear that CQ1 ∩ CP1 ̸= ∅. Otherwise we must have either 2πR/(R + 1) = πR,
or 2πR/(R + 1) = 2πR/3. In the first case R = 1, which contradicts the hypothesis that
R > 1.

Assume 2πR/(R + 1) = 2πR/3, then R = 2 and CP is formed by the point P and the
parallel which is at a distance 2πR/3 of P . Again it follows easily that CQ1 ∩ CP1 ̸= ∅.
Hence the claim is proved.

So by Corollary 2 when d(P, Q) ≤ 2πR/(R + 1), it follows that 2 moves are sufficient to
go from (P,M) to (Q, M); it is enough to go from (P, M) to (Z, M) where Z is a point of
CP ∩ CQ and from (Z, M) to (Q,M). �

It is well known that the rotation matrix R{e, δ} of angle δ around an axis through the
origin with direction e = (u, v, w) is

1

L2




u2 + (v2 + w2) cos δ uv(1 − cos δ) − wL sin δ uw(1 − cos δ) + vL sin δ
uv(1 − cos δ) + wL sin δ v2 + (u2 + w2) cos δ vw(1 − cos δ) − uL sin δ
uw(1 − cos δ) − vL sin δ vw(1 − cos δ) + uL sin δ w2 + (u2 + v2) cos δ


 ,

where L =
√

u2 + v2 + w2.

Now we shall describe the equation of any move starting at the north pole (0, 0, R) of
S2. The great circles through the north pole are called meridians. Let M be the meridian
contained in the plane through the origin with director vector e = (cosα, − sinα, 0). Then,
by Proposition 1, the move of length l starting at the north pole through the meridian M
is given by the matrix

(1) R{e, δ} with δ = l(R + 1)/R.

More precisely if we have at the north pole the ball with the orientation given by the matrix
M ∈ SO(3), after the move R{e, δ} the ball has the orientation R{e, δ}M .

Lemma 6. The following two statements hold.

(a) Starting at the north pole with the orientation {i, j, k}, for every n ∈ Z we can pass
with one move to points Pn of S2 with the orientation given by the matrix

(2)




cos(a − c) − sin(a − c) 0
− sin(a − c) − cos(a − c) 0

0 0 −1


 ,

where a and c are arbitrary angles of S1. The distance between the points Pn and
Pn+1 is 2πR/(R + 1).
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(b) Starting at the north pole with an arbitrary orientation given by the matrix R3(c)R1(b)
R3(a) with a, c ∈ S1 and b ∈ [0, π] (see section 2), for every n ∈ Z we can pass with
one move to points Qn of S2 with the orientation given by the matrix (2). The
distance between the points Qn and Qn+1 is 2πR/(R + 1).

Proof. For every n ∈ Z take the move R{e, δ}Id given by (1) of length l = πR/(R + 1) +
n2πR/(R + 1) through the meridian M with director vector e having α = (c − a)/2.

The point Pn is the image of the north pole (0, 0, R) under the matrix R{e, δ}. This
completes the proof of statement (a).

For every n ∈ Z take the move R{e, δ}R3(c)R1(b)R3(a) through the meridian M with
director vector e having α = c, where R{e, δ} is given by (1) with length l = (b + π)R/(R +
1) + n2πR/(R + 1).

The point Qn is the image of the north pole (0, 0, R) under the matrix R{e, δ}. This
proves statement (b). �

We now show that with 4 moves one can go from the state (P0, (i, j, k)) to any other state
(P1, (I, J,K)).

Theorem 7. Let R > 1. Given two points P, Q ∈ S2 and M ∈ SO(3), we can pass from
the initial state (P, Id) to the final state (Q,M) in 4 moves.

Proof. Let M = R3(c)R1(b)R3(a) with a, c ∈ S1 and b ∈ [0, π].

Without loss of generality we can assume that the point P is the north pole of the sphere.
Then, for every n ∈ Z, using Lemma 6(a) and doing one move we can pass from the state
(P, Id) to the states (Pn,M0) where M0 is the matrix (2), and where a, c are the angles
appearing in the matrix M .

Clearly the result proved in Lemma 6(b) can be applied to any point of the sphere, not
necessarily the north pole. Therefore, for every m ∈ Z using Lemma 6(b) and doing one
move we can pass from the state (Q,M) to the states (Qm,M0) where M0 is the matrix (2).

Now by Lemma 4 there are two points Pn and Qm whose distance is smaller than
2πR/(R+1). Finally, using Lemma 5, we can pass with two moves from the state (Pn,M0)
to the state (Qm, M0), which concludes the proof. �

4. Cases in which three moves are sufficient on S2

The next result allows to go with 3 moves from the state (P0, (i, j, k)) to an arbitrary
state of the form (P0, (I, J, k)) which corresponds to (P0, R3(β)) for a certain β; this result
is known as the elimination of the spin discrepancy β.

Theorem 8. Given the state (P0, (i, j, k)) we can pass to the state (P0, (I, J, k)) doing 3
moves.

Proof. As usual we assume that P0 is the north pole of the sphere of radius R. We con-
sider the spherical equilateral triangle whose vertices are P0 = R(0, 0, 1) = Rp0, P1 =
R(0, sin(l/R), cos(l/R)) = Rp1 and P2 = R(− sin α sin(l/R), cos α sin(l/R), cos(l/R)) = Rp2

and length l, where α is the angle between the two great circles having vertex at P0. Some
basic spherical geometry shows that cosα = cos(l/R)(1 − cos(l/R))/ sin2(l/R).

Taking into account Proposition 1 the move from the state (P0, Id) to the state (P1,M1)
through the arc of the great circle of length l going from P0 to P1 is given by the matrix
M1 = R(p0 ∧ p1/|p0 ∧ p1|, (1 + R)l/R). Similarly the move from the state (P1,M1) to the
state (P2, M2M1) through the arc of the great circle of length l going from P1 to P2 is given
by the matrix M2 = R(p1 ∧ p2/|p1 ∧ p2|, (1 + R)l/R).

The move from the state (P0, R3(β)) to the state (P2,M3R3(β)) through the arc of the
great circle of length l going from P0 to P2 is given by the matrix M3 = R(p0 ∧ p2/|p0 ∧
p2|, (1 + R)l/R).
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It is now enough to prove that there exists l satisfying the equality M2M1 = M3R3(β).
Take s = sin(l/R) satisfying

cos β =

√
1 − s2

(
−s6 + 30s4 − 64s2 + 32

)
− 2

(
5s6 − 29s4 + 40s2 − 16

)

s6
(√

1 − s2 + 1
) .

When s runs the interval [0.866025.., 1] the right hand side of the previous expression covers
the interval [−1, 1]. Hence for every β there exists some l0 ∈ (0, π/2] satisfying the above
equality. We checked using the symbolic computational system Mathematica that for such
a l0 we have M2M1 = M3R3(β). �

The next result allows to go with 3 moves from the state (P0, (i, j, k)) to an arbitrary
state of the form (P1, (I, J,−k)).

Proposition 9. Let R > 1. Then, given the state (P0, (i, j, k)), we can pass to the state
(P1, (I, J, −k)) doing 3 moves.

Proof. For every n ∈ Z using Lemma 6(b) and doing one move we can pass from the state
(P0, (i, j, k)) to the states (Pn, (I, J, −k)). Since R > 1, then by Lemma 5 we can pass
from some state (Pn, (I, J, −k)) to the state (P1, (I, J,−k)) with two moves. Hence the
proposition is proved. �
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