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THE ROLLING BALL PROBLEM ON THE SPHERE

LAURA M. O. BISCOLLA, JAUME LLIBRE AND WALDYR M. OLIVA

ABSTRACT. By a sequence of rolling motions without slipping or twisting along arcs of
great circles outside the surface of a sphere of radius R, a spherical ball of unit radius
has to be transferred from an initial state to an arbitrary final state taking into account
the orientation of the ball. Assuming R > 1 we provide a new and shorter prove of the
result of Frenkel and Garcia in [4] that with at most 4 moves we can go from a given
initial state to an arbitrary final state. Important cases such as the so called elimination
of the spin discrepancy are done with 3 moves only.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The rolling movements of a spherical ball B of unit radius over an oriented connected
smooth surface S embedded in R? suggest the consideration of some special kinematic (vir-
tual) motions. A state of the ball is defined to be the pair formed by the point of contact
between B and S and a positive orthonormal frame attached to B. Assume that the ball
B rolls freely on S, i.e. S N B is the singleton of the contact point. So the set of all the
states is identified with the manifold M = S x SO(3), where SO(3) denotes the group of
orthogonal 3 x 3 matrices.

A move is a smooth path on M corresponding to a rolling of B on S without slipping
or twisting along a geodesic of the surface S. No slipping in the rolling means that at each
instant the point of contact between B and S has zero velocity; no twisting means that, at
each instant, the axis of rotation must be parallel to the tangent plane of S at the point of
contact.

According with John M. Hammersley the following problem was proposed by David
Kendall in the 1950s: What is the number N of moves necessary and sufficient to reach
any final state of R? x SO(3) starting at a given initial state? In an interesting paper Ham-
mersley [6] shows that N = 3. Recently we have provided a new and short proof of this
result, see [3].

The following historical considerations we quote from [6] p.112: The original version of the
question set (by David Kendall in the 1950s) for 18-year-old schoolboys, invited candidates
to investigate how two moves, each of length m, would change the ball’s orientation; and to
deduce in the first place that N < 11, and in the second place that N < 7. Candidates scored
bonus marks for any improvement on 7 moves. When he first set the question, Kendall knew
that N < 5; but, interest being aroused amongst professional mathematicians at Ozford, he
and others soon discovered that the answer must be either N = 3 or N = 4. But in the
1950s nobody could decide between these two possibilities. There was renewed interested in
the 1970s, and not only amongst professional mathematicians: for example the President of
Trinity (a distinguished biochemist) spent some time rolling a ball around his drawing room
floor in search of empirical insight. In 1978, while delivering the opening address to the
first Australasian Mathematical Convention, I posed the problem to mathematicians down
under; but I have not subsequently received a solution from them. So this is an opportunity
to publish the solution.
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Hammersley [6] p.130 and Jurdjevic [7] are also interested in the same problem but when
the spherical ball of unit radius rolls without slipping or twisting through arcs of great circles
outside a sphere S? of radius R > 1. In this case the manifold of states is identified with the
set S? x SO(3). In the more general case M = S x SO(3) one asks: What is the minimum
number N(S) of moves sufficient to reach any final state of S x SO(3) starting at a given
initial state? For the case S = S? (the sphere of radius R), it is known that N(S?) is finite
if R # 1, see Jurdjevic [7] pages 165-169 (section 5.1) and Biscolla [2]. In fact, from the
results of this last paper it can be proved that the number N(S) is finite when the unit
ball rolls without slipping or twisting along geodesics of an analytic oriented connected and
compact surface of revolution which has everywhere Gaussian curvature different from 1.

From now on we assume that all rolling motions are done outside the surface of the sphere
S2.

Recently, Frenkel and Garcia [4] proved that if S? is a sphere of radius R > 1, then
3 < N(S?) < 4. In Theorem 8 of this paper, it is proved, for any R > 1 and only three
moves, the so called “elimination of the spin discrepancy” (see [6]). We also provide a new
and shorter proof of the result of Frenkel and Garcia [4], that if R > 1, with at most 4 moves
we can go from a given initial state to an arbitrary final state (see Theorem 7).

We remark that the rolling ball problem on the sphere has special interest in control
theory and in robotics, see [7].

The paper is organized as follows. In section 2 we recall the Euler angles and using these
angles can get an easy representation of the elements of SO(3). In section 3 we show that
four moves are sufficient on S? with R > 1. In section 4 we see two important cases in which
3 moves are sufficient on S? including the elimination of the spin discrepancy .

2. EULER ANGLES

According to Euler’s rotation theorem, any rotation of R3, i.e. any element of the SO(3),
may be described using three angles. If the rotations are written in terms of rotation matrices
Rs(a), Ry1(b) and R3(c), then a general rotation M € SO(3) can be written as

M = Rg(C)Rl (b)Rg(a)7

where
cosa sina 0 1 0 0
Rs(a) = | —sina cosa 0 |, Ri(b)=| 0 cosb sinb |,
0 0 1 0 —sinb cosb

The three angles a, b and ¢ are called Euler angles. There are several conventions for Euler
angles, depending on the axes about which the rotations are carried out. The so—called
x—convention is the one we use, being also the most common definition. In this convention
a rotation is given by Euler angles (a,b,c) where the first rotation is by an angle a about
the z—axis, the second is by an angle b in [0, 7] about the z—axis and the third is by an angle
¢ about the z—axis.

The Euler angles are also related to the quaternions, which was the approach used by
Hammersley to study the rolling ball ball problem in the plane (see [6]). For more details
about the Euler angles see for instance [5].

A state (P, M) € S? x SO(3) of the spherical ball on the surface of the sphere S? means
that the contact point of the ball with the sphere is the point P of S? and its orientation is
given by the rotation matrix M or its associated orthonormal frame (I, .J, K) of R*, where
the vectors I, J and K are the first, second and third column of the matrix M, respectively.
Moreover the state (P, M) is also denoted by (P, (I, J, K)).

We denote by (4,7, k) the orthonormal frame (I, J, K) associated to the 3 x 3 identity
matrix Id.
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3. FOUR MOVES ARE SUFFICIENT ON S?

Let S? = {(x,y,2) € R®: 22 + 9% + 22 = R?}. The next proposition and their corollaries
essentially follow [4].

Proposition 1. Let {i, j, k} be the frame attached to the unitary ball of center C = (0,0, R+
1) with the vector k orthogonal to the sphere S* of radius R going from C to A = (0,0, R+2).
Assume that the ball rolls along the meridian M of S? defined by the plane j-k. If after a
rolling the vector k goes to a vector u making an angle o with k, then the distance s (along
the meridian M) is equal to s = Ra/(R + 1), and the point A goes to a point A, such that
u is the vector from C (the new position of the center of the ball) to A.

Proof. Tt is easy to check that a = s+ s/R. So we get that s = Ra/(R + 1). O

Given two points P and @ on S? the distance between P and Q, d(P, Q), is the length of
the small arc of the great circle containing P and Q). In particular if P and @Q are two points
on S? whose angle between them is 27/(R+ 1), the distance d(P, Q) is equal to 27 R/(R+1).

When rolling a ball from an initial state (P, M) in S? x SO(3) to a final state (Q, M) it
is considered that P goes to @) along the arc of small length of the great circle containing P
and Q.

Hereafter when we say that a distance between two points is larger than 2rn R and smaller
than 27(n + 1)R we mean that we have done more than n and less than n + 1 turns on
the sphere along the great circle. With this definition we have that d(P, P) = 2rnR with
n=20,1,2,...

Corollary 2. If we start rolling the ball at the north pole of the sphere S® with the orientation
M € SO(3), then the curves on S? on which the orientation of the ball is M are parallels at
a distance 2mnR/(R + 1) of the north pole for n = 1,2,... It can happen that some of these
parallels can be reduced to the north or south pole (if R+ 1 divides 2n).

Proof. When the ball starting to roll at the north pole reaches in one move a point of the
parallel whose distance to the north pole is 2rnR/(R + 1), the ball has done exactly n
complete turns. Therefore, the corollary follows. O

Corollary 3. Rolling the ball from the initial state (P,{i,j,k}) along a great circle of length
7R/(R+ 1)+ 2mnR/(R + 1), with n a positive integer, then the orientation of the ball at
the final state is given by an orthonormal frame of the form {I,J,—k}.

Lemma 4. Let vy and o be two great circles of S?, and let Py and Qg be two arbitrary points
on vy and o respectively. Consider S, (resp. S,) to be the set of points P, of v (resp. of
o) which are at distance 2rnR/(R + 1) of the point Py for n = 1,2,... Then the distance
between the points of S, and S, is smaller than 2rR/(R +1).

Proof. If ~ coincides with o the proof is trivial. Assume that ~ is different from o. Let A
be one of the two points of the intersection between v and o. Clearly there are points of .S,
whose distance to A is at most TR/(R+ 1) and let P, be one of such points. Similarly there
is a point @ of S, whose distance to A is at most 7R/(R + 1). Then the distance between
P, and Q; is smaller than 27R/(R + 1). O

Lemma 5. Let R > 1, M € SO(3) and P,Q € S* with P # Q. If the distance between P
and @Q is smaller than 2rR/(R+ 1) we can go from the initial state (P, M) to the final state
(Q, M) with 2 moves; otherwise we need 8 moves.

Proof. Without loss of generality we can take P as the north pole of S2. By Corollary 2
and Lemma 4 it is clear that with one move we may assume that on the sphere the distance
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d(P,Q) between P and @ is less than or equal to 2rR/(R + 1). We claim that given two
different points P and ) we have that

2R
R+1

d(P,Q) < implies Cp NCq # 0,

o0
where Cp = U CP, with

n=1

2 _27R

CPn—{XES .d(X,P)—nR+1}.
Now we consider the following two cases.
Case 1: R is irrational. Then the set of parallels Cp and Cg are dense in S?, and since
P # @ they intersect. So the claim is proved in this case.
Case 2: R is rational. Then the set of parallels Cp and Cq is finite. Let v be the great circle
passing through P and ). The intersection of v with Cp is a finite set of equidistant points
on v which are located symmetrically with respect to the diameter of v passing through P.
If some of the points of v N Cp different from P are located in the closed north hemisphere
of §2, it is clear that CQ; N CP; # (. Otherwise we must have either 27R/(R + 1) = 7R,
or 2rR/(R+ 1) = 2rR/3. In the first case R = 1, which contradicts the hypothesis that
R>1.

Assume 2rR/(R + 1) = 2mR/3, then R = 2 and Cp is formed by the point P and the
parallel which is at a distance 2rR/3 of P. Again it follows easily that CQ; N CP; # 0.
Hence the claim is proved.

So by Corollary 2 when d(P, Q) < 2rR/(R + 1), it follows that 2 moves are sufficient to
go from (P, M) to (@, M); it is enough to go from (P, M) to (Z, M) where Z is a point of
Cp N Cq and from (Z, M) to (Q, M). O

It is well known that the rotation matrix R{e,d} of angle § around an axis through the
origin with direction e = (u, v, w) is

u? + (V2 +w?)cosd  wv(l —cosd) —wLsind  ww(l —cosd) +vLsind
uv(l —cosd) +wLsind  v?+ (u?2 +w?)cosd  vw(l —cosd) — ulsind
uw(l —cosé) —vLsind vw(l —cosd) +ulsind  w?+ (u? +v?)cosd

ﬁ )
where L = vu2 + 12 + w?.

Now we shall describe the equation of any move starting at the north pole (0,0, R) of
S2. The great circles through the north pole are called meridians. Let M be the meridian
contained in the plane through the origin with director vector e = (cos «, —sin v, 0). Then,
by Proposition 1, the move of length [ starting at the north pole through the meridian M
is given by the matrix

(1) R{e, 6} with d=I(R+1)/R.
More precisely if we have at the north pole the ball with the orientation given by the matrix
M € SO(3), after the move R{e,d} the ball has the orientation R{e, §} M.

Lemma 6. The following two statements hold.

(a) Starting at the north pole with the orientation {i,j,k}, for every n € Z we can pass
with one move to points P™ of S® with the orientation given by the matrix

cos(a —c) —sinfa—c) 0
(2) —sin(a—c¢) —cos(a—c) 0 ,
0 0 -1

where a and c are arbitrary angles of S'. The distance between the points P" and
Pl s 2nR/(R+ 1).
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(b) Starting at the north pole with an arbitrary orientation given by the matriz Rs(c) Ry (b)
R3(a) with a,c € St and b € [0, 7] (see section 2), for every n € Z we can pass with
one move to points Q" of S* with the orientation given by the matriz (2). The
distance between the points Q™ and Q"1 is 2rR/(R +1).

Proof. For every n € Z take the move R{e,d}Id given by (1) of length | = 7R/(R+ 1) +
n2wR/(R + 1) through the meridian M with director vector e having oo = (¢ — a)/2.

The point P™ is the image of the north pole (0,0, R) under the matrix R{e,d}. This
completes the proof of statement (a).

For every n € Z take the move R{e,d}R3(c)R1(b)Rs(a) through the meridian M with
director vector e having oo = ¢, where R{e,d} is given by (1) with length I = (b+7)R/(R+
1)+ n27R/(R+1).

The point Q™ is the image of the north pole (0,0, R) under the matrix R{e,d}. This
proves statement (b). O

We now show that with 4 moves one can go from the state (Py, (i, j, k)) to any other state
(P, (I,J,K)).

Theorem 7. Let R > 1. Given two points P,Q € S* and M € SO(3), we can pass from
the initial state (P,Id) to the final state (Q, M) in 4 moves.

Proof. Let M = R3(c)R1(b)R3(a) with a,c € S! and b € [0, 7).

Without loss of generality we can assume that the point P is the north pole of the sphere.
Then, for every n € Z, using Lemma 6(a) and doing one move we can pass from the state
(P,1Id) to the states (P", My) where My is the matrix (2), and where a, ¢ are the angles
appearing in the matrix M.

Clearly the result proved in Lemma 6(b) can be applied to any point of the sphere, not
necessarily the north pole. Therefore, for every m € Z using Lemma 6(b) and doing one
move we can pass from the state (Q, M) to the states (Q™, My) where My is the matrix (2).

Now by Lemma 4 there are two points P"™ and Q™ whose distance is smaller than
27 R/(R+1). Finally, using Lemma 5, we can pass with two moves from the state (P™, My)
to the state (Q™, Mp), which concludes the proof. O

4. CASES IN WHICH THREE MOVES ARE SUFFICIENT ON S?

The next result allows to go with 3 moves from the state (P, (i,7,k)) to an arbitrary
state of the form (Pp, (I, J, k)) which corresponds to (P, R3()) for a certain f3; this result
is known as the elimination of the spin discrepancy S.

Theorem 8. Given the state (P, (i,7,k)) we can pass to the state (Py,(I,J, k)) doing 3
moves.

Proof. As usual we assume that P, is the north pole of the sphere of radius R. We con-
sider the spherical equilateral triangle whose vertices are Py = R(0,0,1) = Rpg, P, =
R(0,sin(l/R), cos(l/R)) = Rp; and P, = R(—sinasin(l/R),cos asin(l/R), cos(l/R)) = Rps
and length [, where « is the angle between the two great circles having vertex at Fy. Some
basic spherical geometry shows that cos a = cos(l/R)(1 — cos(l/R))/sin?(I/R).

Taking into account Proposition 1 the move from the state (P, Id) to the state (P, M)
through the arc of the great circle of length [ going from Py to P; is given by the matrix
My = R(po A p1/lpo A pil, (1 + R)I/R). Similarly the move from the state (P, M) to the
state (Py, My M) through the arc of the great circle of length [ going from P; to P; is given
by the matrix My = R(p1 A p2/|p1 Ap2|, (1 + R)I/R).

The move from the state (Py, R3(8)) to the state (P, M3R3(3)) through the arc of the
great circle of length ! going from Py to P» is given by the matrix M3 = R(po A p2/|po A
p2|, (1 + R)l/R).
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It is now enough to prove that there exists | satisfying the equality MsM; = M3R3(0).
Take s = sin(l/R) satisfying

V1 — 52 (=% +30s* — 645 + 32) — 2 (55° — 295* + 40s% — 16)
sO(V1I—s2+1) ’

When s runs the interval [0.866025.., 1] the right hand side of the previous expression covers

the interval [—1,1]. Hence for every § there exists some Iy € (0,7/2] satisfying the above

equality. We checked using the symbolic computational system Mathematica that for such
a lo we have MQMl = MgRg(ﬂ) O

cos B =

The next result allows to go with 3 moves from the state (P, (i,7,k)) to an arbitrary
state of the form (P, (I,J,—k)).

Proposition 9. Let R > 1. Then, given the state (Py, (i,7,k)), we can pass to the state
(P, (I,J,—k)) doing 3 moves.

Proof. For every n € Z using Lemma 6(b) and doing one move we can pass from the state
(Po, (i,4,k)) to the states (P™,(I,J,—k)). Since R > 1, then by Lemma 5 we can pass
from some state (P™,(I,J,—k)) to the state (P, (I,J,—k)) with two moves. Hence the
proposition is proved. O
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