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DAVID BLÁZQUEZ-SANZ1 AND CHARA PANTAZI2

Abstract. In this work we unfold some differential algebraic aspects of Darboux
first integrals of polynomial vector fields. An interesting improvement is that our
approach can be applied both to autonomous and non-autonomous vector fields.
We give a sufficient and necessary condition for the existence of a Darboux first
integral of a specific form for a polynomial vector field with some known algebraic
invariant hypersurfaces. For the autonomous case, the classical result of Darboux
is obtained as a corollary. For the non-autonomous case our characterization
improves a known criterium.

1. Introduction

One of the most important subjects in mathematical physics is the discussion of
integrability of differential equations started by Newton in the 17th century. There
is not an unified approach to integrability. There are many different technics for inte-
grating differential equations or proving their non–integrability within some specific
framework: Lie symmetries [26], Noether symmetries [4], Lax pairs [14], Painlevé
analysis [2], differential Galois theory [24, 28], Darboux’s method [10], among others.

A useful approach is the search of invariants and their classification. The first
class of invariants are the conserved quantities or first integrals. There are also
some other invariants like Jacobi multipliers, tensor invariants or symmetries. The
search and classification of those invariant objects of differential equations is still a
very active research topic.

In this paper we give some generalization of a classical method started by Darboux
in 1878 for the computation of first integrals of polynomial differential systems,
[10, 11]. More recently this method has been refined by several authors, Jouanolou,
Singer, Schlomiuk, Llibre, Christopher, Zhang [5, 9, 18, 22, 20, 21, 13, 25, 28, 19, 17,
15] among others. This method has been related with some applications concerning
limit cycles, centers and bifurcation problems, see for instance [12, 23, 27]. Moreover,
several inverse problems for dimension two have been studied in [7, 16, 8].

Here we isolate the differential algebraic nature of the classical Darboux’s method
on elementary first integrals. More concretely, in Theorems 5 and 8 we present
some new results related to the known theorems about Darboux integrability for
autonomous and non–autonomous polynomial vector fields in Cn.
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The structure of the paper is the following: In Section 2 first we give the basic no-
tions and the known results about Darboux’s theory of integrability for autonomous
polynomial differential systems in Cn. The new results are presented in Subsection
2.2. More concretely, Theorem 5 improves the known results of Darboux integrabil-
ity for autonomous polynomial systems. The examples in Subsection 2.3 illustrate
these improvements. In Section 3 first we present the basic notions about Darboux
first integrals and Jacobi multipliers for a class of non–autonomous vector fields.
The new results for non-autonomous vector fields are given in Subsection 3.2, in
Theorem 8. At the end we illustrate the theory with an example.

2. Darboux first integrals for autonomous differential systems

2.1. Basic notions and known results. First, we will fix the following notation.
Let F be a differential field of characteristic zero, and let us denote by ∂ its deriva-
tion. The field of constants of F is denoted by C(F). We consider a1, · · · , ar ∈ F .
We denote by W(a1, . . . , ar) the Wronskian matrix

W(a1, · · · , ar) =




a1 · · · ar
∂a1 · · · ∂ar

· · ·
∂(r−1)a1 · · · ∂(r−1)ar


 . (1)

The following differential algebraic lemma contains the core of Darboux’s method
for the search of first integrals and Jacobi multipliers.

Lemma 1. Let us consider elements f1, · · · , fr, ψ ∈ F and denote by ai = (∂fi)f
−1
i =

∂ log fi. The following conditions are equivalent:

(i) The rank of the Wronskian matrices W(a1, . . . , ar, ψ) and W(a1, . . . , ar) co-
incide.

(ii) ψ is a non-trivial C(F)-linear combination of a1, . . . , ar

ψ = λ1a1 + · · ·+ λrar. (2)

(iii) There exist constants λ1, · · · , λr in C(F) such that for any differential ex-
tension F ⊂ F(b1, · · · , br) by elements bi satisfying ∂bi = λiaibi the element
M = b1 · · · br verifies ∂M = ψ ·M .

Proof. The equivalence between (i) and (ii) is due to Lemma 1.12 in [29]. The
equivalence between (ii) and (iii) is proved using the same argument as in the proof
of the classical theorem of Darboux, see [11]. We note that a simple computation

shows that ∂ logM =
r∑
i=1

λiai. �

Remark 2.

(i) If ψ = 0, then M is a new constant.
(ii) If ∂ represents the Lie derivative with respect a vector field of divergence ψ

then M is a Jacobi multiplier.

We will develop this remark throughout the forthcoming sections.

We consider the n× n complex polynomial differential systems of the form

ẋj =
dxj
dt

= Pj(x1, · · · , xn) =
n∑

0≤i1+···+in≤m
aji1···inx

i1
1 · · ·xinn , j = 1, · · · , n (3)
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with aji1···in ∈ C. Note that system (3) has degree m = max{degP1, · · · ,degPn}.
The associated vector field of system (3) is

X =

n∑

i=1

Pi
∂

∂xi
. (4)

Let f ∈ C[x1, · · · , xn] be irreducible. The hypersurface f = 0 is an invariant
hypersurface of the vector field (4) if it satisfies

X(f) =

n∑

j=1

Pj
∂f

∂xj
= Kf,

or, equivalently,

X(f)

f
= X(log(f)) = K, (5)

with K ∈ Cm−1[x1, · · · , xn]. We stress that if the polynomial system (3) has degree
m then we have that degK ≤ m−1, independently of the degree of the hypersurface
f(x1, · · · , xn) = 0. Note that if an orbit x(t) = (x1(t), · · · , xn(t)) of the vector field
X has a point on the hypersurface f = 0 then the whole orbit is contained in f = 0.
This is the reason that we say that the algebraic hypersurface is invariant for the
vector field X, i.e. it is invariant by its flow.

Assume that h, g ∈ C[x1, · · · , xn] and are relatively prime polynomials in the
variables x1 · · ·xn. The function F (x1, · · · , xn) = exp (g/h) is called an exponential
factor (see also [5]) of the differential system (3) if there is K ∈ Cm−1[x1, · · · , xn]
that satisfies

X(F ) =

n∑

j=1

Pj
∂F

∂xj
= KF, (6)

or equivalently

X
(g
h

)
= K,

and we say that K is the cofactor of the exponential factor F . If F = exp (g/h)
is an exponential factor with g, h coprimes it is easy to prove that h = 0 is an
invariant hypersurface of X. The existence of exponential factors with cofactor of
degree ≤ m− 1 is related with the concept of multiplicity [9, 19, 20, 21].

Let W be an open subset of Cn. An analytic function I : W −→ C is a first
integral of the vector field X on W if X(I) = 0. This implies that I is constant
along integral curves of X contained in W .

An analytic function M : W −→ C is a Jacobi multiplier of the vector filed X on

W if it satisfies X(M) = −(divX)M where divX =
n∑
i=1

∂Pi/∂xi is the divergence

of the vector field (4). Note that due its definition a Jacobi multiplier is also an
invariant hypersurface (maybe not a polynomial) of system (3) with cofactor −divX.
Additionally, the existence of a Jacobi multiplier M yields to the divergence free
system MX = (MP1, · · · ,MPn).
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Consider f1, · · · , fp irreducible and coprime polynomials in C[x] and some F1, · · · , Fq
exponential factors. Any function of the form

I = fλ11 · · · f
λp
p Fµ11 · · ·F

µq
q , (7)

will be called a Darboux function. Note that powers and products of exponential
factors are also exponential factors. Therefore any Darboux function can be written
into the form

I = fλ11 · · · f
λp
p exp

(g
h

)
. (8)

A Darboux first integral (Darboux Jacobi multiplier) is a first integral (Jacobi
multiplier) given by a Darboux function of the form (8).

The following theorem summarizes known results on the subject of Darboux first
integrals dating back to Darboux [10], Jouanolou [13], and some more recent works
like [5, 6, 19, 27] among others.

Theorem 3. Assume that the polynomial vector field X in Cn given by (4) of degree
m admits

(i) p irreducible and coprimes invariant algebraic hypersurfaces f1 = 0, · · · , fp =
0 with cofactors K1, · · · ,Kp.

(ii) q exponential factors Fp+1, · · · , Fp+q with cofactors Kp+1, · · · ,Kp+q of degree
≤ m− 1.

Then the following statements hold.

(a) If p + q =

(
n+m− 1

n

)
+ 1, then the vector field X has a Darboux first

integral.

(b) If p + q =

(
n+m− 1

n

)
+ n then the vector field X has a rational first

integral.

(c) If p+ q =

(
n+m− 1

n

)
, then the vector field X has either a Darboux first

integral or a Darboux Jacobi multiplier.

Statement (a) is due to Darboux [10, 11], and statement (b) of Theorem 3 was
proved by Jouanolou [13]. For a short proof of statement (b) see [5, 6] for n = 2 and
[19] for n ≥ 2. A similar to statement (c) of Theorem 3 appears in [1] and its proof
follows easily.

Remark 4. In Theorem 3 the number p + q ≥
(
n+m− 1

n

)
is a sufficient but

not necessary condition for the existence of a Darboux first integral or of Jacobi
multiplier.

2.2. New results for autonomous polynomial differential systems. Let X be
a polynomial vector field in Cn. We consider K1, · · · ,Kr cofactors of hypersurfaces or
of exponential factors of X. We denote byW the Wronskian matrix of the cofactors
defined as

W =W(K1, · · · ,Kr) =




K1 · · · Kr

X(K1) · · · X(Kr)
· · ·

X(r−1)(K1) · · · X(r−1)(Kr)


 , (9)
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where X(l+1)(Kj) = X(X(l)(Kj)). Next we are going to use the Wronskian (9) in
order to present a result related to the classical Darboux Theorem (3).

Theorem 5. Assume that the polynomial vector field X in Cn given by (4) of degree
m admits

(i) p irreducible and coprime invariant hypersurfaces, f1 = 0, · · · , fp = 0 with
cofactors K1, · · · ,Kp.

(ii) q exponential factors Fp+1, · · · , Fp+q with cofactors Kp+1, · · · ,Kp+q.

We further assume that the 1-forms d log f1, . . . , d log fp, d logFp+1, · · · , d logFp+q
are linearly independent over C.

(a) p + q > rank(W(K1, · · · ,Kp+q)) if and only if the vector field X admits a
first integral which is either rational or Darboux.

(b) p + q > rank(W(K1, · · · ,Kp+q, divX)) + 1 if and only if the vector field X
admits either a rational first integral or a Darboux Jacobi multiplier.

(c) p+ q > rank(W(K1, · · · ,Kp+q)) + n then the vector field X has at least one
rational first integral.

Proof. The proof follows directly from Lemma 1. Let us consider F = C(x1, · · · , xn)
as a differential field endowed with the derivation X. The field of constants C(F) is
the field of rational first integrals of X. Let us prove statement (a). Condition (i)
of Lemma 1 is satisfied with ψ = 0 (see equation (2)). Assuming that there is not
a non-constant rational first integral, then we have that there is a non-trivial linear

combination over C, λ1K1 + · · ·+λp+qKp+q = 0 and therefore I = fλ11 · · ·F
λp+q

p+q is a

new constant of the extension F ⊂ F(fλ11 , · · · , F λp+q

p+q ), and therefore a first integral
of X. This function I is not a constant in Cn because of the linear C-independence
of d log f1, . . . , d log fp, d logFp+1, d logFp+q.

Let us prove statement (b). Now, condition (i) of Lemma 1 is satisfied with
ψ = −divX. Following the same argument, by Lemma 1(iii) we have that M =

fλ11 · · ·F
λp+q

p+q verifies that XM = (−divX)M and so it is a Jacobi multiplier of X.
The proof of statement (c) will be given as a particular case of Theorem 8. �

Remark 6.

(i) We note that the hypothesis of independence guarantees that d log I is a non
zero rational 1-form and therefore I is a non-constant function.

(ii) In Theorem 5 there is no condition about the degree of the cofactors Kp+1, . . . ,
Kp+q of the exponential factors.

(iii) If det(W(K1, . . . ,Kr)) 6= 0 means that there is not a Darboux first integral
formed by the invariant hypersurfaces and exponential factors that corre-
sponds to the cofactors K1, · · · ,Kr. However, it maybe exist a Darboux first
integral formed by a different collection of invariant hypersurfaces and expo-
nential factors.

2.3. Examples.

Example 1. We consider the quadratic vector field,

X = (µx+ βxy)
∂

∂x
+ (λy + αxy)

∂

∂y
.



6 D. BLÁZQUEZ AND C. PANTAZI

It is clear that f1 = x, f2 = y are invariant algebraic curves with cofactors K1 =
µ + βy and K2 = λ + αx respectively. We also consider exponential factors F3 =
ex and F4 = ey, with cofactors K3 = xK1 and K4 = yK2 of degree two. We
have rankW3(K1,K2,K3,K4) = 3 and so according to Theorem 5(b) we obtain the
Darboux first integral of the form I = xλy−µeαx−βy. Note that Theorem 3 cannot
been applied in this case.

Note that the exponential factor eαx−βy is also invariant of X with cofactor K =
αµx − βλy of degree one and we have that rank(W3(K1,K2,K)) = 2 and also
λK1 − µK2 +K = 0. Therefore we can apply both Theorems 3 and 5.

Example 2. We consider the polynomial differential system

ẋ = xz(bxn1yn2zn3 − n2)
ẏ = −yn2+1xn1zn3(γcx+ az) + y(n3γx+ n1z)
ż = γxz(bxn1yn2zn3 − n2),

(10)

with n1, n2, n3 positive integers and a, b, c ∈ C of degree n1 + n2 + n3 + 2. Easy
computations shows that system (10) admits the invariant surfaces f1 = x, f2 = y,
f3 = z with cofactors K1 = bxn1yn2z1+n3−n2z, K2 = −yn2xn1zn3(γcx+az)+n1z+
n3γx and K3 = γx(bxn1yn2zn3−n2) respectively. Additonally, admits the exponential

factor F = exp
(

1
xn1yn2zn3

)
with cofactor K = −n1bz + n2γcx+ n2az − γn3bx. We

have rank(W3(K1,K2,K3)) = 2 and therefore we can apply Theorem 5 (a). We
obtain the first integral

H(x, y, z) = xaybzc exp

(
1

xn1yn2zn3

)
.

Note that for system (10) we have n = 2, m = n1 + n2 + n3 + 2 and so
(
n+m− 1

n

)
=

(n1 + n2 + n3 + 2)(n1 + n2 + n3 + 3)

2
.

Therefore for the application of Theorem 3 we need an arbitrarily big number of
invariant surfaces and exponential factors.

3. Darboux first integrals for non–autonomous differential systems

3.1. Basic notions. Let U be a connected open subset of C. We consider Cω(U,C)
the ring of analytic functions and we denote by M(U,C) = {f/g : f, g ∈ Cω(U,C)}
the field of meromorphic functions in U . We recall that the derivative of a mero-
morphic function is also a meromorphic function and so the field M(U,C) endowed
with the derivation operator d/dt is also a differential field.

We also consider the ring of polynomials in the variables x1, · · · , xn with coeffi-
cients in M(U,C) and we denote it by M(U,C)[x] = M(U,C)[x1, · · · , xn]. In partic-
ular M(U,C)[x] is a domain of unique factorization. In the following we denote by
M(U,C)(x) the ring of rational functions in the variables x1 · · ·xn and coefficients
in M(U,C). Here, we deal with the differential systems of the form

ẋj =
dxj
dt

= Pj(t, x) =
n∑

0≤i1+···+in≤m
aji1···in(t)xi11 · · ·xinn , j = 1, · · · , n (11)

with aji1···in ∈ M(U,C) and so Pj ∈ M(U,C)[x] for j = 1, · · · , n. Note that sys-
tem (11) is a polynomial differential system in the variables x1, · · ·xn of degree
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m = max{degP1, · · · ,degPn}. In what follows these systems will be called non-
autonomous polynomial differential systems. Note that t is the independent variable
of system (3) called the time.

We associate to the differential system (11) the vector field in U∗ × Cn,

X =
∂

∂t
+

n∑

j=1

Pj
∂

∂xj
. (12)

where U∗ is the open subset of C obtained by removing from U the poles of the
coefficients of the polynomials Pi. The vector field X can be interpreted as a deriva-
tion of the ring M(U,C)[x] and therefore of the quotient field M(U,C)(x). Thus,
we obtain a differential field extension (M(U,C), d/dt) ⊂ (M(U,C)(x), X).

Let f1, · · · , fp ∈ M(U,C)[x] be irreducible and coprime polynomials. We also
consider F = exp (g/h) with g, h ∈M(U,C)[x] coprimes.

Any function of the form

fλ11 · · · f
λp
p exp

(g
h

)
, (13)

will be called a generalized Darboux function.

Let W be an open subset of U×Cn. A non constant analytic function I : W −→ C
is a first integral of the vector field X on W if it is constant on all integral curves
x(t) = (t, x1(t), · · · , xn(t)) of X contained in W. Hence I(x(t)) = constant for all
values of t for which the solution x(t) is defined and contained in W . So, X(I) = 0
on W .

A nonconstant analytic function M : W −→ C is a Jacobi multiplier of the vector

filed X on W if it satisfies X(M) = −(divX)M where divX =
n∑
i=1

∂Pi/∂xi is the

divergence of the vector field (12). Note that due its definition a Jacobi multiplier
is also an invariant hypersurface (maybe not a polynomial) of system (11) with
cofactor −divX. Additionally, the existence of a Jacobi multiplier M yields to the
divergence free system MX = (M,MP1, · · · ,MPn).

For non–autonomous systems (11) a Darboux first integral is a first integral given
by a generalized Darboux function (13) and similarly forDarboux Jacobi multiplier.

The theory of Darboux integrability for a 2–dimensional non–autonomous poly-
nomial systems has been developed in [17].

3.2. New results for non-autonomous polynomial differential systems. In
what follows we consider the differential system X in U∗ × Cn given by expression
(12). First we prove the following lemma.

Lemma 7. Let W be an open subset of U × Cn. Let J1, · · · , Jn be functionally
independent analytic first integrals of X on W .

(a) If Jn+1 is another first integral then there exists analytic functions C1, · · · , Cn
such that:

dJn+1 = C1dJ1 + · · ·+ CndJn. (14)

(b) The functions C1, . . . , Cn are first integrals of n.
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(c) Assume Jk = log(Ik) for k = 1, . . . , n + 1 where I1, . . . , In+1 are Darboux
first integrals in which the factors f1, . . . , fp, Fp+1, . . . , Fp+q appear, being
d log f1, . . . , d log fp, d logFp+1, . . . , d logFp+q C-linearly independent. As-
sume that at least one factor appearing in In+1 does not appear in the
I1, . . . , In. Then, the functions Ci are in M(U,C)(x) and at least one of
them is not a constant.

Proof. (a) The vector field X has no zeroes inside W . It follows that at each point
of W the 1-forms dJ1, . . . , dJn are a basis of the space of 1-forms anihilated by X.
The functions C1, . . . , Cn appearing in (14) are simply the coordinates of dJn+1 in
the above basis.

(b) Since the functions Jk are first integrals, the Lie derivatives LieX(dJk) vanish.
The Lie derivative safisfies the Leibniz formula, and therefore by derivation of (14)
we have,

0 =

n∑

k=1

LieX(CkdJk) =

n∑

k=1

X(Ck)dJk.

Taking into account that J1, . . . , Jn are functionally independent it follows that
X(Ck) = 0 for k = 1, . . . , n.

(c) First, if the functions Ik are of Darboux type, it follows that dJk = I−1
k dIk

are 1-forms,

dJk = fk0dt+
n∑

j=1

fkjdxj

were the coefficients fki are in M(U,C)(x). The functions Ck are the coordi-
nates of dJk+1 in the basis dJ1, . . . , dJn. They are obtained by solving a lin-
ear systems of equations with coefficients in M(U,C)(x), and therefore they are
in M(U,C)(x). Let us assume now that all the functions Ck are constant. By
hypothesis, the 1-forms dJ1, . . . , dJn+1 are C-linear combinations of d log f1, . . . ,
d log fp, d logFp+1, . . . , d logFp+q. Substituting them in equation (14) it leads us to
a non-trivial vanishing C-linear combination of d log f1, . . . , d log fp, d logFp+1, . . . ,
d logFp+q. By hypothesis those 1-forms are C-linearly independent, and therefore
at least on of the functions Ck is not in C. �

The following theorem generalizes the Darboux theory of integrability for n–
dimensional non–autonomous polynomial systems.

Theorem 8. We assume that the differential system X in U ×Cn given by (11) of
degree m admits

(i) p invariant hypersurfaces f1 = 0, · · · , fp = 0 with cofactors K1, · · · ,Kp.
Here f1, · · · , fp ∈M(U,C)[x] are irreducible and coprime polynomials.

(ii) q exponential factors Fp+1, · · · , Fp+q with cofactors Kp+1, · · · ,Kp+q. Here
Fi = exp (gi/hi) with gi, hi ∈M(U,C)[x] are irreducible and coprimes.

We further assume that d log f1, . . . , d log fp, d logFp+1, . . . , d logFp+q are C-linearly
independent as meromorphic 1-forms in U × Cn.

Then the following statements hold.

(a) p + q > rank(W(K1, · · · ,Kr)) if there is a first integral. This first integral
is either rational or Darboux (of the form (13)).
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(b) p+q > rank(W(K1, · · · ,Kr, divX))+1 if and only if there is a rational first
integral or a Darboux Jacobi Multiplier of X of the form (13).

(c) If p+ q > rank(W(K1, · · · ,Kr)) + n for j = 1, · · · , n then the vector field X
has at least one rational first integral.

Proof. Let us consider F = M(U,C)(x) endowed with the derivation X. The proof
of statements (a) and (b) here follows exactly the same argument than Theorem 5
statements (a) and (b).

Let us prove statement (c). Reasoning by reductio ad absurdum let us assume that
rank(W) < p+q−n and there is no rational first integral. Therefore, all minors ofW
of order p+q−n vanish. Let us assume that there is a minor of order p+q−n−1 that
does not vanish otherwise we can forget some of our invariant surfaces or exponential
factors. Let us reorder our factors such that det(W(K1, · · · ,Kp+q−n−1)) 6= 0 but for
each j = p+ q − n− 1, · · · , p+ q we have det(W(K1, · · · ,Kp+q−n−1,Kj)) = 0. The
n+ 1 Wronskian matrices considered here are under the hypothesis of statement (a)
and therefore they lead to n + 1 different Darboux first integrals I1, · · · , In+1. The
application of Lemma 7 to that set of first integrals leads us to the existence of a
non–constant rational first integral. This completes the proof. �

Remark 9. Note that the condition about the existence of a Darboux first integrals
and Jacobi multipliers improve the conditions of Theorem 2 in [17].

Example 3. The integrability of autonomous three-dimensional Lotka–Volterra sys-
tems has been studied by many authors, see for example [3]. Here we consider the
non–autonomous Lotka–Volterra system:

ẋ = x

(
ta1(t)− 1

t
− λ2b21 + b31

λ1
tx+ b12y + b13z

)

ẏ = y

(
a2(t) + b21tx−

λ1b12 + b32

λ2
y + b23z

)

ż = z(−λ1a1(t)− λ2a2(t) + tb31x+ b32y − (λ1b13 + λ2b23)z).

(15)

System (15) admits the invariant hypersurfaces f1 = x, f2 = y and f3 = z with
cofactors

K1 = −(λ2b21 + b31)

λ1
tx+ b12y + b13z +

ta1(t)− 1

t

K2 = a2(t) + b21tx−
λ1b12 + b32

λ2
y + b23z

K3 = −λ1a1(t)− λ2a2(t) + tb31x+ b32y − (λ1b13 + λ2b23)z.

Note that det(W(K1,K2,K3)) 6= 0.
System (15) admits the exponential factor F = exp(λ1 ln(t)) with cofactor K =

λ1/t and we have that det(W(K1,K2,K3,K)) = 0. System (15) admits the Darboux
first integral

H = xλ1yλ2ztλ1 .
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(EPSEB), Av. Doctor Marañón, 44–50, 08028 Barcelona, Spain

E-mail address: chara.pantazi@upc.edu


