JOURNAL OF APPLIED PHYSICS 113, 17B531 (2013)

@ CrossMark
click for update

Correlating material-specific layers and magnetic distributions
within onion-like Fe;04/MnO/y-Mn,03 core/shell nanoparticles
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The magnetic responses of two nanoparticle systems comprised of Fe3O4/y-Mn,O3 (soft
ferrimagnetic, FM/hard FM) and Fe;04/MnO/y-Mn,03 (soft FM/antiferromagnetic, AFM/hard
FM) are compared, where the MnO serves to physically decouple the FM layers. Variation in the
temperature and applied field allows for Small Angle Neutron Scattering (SANS) measurements of
the magnetic moments both parallel and perpendicular to an applied field. Data for the bilayer
particle indicate that the graded ferrimagnetic layers are coupled and respond to the field as a single
unit. For the trilayer nanoparticles, magnetometry suggests a Curie temperature (T¢) ~ 40 K for the
outer y-Mn, O3 component, yet SANS reveals an increase in the magnetization associated with outer
layer that is perpendicular to the applied field above T during magnetic reversal. This result
suggests that the y-Mn, O3 magnetically reorients relative to the applied field as the temperature is

increased above 40 K. © 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801423]

Magnetic nanoparticles have drawn a great deal of interest
for applications in biology and material science.'” Since the
report on the use of exchange bias to overcome the superpara-
magnetic limit in magnetic storage,® interest in core-shell
exchange-coupled nanoparticles has surged.”” To date, most of
the studied systems consist of ferromagnetic or ferrimagnetic
(FM) cores with antiferromagnetic (AFM) passivation
shells.>® !9 Advances in chemical synthesis allowing the con-
trolled growth of more complex nanoparticles have triggered in-
terest in core/shell and onion-like magnetic nanoparticles.'' ™
Studies on hard/soft core/shell nanoparticles are revealing inter-
esting magnetic properties such as reversible tuning of the
blocking temperature,' enhanced coercivity,"* improved micro-
wave absorption,'® or optimized hyperthermia.'” Despite their
potential to tailor the magnetic properties, the studies on onion-
like, magnetic nanoparticles are rather scarce due to, in part,
the difficulty in synthesizing these structures.

Here, we compare and contrast the magnetic response of
two systems nominally comprised of 3nm diameter Fe;O4
core/2.5 nm thick y-Mn, O3 shell nanoparticles (Sy) and 6 nm
diameter Fe;O4 core/30nm MnO thick shell/Snm thick
7-Mn, O3 shell nanoparticles (S30). Small Angle Neutron
Scattering (SANS) provides detailed information regarding
their magnetic morphologies. Variation in temperature and
field allows analysis of FM and AFM responses.

The nanoparticles have been synthesized by seeded growth,
where monodispersed Fe;O4 nanoparticles were used as seeds
for the subsequent growth of manganese oxide.'>'> Different
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amounts of MnO were layered on the Fe;O4 seeds by thermal
decomposition of manganese (II) acetylacetonate. The MnO is
then passivated in air leading to a thin layer of y-Mn, O3, nomi-
nally F6304/”/-M1’1203 and FC304/MI’IO/V-M1’1203 for thin and
thick manganese oxide overlayers, respectively. For S, anoma-
lous x-ray diffraction reveals that the resulting nanoparticles
are 8.2nm * 0.2nm in diameter and consist in the ensemble
average of a small Fe;O4 core surrounded by a graded
(MnyxFe;_x);04 shell ranging from X = 0.40 to 0.46."® High re-
solution transmission electron microscopy (HR-TEM) with elec-
tron energy loss spectroscopy19 confirms the core/shell and
onion-like morphology and indicates that the outermost edge of
the nanoparticles transition to y-Mn,Os3. Thus, Sy is entirely fer-
rimagnetic, composed of a soft core (Fe304) and a hard shell
(y-Mn,03) or, to a certain extent, a graded anisotropy similar to
thin film systems.”® On the other hand, sample S5, is composed
of a hard-FM/AFM/soft-FM. Thus, we have two comparative
nanoparticle systems with and without an intermediate AFM
spacer layer of MnO between FM core and FM outer shell.
X-ray diffraction shows clear signature of Fe;0O4 and MnO peaks
in Sz, but no readily identifiable y-Mn,O3 (or Mn30,) peaks,
leading us to conclude that the y-Mn;,Oj3 shell remains thin. HR-
TEM indicates that the S5y nanoparticles are 80nm * 10nm in
diameter, accompanied by some uncoated Fe;O,4 seeds (=6 nm
in diameter). SANS probes magnetism, both in magnitude and
spatial distribution as a function of applied magnetic field or tem-
perature. Polarization Analyzed SANS (PASANS)?! additionally
offers the ability to measure the net magnetic direction of distinc-
tive layers, although it limits the applied field magnitude. All
neutron measurements were performed at NIST Center for
Neutron Research (NCNR), beamlines NG3 and NG7.
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PASANS was performed with an electromagnet capable
of reaching 1.25 T. Detection of the neutron spin prior to and
after sample scattering was achieved using a combination of
a FeSi supermirror, an electromagnetic spin flipper, and a
*He spin analyzing cell. As shown in Fig. 1, four conditions
of Sy were examined: 0.005T and 1.2T at 5K and 100 K.
The scattering involving neutrons whose spins are not
reversed (non spin-flip) allows for the extraction of the mag-
netic moments parallel to the applied field,"** |M”|2. Fig.
1(a) reveals that |M |2 closely follows the scattering from the
nanoparticle structure (open circles) with a nearest-neighbor
peak observed at 0.085 A™". The presence of a sharp peak
indicates that these particles are tightly packed and have a
well-defined structural order. |[M| |2 decreases with increased
temperature or decreased field. (Error bars in all figures
denote one standard deviation.)

Scattering from neutrons whose spins are reversed (spin-
flip) allows for the extraction of the scattering from magnetic
moments perpendicular to the applied field,*'** |M L|2, Fig.
1(b). M, |2 is almost absent in a field of 1.25 T (i.e., near satu-
ration) regardless of temperature. At 0.005 T, |M, |2 increases
slightly at SK. At 100 K, the scattering is no longer dominated
by multi-particle correlations (i.e., the diffraction peak is
absent), but rather reflects the magnetic morphology of indi-
vidual particles. The 100K, 0.005 T data minus the 5K, 1.2T
data (serving as the incoherent scattering background) can be
modeled with a uniform sphere23 of 8.4nm in diameter, Fig.
1(b) inset. Note that [M, |” is inversely proportional to |M H|2
as a function of temperature. This suggests that the magnetic
moments from both the Fe;O4 and y-Mn,0; layers rotate
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FIG. 1. SANS profiles for Sy at 0.005T and 1.25T, SK and 100K with (a)
M 2, (b) [M_|*. Inset shows that the magnetic difference between 100K,
0.005T and 5K, 1.2 T can be modeled with an 8.4 nm diameter sphere.
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uniformly upon relaxation in a remnant field. This is consist-
ent with recent studies on similar core/shell samples, where it
was shown that given the small size of the soft counterpart,
the core and the shell are strongly exchange coupled and
reverse coherently'? in agreement with thin film systems.**
S3p requires a larger field to achieve saturation, and thus,
was measured with an unpolarized neutron beam in a super-
conducting magnet field of up to =7 T. The sample was field
cooled at —5T to 5K, increased to 7T, decreased to —7T,
and then measured in order at —1.5T, 0.2T, 1.5T, and 7T.
After that the sample was warmed to 150 K, then recooled to
50K at —7T before being measured in order at 0.2T and
7T. The first structural peak at 0.007 A (Fig. 2(a)) is corre-
lated with the trilayer particles, while the higher-Q scattering
around ~0.1 A~ would be consistent with scattering coming
from smaller features, such as the Fe;O4 cores or seeds. As
the field and temperature are varied, the scattering is domi-
nated by structural scattering and does not noticeably vary.
However, subtraction of one field and/or temperature state
from another can effectively remove the structural scattering
while highlighting changes in magnetic morphology. No
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FIG. 2. (a) Vertical SANS (J_1-7 ) from S3q. (b) Two dimensional SANS
image resulting from the difference of 7 T — 0.2 T at 5 K. (c) Annular aver-
age for 7 T-02 T at 5 K modeled with 2sin*(8) (o< M) — 2.5 cos?(6)
(ox M), solid pink line.
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difference was detected between —1.5T and 1.5T at 5K,
indicating that the effect of field direction is negligible. Yet,
two-dimensional SANS patterns exhibit marked differences
between 7T and 0.2T at 5K, collected at three detector
distances and summed together in Fig. 2(a). (Note there is a
slight vertical shift between fields, but this has been effec-
tively excluded in the annular average.) The annular varia-
tion (magnetic difference) between 7T and 02T at 5K
produces magnetic peaks at 90° and 270° and magnetic dips
at 0° and 180° (Fig. 2(c)), which can be approximated with a
2sin’*(0) (x M) from the 7T state minus 2.5cos*(0)
(o< M) from the 0.2 T state.*"*>

Scattering simplifies along the coordinate axes, where sli-
ces of £15° are taken to improve counting statistics. Scattering
about 0°,180° contains 2 * [M, |, while scattering about
90°,270° contains |M| * 4+ |M_|* components.*"** The |MH|2
scattering difference between 7T and 0.2T is shown in Fig.
3(a). It follows the general shape of the nanoparticle structural
scattering. Conversely, the |[M.[* of 02T-7T increases
between 5K and 50K, Fig. 3(b). Although the angular pattern
of Fig. 2(c) is seen at all Q, the |M ¢| peaks at ~0. 006 A"
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close-up). (c) SQUID magnetometry shown for field-cooling (top curve) and
zero field cooling (bottom curve).
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(inset of Fig. 3(b)) which would be consistent with magnetic
scattering from a large feature, such as the y-Mn,Oj3 shell, but
not from the substantially smaller Fe;O4 cores or seeds.
SQUID data (Fig. 3(c)) suggest that the T transition of
7-Mn, 03 occurs well below 50K. Thus, the fact that large-
scale (low-Q peaked) |M ¢|2 (Fig. 3(b)) develops above
the apparent T of y-Mn, O3 would be consistent with magnetic
proximity effects” observed in MnO/y-Mn,O3; and
Fe304/7-Mn, 05 core/shell nanoparticles, where y-Mn, O3 was
observed to remain magnetically ordered high above its T¢.2%%’

In summary, the magnetic reversals of FM/FM nanopar-
ticles (Sp) and FM/AFM/FM nanoparticles (S3(), differing
primarily in a 30 nm thick MnO AFM intermediate layer, are
examined as a function of field and temperature. Increasing
the temperature of Sy to 100K results in an enhancement of
magnetism 1H with a proportional reduction in magnetism
I H (under a nominally saturating field of 1.25T). A perpen-
dicular magnetization component was observed at 5K and
100K, uniform within each particle at 100K and longer-
ranged at 5 K, suggesting that the graded FM layers rotate to-
gether. For S30, exceeding the apparent T of y-Mn,Oj3
(40K) also gives rise to an enhancement of magnetism 1H
during magnetic reversal. The scattering associated with the
perpendicular magnetization at 50K, however, appears to
originate primarily from the larger-scaled 7-Mn,O3 shell
rather than the Fe3;O4 cores or seeds based on its low-Q
peak. This suggests a magnetization rotation within the shell
that could be associated with a proximity effect in which T
of the -Mn, O35 shell is enhanced above its bulk value.
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