Anti-Aβ scFv stabilization

Elongation of the C-terminal domain of an anti-amyloid β single-chain variable fragment increases its thermodynamic stability and decreases its aggregation tendency

Geovanny RIVERA-HERNÁNDEZ*¹, Marta MARÍN-ARGANY*¹, Bernat BLASCO-MORENO*², Jaume BONET[†], Baldomero OLIVA[†], & Sandra VILLEGAS*³

*Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular,
Unitat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del
Vallès, Spain.

[†]Structural Bioinformatics Group (GRIB), Universitat Pompeu Fabra, Barcelona Research Park of Biomedicine (PRBB), Doctor Aiguader 88, Barcelona 08003, Catalonia, Spain.

Short Title: Anti-Aβ scFv stabilization

Draft version of: Rivera Hernández, Geovanny, et al. "Elongation of the C-terminal domain of an anti-amyloid β single-chain variable fragment increases its thermodynamic stability and decreases its aggregation tendency" in MAbs (ed. Taylor and Francis), vol. 5, no. 5 (Sep.-Oct. 2013), p. 678-689. The final version is available at DOI 10.4161/mabs.25382

¹ These authors made equally important contributions to this study.

² Current address: Virologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain

To whom correspondence should be addressed (e-mail <u>sandra.villegas@uab.cat</u>). Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. Tel. 34 93 5914258, Fax. 34 93 5911264

Abbreviations used: AD, Alzheimer's disease; CD, circular dichroism; FTIR, Fourier-transformed infrared spectroscopy; scFv, single chain variable Fragment; WL, worm-like.

Anti-Aß scFv stabilization

aligned sequence were filtered to discard false results. The PDB code of the sequence with the highest score coincident in the search of both domains was selected among a total of 24 candidates. The crystal structure of a scFv antibody against the SARS-spike protein-receptor binding-domain (with PDB code: 2GHW-B), matching the alignment with a 70% identity (94% similarity) and E-value 2e-84, was selected to construct a 3D model for the scFv-h3D6 using MODELLER 9v2.³⁸ Five possible conformations were initially constructed for the V_H and V_L domains. Although the linker region is the same in both scFv molecules, (Gly₄Ser)₃, a defined diffraction pattern in the template structure (2GHW-B) could not be obtained because of the linker's high degree of flexibility, and the coordinates for the model were calculated using the loop-refinement and energy minimization approach (MODELLER 9v2³⁸). Ten different structures matched the five initial models for the domains and the best conformation with minimum energy was selected using the criterion of knowledge-based potentials of ProSa2003.³⁹

Acknowledgements: The authors acknowledge Dr. Jose C. Martínez for critical comments on the manuscript.

Funding: Instituto de Salud Carlos III [FIS-PI10-00975], Generalitat de Catalunya [SGR 2009-00761], FEDER [BIO2011-22568] and MICIN [BES-2009-024653]. G.R-H is supported by a MAEC-AECI fellowship and M.M-A by a PIF (UAB) fellowship.

The authors state that "there are no potential conflicts of interest in our submission"