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Abstract 

An automated sequencing batch reactor operation based on online measurement of the 

ammonium concentration was investigated as a tool for improving the start-up of a 

nitrifying granular airlift reactor. The effectiveness of this start-up procedure was 

verified with the characteristics of the developed granular sludge but also the 

improvement of the start-up was confirmed when comparing with the results achieved 

with two continuous-mode start-up strategies. Once a stable granular biomass was 

obtained, the reactor was started to operate in continuous mode during more than 100 

days, maintaining the characteristics of the granular biomass and achieving a nitrogen 

loading rate of 1.75 g N L
-1

 d
-1

. The intermittent recirculation of small flocs of nitrifying 

biomass was explored as an alternative to increase the biomass concentration in the 

reactor and consequently, to increase the treated loading rate.  

Keywords: airlift reactor; biofilm; granular sludge; online TAN measurement; partial 

nitrification.  
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1 Introduction 

Aerobic granular sludge was developed as a way of obtaining high concentration of 

active biomass together with good settling properties of the sludge, avoiding in turn, the 

costly supporting material required for biofilm development [1,2]. One of the key 

applications of aerobic granular reactors was the achievement of COD, nitrogen and 

phosphorous removal in the same reactor [3]. Aerobic granules are generally developed 

from activated sludge in sequencing batch reactors [1-4]. The feast-famine regime, the 

high shear stress, as well as the short settling time applied are accepted as the main 

driving forces for an effective granulation [2,4-6]. Studies reported the straightforward 

development of aerobic granulation for the treatment of high-strength organic 

wastewaters with relatively high concentration of COD [7], whereas the granulation 

process of activated sludge was recognized to be more difficult when low COD 

concentration is present in the wastewater although still feasible [3,8]. 

Once the granular sludge is formed, its stability is thought to be maintained due to the 

high shear stress and short settling times steadily applied in the granular reactors during 

the long-term operation. One of the identified challenges of this type of systems is the 

eventual destabilization of the granules, which is usually an irreversible process [9,10], 

eventually requiring a new start-up phase. Once the selection pressure applied with the 

shear stress and the short settling times is relaxed, heterotrophic bacteria could trigger 

the development of non-compact biomass which leads to a reduction of the settling 

velocity, which in turn produce the eventual washout of the biomass. Nevertheless, if 

the granules are colonized by slow-growing bacteria, like for instance nitrifying 

bacteria, the possibilities of destabilization of the granular sludge are rather reduced and 

stable operation is usually reported [11-13]. Therefore the operation mode with such 
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granular reactors might be switched to continuous, just after convenient granule 

formation under sequencing batch mode operation.  

Although nitrifying granules were obtained even before the development of aerobic 

granulation as new technology itself [14], there are only a reduced number of studies 

focused on the start-up of granular reactors for nitritation of high strength ammonium 

wastewaters [11,15,16]. During the development of a robust ratio control strategy to 

achieve and maintain nitritation in granular sludge reactors [12], the start-up was 

identified as a possible drawback for the scaling-up of the process [15]. Alternatives for 

the start-up of aerobic granular reactors have been described, as for instance the 

induction of granulation with small particles (activated carbon [12]), or the use of 

crushed granules that will serve as nuclei for the later development of the aerobic 

granules (e.g. anaerobic granules [11]).  

A specific procedure for an efficient start-up of a granular reactor for stable full 

nitritation operating in continuous mode will be presented in this contribution. An airlift 

reactor (150 L of capacity) was designed to allow sequencing batch and continuous 

modes of operation. The reactor was placed on site in a municipal wastewater treatment 

plant. The reactor treated the side water produced by a set of centrifuges after the 

anaerobic digestion of sludge for the production of biogas (i.e. reject water). 

2 Materials and methods 

2.1 Reactor description, location, wastewater and inoculum 

A schematic diagram of the granular airlift reactor used in this study is presented in 

Figure 1. The reactor capacity was 150 L. Height to diameter ratio is ca. H/D = 8.4. The 

temperature of the reactor was kept at 30ºC using an electric heating system. The pH  

was maintained at 7.5 in the reactor bulk liquid through the addition of solid Na2CO3. 

The dissolved oxygen (DO) concentration was measured by means of an online DO 
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probe (LDO luminescence sensor, Hach-Lange, Düsseldorf, Germany).The total 

ammonia nitrogen (TAN = N-NH4
+
 + N-NH3) concentration in the bulk liquid was 

determined with an online probe (NH4Dsc Ammonium sensor with a Cartrical 

cartridge, Hach Lange, Düsseldorf, Germany).  

The reactor was installed in a municipal WWTP in NE Spain with anaerobic digestion, 

to be fed in situ with the reject water. Dewatering of digested sludge is performed by a 

set of centrifuges which operate discontinuously and usually active during the night to 

use reduced fees for the electricity. The reject water was stored into two tanks of 1 m
3
 at 

room temperature and they were connected alternatively to the reactor inflow pump.  

Composition of reject water was rather variable with the following concentrations: 

TAN: 440 – 758 mg N L
-1

, TOC: 240 – 696 mg C L
-1

, TIC: 358 – 723 mg C L
-1

, total 

nitrite nitrogen (TNN=N-NO2
-
 + HNO2): 2 – 7 mg N L

-1
, N-NO3

-
: 0 mg N L

-1
, Total 

suspended solids (TSS): 122 – 239 mg L
-1

, Volatile suspended solids (VSS):  100 – 206 

mg L
-1

; pH: 8.1 – 8.8. The wide range for TAN and TOC concentrations is due to 

several intensities applied by the ultrasounds treatment of the sludge prior the anaerobic 

digestion. During the whole period of operation different types of polyelectrolyte at 

different concentrations were tested by the WWTP operator to improve the efficiency of 

the liquid-solid separation in the centrifuges used for the dewatering of the digested 

sludge. The polyelectrolyte used was cationic polyacrylamide (in solution at 0.4%), 

commercialized as CH82 by Chemipol; to a minor extent also Actipol C-444K 

(Brenntag) was utilized during the course of the experiments. 

The pilot plant was inoculated with activated sludge from the municipal WWTP 

operated with a modified Ludzack-Ettinger configuration. The inoculum had a 

VSS/TSS ratio of 0.70 with a mean particle diameter of 0.1 mm and it was composed by 
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97±2% of heterotrophic biomass, 2±0.5% of ammonia –oxidizing bacteria (AOB) and 

<1% of nitrite-oxidizing bacteria (NOB). 

2.2 Experimental procedure and type of operation 

During the start up, the reactor was operated as a SBR to develop a granular sludge. The 

reactor capacity during SBR operation was reduced to 90 L. Each cycle was divided 

into a filling phase of 35 min, an aerobic phase (with variable time length), a settling 

phase of 30 minutes and a draw phase of 2.5 min. The exchange volume in each cycle 

was 45 L (50% of the total volume). The on-line TAN measurement was used to 

automatically manipulate the cycle duration. The aerobic phase was finished when the 

TAN concentration in the bulk liquid decreased to 50 mg N L
-1

 (denoted as 

TANtriggering). This type of operation was based on the previously developed ratio 

control strategy, which established that the DO/TAN concentration ratio was governing 

the nitrite build up in a biofilm reactor [12]. When adapting the strategy for sequencing 

batch operation aiming to produce granular sludge, a relatively high airflow was applied 

to assure high shear stress, i.e., superficial air velocity higher than 1.2 cm s
-1

 

corresponding to a DO was relatively high: 6-7 mgO2 L
-1

. Due to high TAN 

concentrations in the bulk, DO/TAN concentrations ratio was maintained at very low 

values during the whole aerobic phase. In that way, strong oxygen limiting conditions 

were assured along the total length of the cycle to provide the conditions to outcompete 

NOB just after inoculation of the reactor and along the period of granular sludge 

development. 

Once the granules were developed, the reactor operation mode was switched to 

continuous. The control strategy applied was very similar to that used to achieve and 

maintain stable partial nitrification in the biofilm airlift reactors already described in the 

literature [12]. A low DO/TAN concentration ratio was imposed, manipulating mainly 
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the inflow rate fed to the reactor and the air flow-rate. To show the performance of the 

feedback control loop applied to maintain the TAN concentration close to the setpoint, 

both the measured and manipulated variable were plotted (see Figure 2). During the 

continuous operation mode a TAN concentration setpoint was fixed equal to 

TANtriggering, i.e. TANsp = 50 mg N L
-1

. During the whole period of the continuous 

mode of operation, the total working volume of the reactor was 150 L. 

2.3 Analytical methods 

For the off-line measurement of TAN a continuous flow analyzer based on 

potentiometric determination of ammonia was used. TNN and nitrate were measured 

with ionic chromatography using a DIONEX ICS-2000 Integrated Reagent-Free IC 

System with an auto-sampler AS40. VSS, TSS and sludge volumetric index (SVI) were 

determined according to standard methods [17]. A Malvern Mastersizer 2000 

instrument was used to measure the mean granule size (as volume weighted average) 

and size distribution. The percent of granular sludge was determined as the volumetric 

fraction of particles with a diameter higher than 0.2 mm. The settling velocity was 

determined by placing individual granules in a column containing water and measuring 

the time spent to drop a height of 40 cm.  

Fluorescence in situ hybridization (FISH) technique coupled with confocal microscopy 

was used to investigate the nitrifying population dynamics. A Leica TCS SP2 AOBS 

confocal laser scanning microscope at a magnification of x63 (objective HCX PL APO 

ibd.B1 63x1.4 oil) equipped with two HeNe lasers with light emission at 561 and 633 

nm was used for biomass quantification. Hybridizations were carried out using at the 

same time a Cy3-labeled specific probe and Cy5-labeled EUBmix probe (general 

probe). Specific probe used for AOB detection was Nso190 [18] while for NOB 

detection was NIT3 [19]. EUBmix probe consisted of the mix of probes EUB338, 
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EUB338 II and EUB338 III [20,21]. Detailed information about FISH quantification 

can be found in Jubany et al. [22].  

3 Results and discussion 

3.1 Automated SBR operation: simultaneous development of granular sludge and 

achievement of stable nitritation 

The automated SBR operation applied resulted in a relatively fast development of 

granular biomass in the reactor (see Figure 3). An initial washout of biomass followed 

by a slow augment of biomass concentration led, in only few weeks, to a considerable 

increase of the floc diameter (from 0.1 to 0.35 mm in only 14 days, see Figure 3). Time 

course size distribution of sludge particles was monitored, and main results were plotted 

in Figure 4.  

At day 64 of operation, the sludge volumetric index (5 minutes) was SVI5 = 42 mL g
-1

 

and the ratio SVI5/SVI30=1.04. Settling velocity was 43±17 m h
-1

 (day 64). These values 

demonstrate the achievement of granular sludge in the reactor.  

It is a common practice in the dewatering of the sludge to add polyelectrolyte to help 

flocculation of small particles just before the centrifugation, to improve the efficiency of 

the dewatering of sludge. A fraction of the polyelectrolyte is always dissolved in the 

supernatant, being therefore present in the reject water. It is unknown if the presence of 

the polyelectrolyte added to the digested sludge to improve the centrifugation 

efficiency, affected the granulation process.  Previous research reported that the 

presence of coagulant-flocculant reagents involved negative effects on the formation 

process and the physical properties of the aerobic granules [23]. In our study, despite 

the presence of polyelectrolyte the granule formation progressed acceptably as shown 

by (i) sludge volumetric indexes and settling velocity (just discussed above), (ii) in 

terms of size and biomass retention capacity (Figure 3A).  
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From the beginning of the operation of the reactor, oxidation of ammonium produced 

mainly nitrite (i.e. full nitritation). Only a weak and short transient state of less than 17 

days of operation led to an effluent with only 2 mg N-NO3
-
 L

-1
 (see Figure 3). These 

results showed how the development of NOB in the biofilm is prevented by imposing 

strong oxygen limiting conditions, due to the great excess of ammonia along the whole 

cycle, in agreement with previous reports [12], for a deeper discussion on the causes see 

Pérez et al. [24]; Brockmann and Morgenroth [25] and Bartrolí et al. [12]. During the 

batch start-up for granule formation, the DO/TAN concentration ratio varied between 

0.02 and 0.12 mg O2 mg
-1

 TAN at the beginning and end of the cycle, respectively. 

These values are well below 0.25 mg O2 mg
-1

 TAN, which was the minimal required 

value found by Bartrolí et al. [12] to assure nitritation in granular reactors operating in 

continuous mode. It is important to stress that in spite of maintaining the DO 

concentration in the bulk liquid at high values (ca. 6-7 mg O2 L
-1

), oxygen limiting 

conditions were assured in the reactor because a high excess of ammonium in the bulk 

liquid is imposed. In those conditions, NOB are outcompeted in the granular sludge due 

to their lower oxygen affinity (see Pérez et al. [24] for a deeper discussion). Nitrite 

oxidation is suppressed throughout the whole reaction period in the sequencing batch 

start-up as demonstrated by the very low values of nitrate concentration measured 

during this period of operation (0-85 days in Figure 3). This control strategy is feasible 

due to the on-line measurement of ammonium concentration in the bulk liquid, 

confirming the convenience of this measurement for the high performance of nitritation 

in this type of reactors, as recently highlighted in the literature [26]. Quantification of 

NOB fraction in the sludge at day 85 yielded a percentage <1%(0.8±0.3%), whereas the 

AOB fraction  was 53±9%,  demonstrating the efficiency of the control strategy to 

prevent NOB development in the sludge. 
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In general, the potential difficulties when switching the reactor operation from batch to 

continuous mode are related to the stability of the granular sludge [27]. Granulation of 

conventional activated sludge in SBR is linked to the selection pressure applied when 

operating at short settling time as already discussed in the introduction. Nevertheless, in 

the case of autotrophic granular sludge (like for instance, nitrifying granules) the formed 

granules are very stable [12,15,26-29]. The main characteristics of the granular sludge 

obtained with the batch start-up (as presented in Table 1) remained rather steady, as 

expected, once the continuous mode of operation was imposed. Even more, after 100 

days of continuous operation, the SVI5 was 36 mL g
-1

 and SVI5/SVI301, granule size 

was 0.4 mm (see Figures 3 and 4) and settling velocity was 60±20 m h
-1

. These are 

typical granular sludge characteristics, demonstrating the feasibility of the operation of 

granular reactors in continuous mode to perform nitritation, as previously shown with 

other start-up procedures (Table 1). Additionally, the granular sludge characteristics are 

also comparable to those reported for autotrophic granular sludge in SBR reactors 

performing nitrification [28] and nitritation [29], as detailed for a direct comparison in 

Table 1 (last two rows). The low values of settling velocity determined by Shi et al. 

[28,29] may indicate poor granular sludge characteristics, since also the SVI5/SVI30 is 

not reported in their studies. Note how settling velocities for granular sludge should be 

inside the range (25-70) m h
-1

, significantly higher than that of flocs (7-10 m h
-1

) [27]. 

Overall, it is therefore clear that the switching from batch to continuous is not altering 

the good granular sludge properties achieved with sequencing batch start-up. For a 

further discussion on the advantages of continuous operation, see below the last section. 

The start-up procedure presented in this study (SBR-type start-up) can be directly 

compared with two different start-up procedures carried out in a similar airlift reactor 

[15]. Those start-ups were carried out in continuous mode operation, inducing the 
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granules formation through the addition of activated carbon (AC) particles. The only 

difference among them was the use of bioaugmentation with an AOB population in one 

of them. The main results achieved in the three different start-ups are summarized in 

Table 1 (second and third rows). A nitrifying granular sludge was achieved at the end of 

each of the start-up procedures and the main characteristics of these granular biomasses 

were similar in terms of SVI5, settling velocity and granule size (Table 1). Additionally, 

the total nitrifying granular biomass concentration was similar in all the procedures. The 

main difference among them was the period required for the start-up. This period was 

clearly shorter with the SBR-type start-up (Table 1). Another significant difference in 

favor of the procedure presented in this study is the saving of AC particles and their 

withdrawal once the granules are formed which represents an unquestionable practical 

advantage. 

Finally, the NOB fraction presented in the granular sludge at the end of the SBR-type 

start-up was smaller than the achieved with the continuous-type start-ups (Table 1). This 

fact also represents a practical advantage because facilitates the attainment of a stable 

partial nitrification process.  

3.2 Switching to continuous mode of operation 

Once the stable development of aerobic granular sludge was confirmed by both the 

granule size (0.49 mm, at day 85) and sludge volumetric indexes (SVI5=41.1 mL g
-1

, 

SVI5/SVI30=1.00, at day 85), the reactor was started to operate in continuous mode (at 

day 87). As a consequence of the automatic control of the inflow rate based on the 

online TAN measurement, the nitrogen loading rate (NLR) increased at a stable value of 

ca. 0.85 g N L
-1

 d
-1

, with a biomass concentration of ca. 2.0 g VSS L
-1

. Mean granule 

size increased in the continuous mode of operation until ca. 0.6 mm. 
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The NLR achieved together with the measured sludge characteristics demonstrate how 

the continuous mode of operation does not result in a decrease of the stability of the 

granules, showing that the dual type of operation is suitable for the nitritation of reject 

water with granular reactors. For particular advantages of the continuous operation 

mode see below the last section. 

3.3 Intermittent sludge recirculation as a strategy to increase the NLR  

Since the NLR was rather steady at 0.85 g N L
-1

 d
-1

, two recirculation events were used 

to enhance the increase of granular sludge concentration. Sludge washed out from the 

reactor has a very small mean floc diameter, measured as ca. 0.1 mm, due to the design 

of the G-L-S separator with a ratio Dtop / Ddowncomer = 2.2 (see Figure 6). Consequently, a 

very low amount of solids was always measured in the effluent (see Figure 3). The 

sludge in the effluent was settled in a 20 L settler with an area of only ca. 500 cm
2
 and 

the sludge was recirculated to the reactor twice, in days 146 and 190.  

The temporary increase of small flocs due to the sludge recirculation event resulted in 

an increase of the NLR applied by the control strategy (see Figure 3). This temporary 

increase of small flocs produced a subsequent increase in the total biomass 

concentration with a slight decrease in the fraction of granular biomass in the reactor 

(see Figure 3). The size distribution of the sludge after the recirculation events (day 189 

in Figure 4) also confirmed that temporary increase of small flocs consolidated an 

increase in the granular biomass concentration (see Figures 3 and 4).  Consequently, the 

recirculation events resulted in the achievement of a stable NLR of ca. 1.75 g N L
-1

 d
-1

 

and a biomass concentration in the reactor of ca. 6 g VSS L
-1

. 

Quantification of NOB fraction in the sludge at day 188 yielded a percentage <1% 

(0.3±0.08%), whereas the AOB fraction was 69±9%, demonstrating the efficiency of 
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the control strategy in the continuous operation mode to prevent NOB development in 

the sludge, even when sludge recirculation events were carried out. 

3.4 Why continuous operation may be the preferred choice? 

Nitritation has been obtained in continuous mode [11,12,30-34] or batch process [32,35-

37]. In general, continuous operation is usually the preferred choice when the reactor 

has to treat large flow-rates. In the treatment of side streams in WWTP with anaerobic 

digestion, flow-rate is not too large, and therefore this is not seen as a decisive reason 

determining the best operational mode. Further, other considerations need to be taken 

into account. The continuous operation yields steady conditions in terms of conversion. 

Continuous operation of reactor is advantageous over batch or sequencing mode for 

efficient full-scale operation [27]. The reduced variation of the main process conditions, 

such as pH, nitrogen compounds concentrations and DO concentration can be very 

valuable to decrease the undesired side reactions, like those producing N2O emissions. 

Changes in process conditions of those variables are known to cause strong increase of 

N2O production [38], and therefore should be avoided when possible.  

Moreover, stable nitritation assuring outcompetition of NOB has been identified as the 

key challenge to apply Anammox to reject water [39], but also to main stream [40]. The 

development of an efficient continuous nitritation process might contribute to define the 

best strategy for the application of Anammox to main stream at low temperatures, 

which would lead to energy sustainable WWTP [41]. 

4 Conclusions 

The applied automated SBR-type strategy for starting-up nitritation systems treating 

reject water is an attractive alternative for full scale installations, because (i) a short 

period of operation was required if compared with continuous-type start-up strategies 
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based on AC addition and (ii) the absence of nitrate in the effluent was assured by the 

control strategy.  

The automatic control of the inflow rate based on ammonium concentration 

measurement allows easily switching from batch start-up operation to continuous mode 

operation after the stable development of aerobic granular sludge.  

The intermittent recirculation of small nitrifying flocs to the airlift reactor results in a 

significant increase of the granular biomass concentration and consequently, an increase 

of the treated nitrogen loading rate.  
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Figure Captions 

 

Figure 1. Diagram of the granular airlift reactor. (1) TAN probe; (2) DO probe; (3) pH probe; 

(4) Temperature sensor; (5) Valve for airflow regulation; (6) Na2CO3 dispenser; (7) Electric 

heating system. 

 

Figure 2. Time course inflow rate during the continuous mode of operation. Inflow rate 

is the manipulated variable  of the closed-loop control of TAN concentration. Note how 

a dead band (±5 mg O2 L
-1

) is used around the TAN concentration setpoint (TANSP).  

 

Figure 3. A: Time course solids concentration, granule size; B: time course fraction of 

granules in the sludge and DO/TAN concentration ratio; C: time course nitrogen 

compounds concentration and nitrogen loading rate (NLR). 

 

Figure 4. Size distribution of the sludge along the whole period of operation. A: SBR-

type operation; B: continuous-type operation. 

 

Figure 5. Figure 5. Granular sludge aspect before (A: day 85) and after (B: day 189) 

switching from batch start-up to continuous operation. 

 

Figure 6. Reactor used in the experiments. Note the difference in diameter between the 

top section (G-L-S separation) and the mean diameter of the downcomer (Dtop / 

Ddowncomer = 2.2). 



 

Table 1. Comparing the length of start-up and main features of the sludge obtained with 

previous studies. *The settling time used for SVI determination is not reported. 

Period 

required for 

start-up (d) 

SVI5 

(mL g
-1

) 

Settling 

velocity   

(m h
-1

) 

Granule 

size 

(mm) 

Biomass 

concentration 

(g VSS L
-1

) 

NOB 

fraction 

(%) 

Ref. 

85 41 43 0.5 1.2 <1 This study 

125 35 56 0.8 1 3 
Bioaugmented 

reactor [15] 

200 40 30 1.0 1.9 7 

Non-

bioaugmented 

reactor [15] 

120 36* 3 0.3 2.3 15 
Nitrifying 

granules, [28] 

90 28* 3 0.5 7.5 <1 

Nitritation in 

granular SBR, 

[29] 

 

Table(s)
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Figure 4. 
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