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Abstract

Background: In a previous study, we showed that individuals who had participated in oil clean-up tasks after the
wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute
exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure,
but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker
of cancer risk.
Objectives: We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of
cancer as well as to investigate their possible association with DNA repair efficiency.
Methods: Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair
errors were assessed in cultures with aphidicolin.
Results: Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The
dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil
participants than in those not exposed (p= 0.016).
Conclusion: The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are
commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover,
breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer
(leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined
that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair
mechanisms two years after exposure.
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Introduction

In 2002, the oil tanker Prestige foundered and spilled more
than 67,000 tons of the tanker´s oil, which contaminated more

than 1,000 km of the coast of Galicia (North-West Spain). In
response more than 300,000 clean-up workers were mobilized.
The fact that the oil had a high content of aromatic
hydrocarbons (50% by weight), saturated hydrocarbons, heavy
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metals, resins and asphaltenes, which are classified by the
International Agency for Research on Cancer [1] as
carcinogens or potential/probable carcinogens, alerted the
scientific community to the value of investigating the genotoxic
effects on human exposure to the Prestige oil.

Genotoxic studies conducted on populations exposed to the
clean-up of oil spills are scarce [2-10]. Two of these studies
had been performed before the Prestige accident [2,3], and
seven more were performed on clean-up workers of the
Prestige oil spill [4-10]. Different types of biomarkers were
analyzed to address the potential genotoxic effects of acute oil-
exposure research. DNA adducts were analyzed by Cole et al.
[3], while sister chromatid exchanges, micronucleus and comet
assay tests were used as biomarkers by others [4-9], while only
two groups analyzed chromosomal damage [2,10]. Not all of
the biomarkers analyzed showed significant differences
between exposed and non-exposed individuals, although in the
majority of them, increased genomic damage in exposed
individuals has been documented. Moreover, most of these
studies were carried out during the oil exposure [2-9]. No
information is available regarding the reversibility or
persistence of the negative oil effects. So far, only our study,
reported by Rodríguez-Trigo et al. [10] has revealed an
increase of chromosomal alterations (CAs) in circulating
lymphocytes in exposed individuals two years after oil
exposure. The findings were unexpected, due to the long time-
period that had passed following exposure, and relevant due to
the fact that a high number of CAs is associated with a higher
risk of developing cancer, as described in the literature [11-15].
These observations led us to make a complete cytogenetic
study of the same individuals.

The aim of the present study is to identify if there are specific
chromosomal regions especially affected by oil exposure in the
same chromosomal preparations of individuals in which an
increase of chromosomal damage was found [10]. In addition,
we also determined the possible existence of errors in DNA
repair mechanisms by analyzing the chromosomal damage in
cultures with aphidicolin, an inhibitor of DNA polymerase α and
other polymerases.

Materials and Methods

Study population
In this study, an accurate selection of individuals highly

exposed to the oil was performed [10,16]. Only slightly over 1%
(137/10,000) of the individuals, who were non-smokers and
had been initially invited, were included in the study. The
collection of the samples was performed between 22 to 27
months after the Prestige disaster. The project was approved
by the Ethics Committee on Clinical Research of Galicia and all
participants provided written informed consent.

Cytogenetic analysis
Peripheral blood (PB) was cultured in supplemented

RPMI-1640 medium (GIBCO Invitrogen Cell Culture,
Invitrogen; Carlsbad, California) and then harvested according
to standard procedures. For the study of chromosomal bands,
PB standard culture at 37°C for 72h was used. The cytogenetic

banded preparations previously studied in 91 exposed and 46
non-exposed individuals [10] were re-examined for an accurate
identification of breakpoints involved in chromosomal damage.

For the study of DNA repair efficiency, PB obtained in the
same extraction was cultured at 37°C for 96h, and aphidicolin
(Sigma Aldrich), an inhibitor of DNA polymerase α and other
polymerases, was added to the cultures 24h before harvesting
at a final concentration of 0.2µM. The cellular suspension was
keep frozen until cytogenetic results without aphidicolin were
obtained. Dysfunction in DNA repair mechanisms was studied
only in randomly selected female subsamples because women
were more prevalent than man is both the samples of exposed
and non-exposed individuals [10]. A total of 14 exposed and 14
non-exposed individuals were studied and compared with
standard culture without aphidicolin. Chromosomal
preparations were uniformly stained with Leishman (1:4 in
Leishman buffer) to detect chromosomal damage, expressed
mainly as chromosomal lesions (gaps and breaks). Moreover,
apparent or large structural CAs (rings, marker chromosomes,
dicentric translocations, etc.) were also detected. In these
cases, a posterior G banding technique was applied in order to
clarify if the apparent CAs were a marker chromosome, a
reciprocal translocation, a duplication, etc. A minimum of 100
metaphases were analyzed in each participant according to
conventional criteria.

Criteria for cytogenetic evaluations were determined
according to the International System for Human Cytogenetic
Nomenclature [17].

Statistical analysis
To identify which chromosomal bands were involved in

chromosomal damage using standard culture, two statistical
methods were used. First, the Fragile Site Multinomial method,
FSM version 995, [18-20], specifically used to determine
chromosomal regions with a greater propensity to break.
Second, a chi-square test was performed to test the null
hypothesis of a uniform distribution among the chromosomal
bands, where the bands were corrected by their length. The
relative length of the affected bands in relation to total genome
was estimated using the diagram of the standardized human
karyotype [17]. A generalized estimating equation, GEE
[20,21], was used for assessing the differences between the
exposed and non-exposed groups for the different types of
chromosomal damage induced by aphidicolin. The GEE
approach is an extension of generalized linear models
designed to account for repeated, within-individual
measurements. This technique is particularly indicated when
the normality assumption is not reasonable, as happens, for
instance, with discrete data. The GEE model was used instead
of the classic Fisher exact test because the former takes into
account the possible within-individual correlation, whereas the
latter assumes that all observations are independent. Since
several metaphases were analyzed per individual, the GEE
model is more appropriate. Statistical significance was set at
p< 0.05. Statistical analyses were carried out with SAS/STAT
release 9.02 (SAS Institute Inc; Cary, NC). The GEE model
was fitted using the REPEATED statement in the GENMOD
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procedure. The conservative Type 3 statistics score was used
for the analysis of the effects in the model.

Results

Chromosomal bands most affected by oil exposure
A total of 9,520 and 4,859 metaphases from standard culture

were analyzed in 91 exposed and 46 non-exposed individuals,
respectively. Table 1 shows the same results described in our
previous report [10] using the conventional cytogenetic
frequencies in order to compare them with other genotoxic
studies. A total of 203 breakpoints in exposed and 61 in non-
exposed individuals involved in chromosomal damage (lesions
and structural CAs) were detected. The breakpoints distribution
in the human ideogram (at the 400-band resolution level) is
shown in Figure 1. The breakpoints involved in the
chromosomal damage were mainly located on chromosomes 3,
10, 17 and 18 in exposed individuals (vs. 1, 8 and 14 in non-
exposed). To identify those chromosomal bands that
significantly expressed breakpoints in exposed and non-
exposed participants, two statistical methods were used. In the
first one, the FSM method, the number of breaks required to
consider a band as being non-randomly affected was four or
more. The most affected bands in the exposed group were
2q21, 3q27 and 5q31 (vs. none in non-exposed). On the other
hand, the second statistical method, using the chi-square test,
was applied considering the relative length of chromosomal
bands identified as 1p34.1, 2q21, 3q27, 4q33, 9q13, 12q11,
13q11, 17p12 and 18q11.2 bands in exposed vs the 9q13 band
in non-exposed individuals. It is interesting to note that only
2q21 and 3q27 were considered to be bands affected by both
methods.

DNA repair efficiency
Table 2 shows the chromosomal damage detected using

uniform staining in cultures with aphidicolin and standard
culture from the same exposed and non-exposed individuals. A
total of 1,441 and 1,410 metaphases from cultures with
aphidicolin were analyzed in 14 exposed and 14 non-exposed
participants, respectively. The chromosomal damage induced
by aphidicolin is usually expressed by chromosomal lesions.
The number of chromosomal lesions was higher and
statistically significant in exposed vs. non-exposed individuals
(p= 0.023), and almost the same findings were observed in
relation to apparently structural CAs (p= 0.024). Chromosomal
damage (lesions and structural CAs) was also statistically
higher in exposed than in non-exposed individuals (p= 0.016).
Due to the large number of chromosomal lesions induced by
aphidicolin, their average number is shown per 100
metaphases in Table 2.

Discussion

A previous study reported by our group [10] has revealed an
increase of structural CAs in circulating lymphocytes in
exposed individuals two years after the Prestige oil exposure.
The present study, carried out on the same individuals, shows
that a few chromosomal bands exist in the human genome

which are particularly sensitive to breakage in acute oil
exposure. Furthermore, we also found that the increase in
chromosomal damage is due to the existence of a statistically
significant reduction of DNA repair efficiency in exposed as
compared to non-exposed individuals.

Structural CAs are considered to be a highly informative
biomarker for detecting adverse health effects, such as the risk
of developing cancer [11,13,14]. Individuals chronically
exposed to benzene have a 20-fold increased risk of
developing cancer compared with the general population,
particularly hematologic cancer [22-24]. Additionally, an
increase in chromosomal damage, especially imbalanced
structural CAs, is crucial in the development of cancer [23].
Several authors have suggested that CAs could be used as a
biomarker in cancer initiating events [11,12,14]. For this
reason, we proposed to determine if some chromosome bands
were especially affected by oil exposure and if the effects upon
the genes located in these genomic regions, could explain the
cellular disorders involved in cancer. To our knowledge, this is
the first study concerning chromosomal breakpoints distribution
on the human ideogram in relation to acute oil exposure. This
distribution was not uniform, with the 2q, 3p, 5q, 10q, 16p, 17p,
18q chromosomal arms being the most affected in exposed
individuals. In two previous works only chromosomes involved
in breakages were studied revealing that chromosomes 2, 4
and 7 [25] and chromosomes 5 and 7 [26] were the most

Table 1. Frequency and types of chromosomal damage
observed in standard culture.

 Exposed Non-Exposed
Total individuals, No. 91 46
Total metaphases analyzed (uniform stain), No. 9520 4859
Total metaphases karyotyped (G-banded), No. 2448 1285

Chromosomal lesion (uniform stain), No. (%) 100/9520 (1.05) 35/4859 (0.72)
Gaps 48 (0.5) 19 (0.39)
Breaks 52 (0.55) 16 (0.33)

Structural chromosomal alterations (G-
banded), No. (%)

196/2448 (8) 33/1285 (2.56)

Balanced 12/196 (6.1) 7/33 (21.2)
Reciprocal translocations 10 7
Robertsonian translocations 2 0
Imbalanced 184/196 (93.9) 26/33(78.8)
Deletions 23 6
Deletions + acentric fragments 9 3
Acentric fragments 42 0
Imbalanced translocations 23 3
Dicentric translocations 3 0
Dicentric translocations+acentric fragment 4 1
Rings 9 0
Markers 68 13
Additional material of unknown origin 2 0
Isochromosomes 1 0

Total breakpoints identified 203 61
Chromosomal lesion (after G-banded) 98 34
Structural chromosomal alterations (G-banded) 109 27

doi: 10.1371/journal.pone.0081276.t001
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frequently affected in chronically benzene-exposed individuals.
These findings support the hypothesis that the 2q and 5q
regions are targets in both acute and chronic exposure.

Our results show that the 2q21 and 3q27 bands are
especially affected in exposed individuals when both the FSM
method and an additional method that takes into account the
relative bands’ lengths were used, while 5q31 was considered
affected only when the FSM method was employed. These
bands correspond to regions where fragile sites (FRA2F,
FRA3C and FRA5C) are located according to the human
genome browsers like NCBI (http://www.ncbi.nlm.nih.gov/).
Although not all fragile sites may be equally involved in cancer
development, it is known that they are vulnerable targets for
various oncogenic agents, and their damage may potentially
produce consequences for genomic integrity [27]. There is
evidence that these fragile sites are involved in vivo in CAs
related to tumor development [28]. According to information
available from human genome browsers like NCBI (http://
www.ncbi.nlm.nih.gov/), in these bands we can find genes
involved in different cellular processes (Table 3) such as
cellular cycle control (CCNT2 at 2q21; CDC25C, CDC23 and
CDKL3 at 5q31), DNA repair (ERCC3 at 2q21), proto-
oncogenes (CH-Ras at 2q21; TGFBI at 5q31), tumor
suppressor genes (CXCR4, NMTC1 and TP21 at 2q21; BCL6
at 3q27; IRF1and EGR1 at 5q31), and one gene is involved in
the apoptotic process (DND1 at 5q31). Results of the present
study support the hypothesis that the oil components, some of

them considered to be carcinogenic, may induce mutations,
mainly due to breakages in specific chromosome regions
(2q21, 3q27, 5q31). The 11q23 band, while especially sensitive
to benzene and commonly involved in hematopoietic
malignance [22,29,30], was not considered statistically
significant in our study, as it was observed only in two CAs in
exposed individuals. To some extent such changes, when
accumulated, may cause deletions or disruptions of functional
genes, thus increasing the risk of cancer, cannot be deduced
from the present study. It is of interest to note that much of
chromosomal reorganization in hematopoietic pathologies is
associated with the same chromosome bands most affected by
exposure to oil (Table 3). For example, patients with T-Cell
lymphoma present CAs involving 2q21 and 3q27, acute
lymphoblastic leukemia presents 5q31 as a specific
chromosome region and acute myeloid leukemia is
characterized by chromosomal reorganization at 5q31 and
11q23 bands [31-33]. Our findings show that there are a few
chromosomal bands especially prone to breakage in oil
exposure that could induce chromosomal instability, which
could explain the increased risk of cancer (leukemia and
lymphomas) reported in chronically benzene-exposed
individuals [22-24]. Nevertheless, future genotoxic studies
using the new microarray technologies applied to the genome
itself (duplications, deletions, epigenetic changes) and to
mRNA translation and its control mechanisms through miRNA
are necessary to elucidate the role of genomic instability in the

Figure 1.  Distribution of chromosome breakpoints observed in exposed (right) and non-exposed individuals (left) in the
human ideogram (400-band resolution).  The most affected bands using the FSM statistical method are indicated by red arrows,
and when using another statistical method that takes into account the relative length of chromosomal bands, by black arrows.
doi: 10.1371/journal.pone.0081276.g001
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Table 2. Chromosomal damage observed in E and NE
individuals using uniform staining in cultures with
aphidicolin vs standard culture.

 Culture with aphidicolin  Standard culture

 Exposed
Non-
Exposed p-value  Exposed

Non-
Exposed

p-
value

Total

individuals
14 14   14 14  

Total
metaphases
analyzed

1441 1410   1500 1463  

Total
metaphases
with lesions
(%)

947/1441
(65.7)

699/1410
(49.6)

0.0141  
12/1500
(0.8)

8/1463
(0.5)

0.4775

Total
metaphase
with structural
alterations No./
total (%)

46/1441
(3.2)

16/1410
(1.1)

0.0376  
15/1500
(0.01)

1/1463
(0.07)

0.0594

Chromosomal 
lesions (% in
100 cells)

1864/1441
(129.3)

1216/1410
(86.2)

0.0231  
13/1500
(0.9)

10/1463
(0.7)

0.6455

Gaps 1007 623   6 6  
Chromatid gap 496 346   5 6  
Chromosome
gap

511 277   1 0  

Breaks 857 593   7 4  
Chromatid
break

239 107   5 2  

Chromosome
break

618 487   2 2  

Apparent
structural
chromosomal
alterations
(%)

63/1441
(4.4)

19/1410
(1.4)

0.0239  
24/1500
(1.6)

1/1463
(0.07)

0.0791

Balanced        
Translocations 7 2   0 0  
Imbalanced        
Deletions 12 0   0 0  
Acentric
fragments

11 3   16 1  

Imbalanced
translocations

9 0   0 0  

Dicentric
translocations

15 12   0 0  

Rings 7 1   2 0  
Markers 1 1   6 0  
Duplications 1 0   0 0  

Total
chromosomal
damage (%)

1927/1441
(1.33)

1235/1410
(0.87)

0.0161  
37/1500
(0.025)

11/1500
(0.07)

0.1080

doi: 10.1371/journal.pone.0081276.t002

formation of cancer-specific CAs, and impact of environmental
factors like oil exposure on this instability.

The toxic and carcinogenic compounds of the oil, such as
aromatic hydrocarbons, may induce CAs directly or indirectly,
by affecting the DNA repair mechanisms, in a process that, if
persistent, might predispose cells to the development of
cancer. To determine whether the increase in structural CAs
previously detected [10] in exposed participants could be a
consequence of dysfunctions in the DNA repair mechanisms,
aphidicolin was added to the culture media. Aphidicolin is an
inhibitor of the DNA polymerases α, δ and ε. These
polymerases are involved in DNA replication and repair. The
presence of aphidicolin produces breaks in DNA by stopping
replication or by causing dysfunctions in DNA repair (nucleotide
excision repair and base excision repair) [34]. The breakages
induced by aphidicolin could be analysed using several
biomarkers such as comet assay, micronucleus testing or
chromosomal lesions/structural alterations analysis. The most
useful biomarker is chromosomal lesions because the increase
of lesions is associated with a mutagenic agent effect [35]. Our
results, in 14 exposed and 14 non-exposed individuals, show
that the chromosomal damage, expressed mainly as
chromosomal lesions, is statistically significant and higher in
exposed than in non-exposed participants, confirming the
existence of dysfunction in DNA repair mechanisms due to oil
exposure. Previous studies using ionizing radiation instead of
aphidicolin [36-38] reported that chronically benzene-exposed
individuals show a lower DNA repair efficiency. These findings
along with the present study suggest that chronic and acute
exposure to benzene/oil could affect DNA repair. In this regard,
it has recently been published [39] that individuals who have
chronic exposure to toxic substances will develop DNA repair
deficiency, suggesting that this functional biomarker can be
used to predict genetic risk of cancer.

These findings suggest that, in the same way that benzene
may induce hematopoietic malignancies, acute oil exposure
may be involved in the origin of cancer caused by
chromosomal damage. Nonetheless, taking into account the
wide inter-individual genetic susceptibility to carcinogens in the
general population, more genetic research is necessary to
clarify the existence of a relationship between acute oil
exposure and subsequent cancer development. Finally, if this
relationship is confirmed, this cancer risk cannot be
extrapolated to the approximately 300,000 individuals that
participated occasionally in oil clean-up tasks because, in our
study, exposed individuals were strictly selected on the basis of
intense exposure. Additionally, limitations of the present study
include the small sample size, and the possibility of some kind
of selection bias should be considered.

Conclusion

Our findings show an increase of chromosomal breakage at
2q21, 3q27 and 5q31 bands in PB lymphocytes two years after
exposure. These chromosomal bands, which are commonly
involved in hematological cancer, could be considered as
useful genotoxic oil biomarkers. Moreover, breakages in these
bands could induce chromosomal instability, which can explain

Human Chromosome Damage by Acute Oil Exposure

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e81276



the increased risk of cancer (leukemia and lymphomas)
reported in chronically benzene-exposed individuals. In
addition, our results suggest that the increase in chromosomal
damage in these individuals could be a consequence of the
reduction of DNA repair efficiency.
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