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Abstract

In mammals that grow up more slowly and live longer, replacement teeth tend to appear earlier in sequence than in fast
growing mammals. This trend, known as ‘Schultz’s Rule’, is a useful tool for inferring life histories of fossil taxa. Deviations
from this rule, however, suggest that in addition to the pace of life history, ecological factors may also drive dental
ontogeny. Myotragus balearicus is an extinct insular caprine that has been proved to be an excellent test case to correlate
morphological traits with life history. Here we show that Myotragus balearicus exhibits a slow signature of dental eruption
sequence that is in agreement with the exceptionally slow life history of this species, thus conforming to ‘Schultz’s Rule’.
However, our results also show an acceleration of the absolute pace of development of the permanent incisors in relation to
that of the posterior teeth. The rodent-like incisors of Myotragus balearicus erupted early not only in relative but also in
absolute terms (chronological age), suggesting that feeding characteristics also plays an important role in dental ontogeny.
This is in agreement with ecological hypotheses based on primates. Our study documents a decoupling of the pace of
development of teeth in mammals that is triggered by different selection pressures on dental ontogeny. Moreover, we show
that Myotragus kopperi from the early Pleistocene (a direct ancestor of the late Pleistocene-Holocene M. balearicus) follows
the pattern of first incisor replacement known in living bovids. Hence, the advance in the eruption sequence of the first
incisors occurs along the Myotragus evolutionary lineage over a period of about 2.5 Myr. To our knowledge, this is the first
fossil evidence of an advance of the emergence of the permanent first incisor along an anagenetic mammalian lineage.
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Introduction

Most placental mammals (eutherians) are diphyodonts as they

produce two generations of teeth: the deciduous or milk dentition,

which erupts around the time of birth, and a permanent dentition,

including molars and replacement teeth, that appears after

weaning. The replacement pattern is found to conform to the

pace of life history over a broad range of taxa [1], a phenomenon

coined ‘Schultz’s Rule’ In mammals with slower life histories,

replacement teeth tend to erupt relatively early and simultaneously

with the molars, while in fast growing mammals, molars and

replacing teeth erupt sequentially [1]. Humans represent the

extreme case of slow dental eruption signature with the second

molar erupting only after all the deciduous teeth have been

replaced [2]. Schultz [3] proposed that a prolonged growth period

places an extra load on deciduous teeth and that species adapt by

replacing them relatively early. This rule, hence, states that teeth

eruption sequence in eutherians is a functional system adapted to

the rate of post-natal growth. Teeth replacement pattern is, thus,

useful for making inferences about life histories of fossil taxa [1,2].

‘Schultz’s Rule’ has been proved in primates [4,5], though

exceptions have been found. Studies in lemurs [6] and in tarsius

[7] show that their lower anterior teeth erupt relatively and

absolutely early regardless of the pace of life history. These studies

provide strong support for the foraging independence and the food

processing hypotheses [8]. These hypotheses tested across the

order Primates suggest an acceleration of the absolute pace of

development of the anterior dentition in folivore relative to that of

non-folivore primates, facilitating early weaning and independent

juvenile foraging. Folivore primates have relatively smaller brains

and less complex social interactions, thus survival depends on

greater self-sufficiency (foraging independence hypothesis). More-
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over, folivorous diet is high in fibrous material and requires

extensive processing (food processing hypothesis). Thus, these

ecological hypotheses suggest the state of dental development at

weaning rather than the pace of life to be a direct target of

selection on dental ontogeny [8,9].

Smith [1] showed that ungulates, as most of primates, replace

teeth in a pattern that suits their life history pace. However,

generalized herbivores follow ‘Schultz’s Rule’ more strictly than

specialized herbivores. Hence, the extent to which mammals

follow this rule is not clear and ecological factors, mainly diet, have

also been claimed to affect dental development.

The Pleistocene bovid Myotragus balearicus from Balearic Islands

provides an excellent test case for ‘Schultz’s Rule’. Recent works

have shown the important contribution of this long-living extinct

bovid to our understanding of life history evolution [10–15]. These

studies have shown that certain derived morphological traits of this

species, shared by most insular ungulates (‘island syndrome’), such

as dwarfism and accentuated hypsodonty, are a by-product of the

evolution towards a slow life history that enhances fitness in a

resource-limited environment without carnivore predators.

Myotragus balearicus presents an extremely modified lower

dentition not shared by any other known ruminant that is

interpreted as a functional adaptation to increase feeding efficiency

under resource limitation [16]. Adults display a single rodent-like

evergrowing incisor, a single premolar (p4) and three molars per

hemimandible. The second and third incisor, the canine and the

third premolar are lost during anagenetic evolution of the

Myotragus lineage. Their eruptive sequence is also unusual among

living bovids, as the permanent incisors and the premolars erupt

relatively early [13,17]. In all living bovids the permanent first

incisor appears after the eruption of the second molar and the

fourth premolar is the last tooth to emerge after or subsequently to

the third molar [18]. However, the permanent incisor in this

extinct bovid emerges just after the first molar eruption and the

premolar emerges well before the third molar.

Myotragus balearicus, hence, appears to conform to ‘Schultz’s

Rule’. However, Bover and Alcover [17] and subsequently other

authors [19] proposed that, like in rodents and lagomorphs, the

evergrowing incisor of adult specimens of M. balearicus is a primary

tooth, specifically the second deciduous incisor, which would

explain its early emergence. In a reply, Moyà-Solà et al [20]

rebutted this interpretation on the basis of the dental evolution in

the Myotragus anagenetic lineage and on the standard pattern of

dental eruption in extant bovids. They conclude that the

evergrowing incisors present in the adult specimens of M. balearicus

are indeed permanent first incisors that replaced deciduous ones.

To explain the relatively early eruption of the permanent first

incisors, they suggested an acceleration of the incisor development

to cope with resource limitation on islands, in agreement with the

abovementioned ecological hypotheses [8]. Here we test whether

the pattern (relative order) and pace (absolute age) of dental

eruption in M. balearicus conforms to ‘Schultz’s Rule’ or whether it

follows the ecological hypotheses. The slow signature of dental

eruption (relative order) in M. balearicus may conform to the slow

life history of this species. Our recent works using hard tissue

histology and demography provided evidence that the Myotragus

lineage evolved towards a slow life history (slow growth, delayed

maturity and long life span) that enhances fitness under density-

dependent resource limitation [11–15]. Therefore, following the

‘Schultz’s Rule’, this shift in the pace of growth of this evolutionary

lineage should be accompanied by changes in the sequence of

dental eruption. This would provide strong empirical support to

‘Schultz’s Rule’. However, an acceleration of the pace of

development of the evergrowing incisors of M. balearicus leading

to an absolute early eruption (chronological age) in the ecological

context of chronic resource limitation and high intra-specific

competition could provide support toward a feeding adaptation.

The present study sheds light on the selection pressures that shape

dental ontogeny in mammals.

Materials and Methods

With the aim of analyzing teeth replacement pattern in the fossil

goat-like M. balearicus (late Pleistocene to Holocene), an ontoge-

netic series of mandibles was object of a CT-scan study. The

absolute timing of molar development in M. balearicus was

calculated in a previous work [13] using daily incremental

structures of enamel tissue. In the present study, these data were

used to calibrate the dental eruption schedule (absolute age) in M.

balearicus. Moreover, we scanned a juvenile mandible of M. kopperi

from the early Pleistocene (a direct ancestor of M. balearicus in the

Myotragus anagenetic lineage), as well as a mandible of an extant

domestic dwarf goat (Capra hircus). CT-scan images were analysed

using the software OsiriX v.3.5.1. We used the standard

nomenclature for the lower teeth: ‘i’ incisors, ‘p’ premolars and

‘m’ molars, preceded by ‘d’ when referring to a deciduous tooth.

We used the original dental homologies for M. balearicus proposed

by Andrews [21]. The material of M. balearicus comes from late

Pleistocene-Holocene sites of Mallorca (Cova de Moleta, Cova

Estreta and Cova des Moro) and is housed in the collections at the

Institut Mediterrani d’Estudis Avançats (IMEDEA), Esporles,

Mallorca, and at the Museu Balear de Ciències Naturals (MBCN),

Sóller, Mallorca. The mandible of an early Pleistocene species of

M. kopperi was discovered in 2010 at the Cova des Pas de

Vallgornera and is housed at the Institut Mediterrani d’Estudis

Avançats (IMEDEA 91270). The mandible of Capra hircus comes

from the Zoologisches Institut of Kiel (Germany). We obtained

permission from these institutions to access the collections. All

these specimens were loaned to the authors of this work to carry

out radiological study.

Results

The dental eruption schedule of M. balearicus mandibles is

summarized in table 1. In the youngest specimens of the M.

balearicus series, two hypsodont incisors of different size, the larger

one (di1) located beneath the smaller one (di2), and two deciduous

premolars (dp3 and dp4) are already erupted in each hemi-

mandible. The smaller incisor (di2) is likely to fall out very early

before m1 eruption. The larger deciduous incisor (di1) shows an

open distal base located at the level of mental foramen, before dp3

alveolus. This is the only incisor present in the jaw when m1 begins

alveolus emergence (Fig.1A–C) around 6 months.

The first molar is fully erupted by 9 months, age at which the

adult evergrowing incisor (i1) is already present but not erupted

(Fig.1D). This is an elongated incisor (<23 mm length) located

above and at a more lingual position to di1 (Fig.2). The base of i1

is wide and open and is located after mental foramen, just beneath

dp3 alveolus, oriented toward the lingual side of the jaw. At this

stage, in the specimen IMEDEA 48059 (Fig.3), the incisor already

erupted (di1) shows a developed open root that narrows apically.

When m1 crown formation is complete by around 13 months,

di1 is already lost. The sole incisors that remain in the jaw (i1) are

now erupted (Fig.1E–F). This tooth is greatly enlarged and extends

distally beneath dp4 in a more lingual position. During ontogeny,

this evergrowing tooth can extend even more distally beneath m1.

The second molar is fully erupted by about 32 months, and p4

formation starts subsequently (Fig.4A–B). At this stage dp3 is

almost depleted and subsequently it is shed. The fourth deciduous

First Fossil Evidence for Schultz’s Rule
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premolar falls out and p4 emerges when m2 crown formation is

complete. The third deciduous premolar (dp3) is replaced by a

very reduced conical shaped permanent premolar (p3) that is lost

during adulthood. This vestigial tooth is the result of the

evolutionary trend towards the reduction of the premolar series

in the Myotragus lineage [20]. There is no evidence of m3 formation

at this stage (Fig.4C). Finally, the third molar erupts by the age of

almost 6 years when the other teeth are already moderately worn

(Fig.4D).

As regards the juvenile hemimandible of the early Pleistocene

species of M. kopperi (Fig.5A, B), it shows the deciduous premolars

(dp3 and dp4), the first molar and two deciduous incisors (di1 and

Figure 1. CT-scan images of juvenile lower jaws of M. balearicus. Note the development and the replacement pattern of the first incisor. (A)
MBCN 12592, Cova de Moleta. (B) MBCN 12591, Cova de Moleta. (C) MBCN 12593, Cova de Moleta. (D) IMEDEA 48059, Cova Estreta. (E) IMEDEA 85139,
Cova des Moro. (F) IMEDEA 81013, Cova des Moro. Scale bar = 1 cm.
doi:10.1371/journal.pone.0070743.g001

Table 1. Deciduous and permanent teeth present in the hemimandibles of M. balearicus.

Age (months) deciduous teeth permanent teeth specimens

0 di1–2a, dp3–4 m1 (tooth germ) MBCN 12591–12592

6 di1, dp3–4 m1 (erupting) MBCN 12593

9 di1, dp3–4 i1 (tooth germ), m1 IMEDEA 48059

13 dp3–4 i1, m1 IMEDEA 85139–81013

32 dp4 i1, p3b–4 (tooth germ), m1–2 IMEDEA 46102–38780

32+ i1, p3b–4, m1–2 MBCN 12717

69 i1, p4, m1–3 IMEDEA61221

aThe studied specimens lack this tooth most likely by a postmortem event. This tooth is present in the similarly aged specimen MNCM 39318 from Bover and Alcover
[17].
bVestigial tooth present in juvenile specimens.
doi:10.1371/journal.pone.0070743.t001
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di2) erupted and worn, the alveolus of the third deciduous incisor

(lost postmortem), the germs of the second molar (about to emerge)

and the permanent first incisor within the jaw. Therefore, in the

early species of the Myotragus evolutionary lineage the first

permanent incisor (i1) emerged right after the second molar

(m2). The same applies in living bovids (Fig.5C, D), but differs

from the late Pleistocene-Holocene species (M. balearicus), in which

the first permanent incisor appears earlier in sequence after the m1

and long before the formation of the m2 begins (see specimen

IMEDEA 48059 in figure 2).

Discussion

Contrary to the suggestion in Bover and Alcover [17], the

present study provides further evidence for the successional or

secondary nature of the adult evergrowing incisors of M. balearicus.

Based on the CT-scan study on dental development in M.

balearicus, the more lingual position within the jaw of the adult

incisor germ (i1) relative to the erupted incisor (di1) lends support

for its successional nature. The differentiation of a secondary tooth

at the lingual margin of the deciduous enamel organ is a constant

trait in eutherian dental development [22]. The secondary incisor,

hence, always emerges at a slightly more lingual position than the

primary one.

However, the strongest evidence for the secondary nature of this

evergrowing tooth comes from the fossil record of the Myotragus

anagenetic lineage. The juvenile mandible of M. kopperi from the

early Pleistocene clearly shows that there is a replacement of the

deciduous incisors, at least in earlier species of this genus.

An important argument for the primary or deciduous nature of

the incisors of adult specimens of M. balearicus [17] came from

embryological studies in rodents and lagomorphs that show that

their large evergrowing incisors are deciduous [23]. However,

incisor enlargement in mammals can occur at different dental

positions and generations [22]. The enlarged lower incisors of

rodents and lagomorphs are considered di2 based on the

development of small, abnormal di1 on the prenatal jaws, which

are probably subsequently resorbed [22]. Nevertheless, this is very

different from what happens in M. balearicus, in which di1 is a

functional highly hypsodont incisor that falls out by around the

first year of age. Moreover, this tooth is noticeably wider and

longer relative to earlier species of the genus Myotragus [20].

Figure 2. CT-scan images of the mandible IMEDEA 48059 of M. balearicus. Replacement of the deciduous first incisor by the permanent one.
(A) Sagittal plane. (B) Coronal plane. (C) Transversal plane. Scale bar = 1 cm.
doi:10.1371/journal.pone.0070743.g002

Figure 3. Mandible IMEDEA 48059 of M. balearicus. (A) Buccal side of the lower jaw showing the germ of the permanent first evergrowing
incisor and the erupted deciduous first incisor. (B) Lingual side of the deciduous incisor. Note the lack of enamel. (C) Buccal side of the deciduous
incisor. Scale bar = 1 cm.
doi:10.1371/journal.pone.0070743.g003

First Fossil Evidence for Schultz’s Rule
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The extant artiodactyl vicuña (Vicugna vicugna) shows parallel

evolution to M. balearicus in the incisor enlargement [24]. The

vicuña displays three deciduous elongated incisors with open root

bases and without enamel on the lingual side of the crown, which

are similar to di1 of M. balearicus, though not as elongated. Three

permanent evergrowing incisors with morphology very similar to

Figure 4. CT-scan images of lower jaws of M. balearicus. Note the development and replacement pattern of the fourth premolar. (A) IMEDEA
46102, Cova Estreta. (B) IMEDEA 38780, Cova des Moro. (C) MBCN 12717, Cova de Moleta. * Very reduced conical shaped tooth present in juvenile
specimens. (D) IMEDEA 61221, Cova des Moro. Scale bar = 1 cm.
doi:10.1371/journal.pone.0070743.g004

Figure 5. Similarity between the tooth replacement pattern of the early Myotragus species and the living goat. Note that in both
species the first permanent incisor erupts just after the second molar. (A) Mandible of an early Pleistocene M. Kopperi, IMEDEA 91270, Cova des Pas de
Vallgornera, Mallorca. (B) CT-scan image of IMEDEA 91270. (C) Mandible of a dwarf Capra hircus, Zoologisches Institut, Kiel, Germany. (D) CT-scan
image of the lower jaw of the living goat. Scale bar = 1 cm.
doi:10.1371/journal.pone.0070743.g005

First Fossil Evidence for Schultz’s Rule
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that of the adult incisor of M. balearicus replace the primary teeth of

vicuña.

Based on all these arguments, the adult incisor of M. balearicus

should be considered a successional tooth, specifically i1.

Therefore, it can be established that replacement teeth (incisors

and premolars) in the fossil bovid appear relatively earlier in

sequence than in living bovids. In addition, the advance in the

eruption sequence of the i1 occurs along the anagenetic lineage of

the genus Myotragus over a period of about 2.5 Myr. The first

permanent incisor in the early Pleistocene M. kopperi mandible

emerged right after the second molar, as in living bovids.

However, in the late Pleistocene-Holocene species (M. balearicus)

the replacement of deciduous incisors by the first permanent

incisor has advanced in the sequence, just after the first molar

eruption. This is, to our knowledge, the first evidence from the

fossil record of advance of incisor replacement along an

evolutionary mammalian lineage.

According to the study of Smith [1] on patterns of tooth

eruption sequence in mammals, M. balearicus exhibits a slow

signature typical of species with an age of m1 emergence (a proxy

for rate of postnatal growth) by around one year and a median life

span of about 30 years. These data conform to the slow life history

described for the extinct species. The present study shows that m1

of M. balearicus is fully erupted at 9 months and crown formation is

complete around 13 months. Moreover, the potential life span for

M. balearicus has recently been estimated as around 27 years using

tooth cementum annuli [15] and 34 years using bone histology

[14]. Both, the values of m1 emergence and life span are unusual

among extant bovids. They are even rare among artiodactyls in

general, except for some larger, slower-growing species such as

hippopotamus (Hippopotamus amphibius) that show the same slow

sequence signature of tooth eruption as does M. balearicus as a

consequence of an atypically delayed juvenile period in the context

of a slow life history.

As regards the pace of dental eruption (absolute age), the large

evergrowing incisor (i1) of M. balearicus erupted by an age of

around one year, which is the standard time of eruption in similar-

sized continental bovids, or even slightly earlier [18,25]. This

incisor grew relatively fast as it took at most three months to attain

its important length before eruption. Therefore, the adult incisor

did not only grow fast in relative terms but also in absolute terms.

However, the posterior teeth (molars and premolar) of M. balearicus

exhibit a slow pace of development that doubles the eruption time

of similar-sized wild mainland caprines [13]. Thus, the molars of

M. balearicus need more than twice the time to reach the same

crown height of i1 just before eruption. This slow pace of

development of posterior teeth in M. balearicus is coupled with the

prolonged growth period and delayed age at maturity within the

framework of a slow life history [11–13]. This decoupling between

the pace of anterior and posterior tooth development suggests that

the state of dental development at weaning might also be target of

selection in agreement with ecological hypotheses [8]. The

absolute early eruption of the large rodent-like evergrowing

incisor of M. balearicus is likely to be selectively advantageous under

the special ecological conditions on islands, as suggested by Moyà-

Solà et al [20]. In an ecological context of high intraspecific

competition for scarce resources, selection favours increased

harvesting efficiency as shows the highly specialized dentition of

adults [12]. Our results indicate that selection also operated at an

early age leading to dental precocity at weaning. The early

eruption of the adult evergrowing incisors provides the mechanical

requirements for processing more abrasive, tougher foodstuff (food

processing hypothesis), in addition to facilitate weaning and

independent juvenile foraging (foraging independence hypothesis).

Among living ruminants, two deer species, the white-tailed deer

(Odocoileus virginianus) and the reindeer (Rangifer tarandus), also show

very early emergence of their first permanent incisors, though not

of the premolars [1]. This accelerated incisor development in these

two deer species is most likely related to dental precocity in the

context of harsh high-latitude environment, rather than to the

pace of life.

Many studies have documented decoupling among dental

eruption pattern, dental development pace, and life history pace

[7,8,26]. However, the present study is the first to document a

decoupling between the pace of anterior and posterior tooth

development.

In summary, this study provides a plausible explanation for the

early emergence of the rodent-like evergrowing incisor and the

premolar of M. balearicus. There is evidence that the pattern of

tooth development in this fossil species conforms to ‘Schultz’s

Rule’. Thus, the relatively early eruption of the replacement teeth

in M. balearicus is a functional adaptation to a prolonged growth

period in the context of insularity. The early replacement of the

anterior teeth (incisors) also appears to be dictated, or at least

partially, by resource constraints imposed by density-dependent

selection. Moreover, we provide first empirical evidence from the

fossil record of advance of incisor replacement coupled with a shift

towards a slow life history along the evolution of a mammalian

lineage.
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d’Estudis Avançats for Myotragus material; Zoologisches Institut of Kiel

(Germany) for Capra hircus mandible; and R. Garcı́a for preparation of the

thin sections. CT-scans were obtained at the Servei de Radiologia de

l’Hospital Universitari de Son Espases (Palma de Mallorca) and at Hospital
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the evolution of fitness components in fossil bovids under different selective
regimes. C R Palevol 10: 469–478.

15. Jordana X, Marı́n-Moratalla N, DeMiguel D, Kaiser TM, Köhler M (2012)
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