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This work presents a framework for assessing how the existing constraints at the time of attending an ongoing forest fire affect
simulation results, both in terms of quality (accuracy) obtained and the time needed to make a decision. In the wildfire spread
simulation and prediction area, it is essential to properly exploit the computational power offered by new computing advances. For
this purpose, we rely on a two-stage prediction process to enhance the quality of traditional predictions, taking advantage of parallel
computing. This strategy is based on an adjustment stage which is carried out by a well-known evolutionary technique: Genetic
Algorithms. The core of this framework is evaluated according to the probability theory principles. Thus, a strong statistical study
is presented and oriented towards the characterization of such an adjustment technique in order to help the operation managers
deal with the two aspects previously mentioned: time and quality. The experimental work in this paper is based on a region in Spain
which is one of the most prone to forest fires: EI Cap de Creus.

1. Introduction

As stated in [1], the potential for a natural hazard to become
a disaster mainly depends on a society’s capacity to address
the underlying risk factors, to reduce the vulnerability of a
community, and to be ready to respond in case of emergency.
In the last years, the scientific community has provided
many advances in order to deal with the issue of the early
remote sensing [2-5], which represents a great advantage.
However, most of these phenomena present an additional
important problem regarding the uncertainty of the variables
that describe the scenario where they take place. Forest fires
are a clear example of this problem, making them a very
complex system to model and simulate.

Over the last decades, different physical models have
been developed and implemented into forest fire spread
simulators. The Rothermel model [6] can be considered the
most used and representative among them. The research
studies regarding fire behavior are very valuable in order

to develop and optimize computational methods so as to
develop simulation and prediction tools, such as FireLib
[7], FireStation [8], or FARSITE [9]. Furthermore, given the
complexity of these implemented models as well as their
implicit computational demands, there are different works
that focused on the optimization of their results either by
coupling different models [10] or by exploiting the increasing
computational capabilities [11, 12].

Fire spread simulators usually require input parameters
that in some cases are uniform on the whole terrain and
constant on time, but some others vary from one point of
the terrain to another one or present a temporal evolution.
Furthermore, it is very difficult to gather accurate and reliable
values of certain parameters at the right places where the
catastrophe is taking place, because the hazard itself often
distorts the measurements. So, in many cases the unique
alternative consists of working with interpolated, outdated, or
even absolutely unknown values. Obviously, this fact adds the
problem of dealing with high levels of uncertainty in the input
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FIGURE 1: Classical prediction schema. RF and SF stand for real fire
and simulated fire, respectively.

parameters, which results in a lack of accuracy and quality on
the provided predictions.

To overcome the input data uncertainty, a two-stage
prediction methodology was developed [13]. This methodol-
ogy divides the prediction process into two different stages:
adjustment and prediction. During the first stage, a cali-
bration method is applied using data about the observed
fire propagation to obtain the input data set which best
describes the actual evolution of the catastrophe. Afterwards,
the prediction stage starts a new simulation using the values
obtained in the calibration stage. Subsequently, the differ-
ences between the classical prediction schema and the two-
stage prediction method are detailed.

11 Classical Prediction. The traditional way of predicting
forest fire behavior takes the initial state of the fire front
as input as well as the input parameters given for that
time instant. These values are entered into any existing fire
simulator, which then returns the prediction for the state of
the fire front at a later time instant. This is summarized in
Figure 1, where ¢; stands for a certain time instant i, RFt;
stands for the real fire spread at a certain time instant i, and
SFt; stands for the simulated spread at a certain time instant
i.

The forecasted fire front tends to differ from the real
fire line to a greater or lesser extent. As the prediction error
accumulates gradually as the prediction time advances, devi-
ations between real phenomenon behavior and forecasted fire
spread become even more significant. One reason for this
incidence is that the classic calculation of the simulated fire
is based upon one single set of input parameters afflicted
with many inadequacies. To improve parameter quality and
enable real-time estimation and calibration of model input
parameters in each time step during an ongoing prediction, a
two-stage prediction scheme was proposed in [13].
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1.2. Two-Stage Prediction Method. Fire spread simulators
need certain input data which define the characteristics of
the environment where the fire is taking place in order to
evaluate its future propagation. This data usually consists of
the current fire front, terrain topography, vegetation type, and
meteorological data such as humidity, wind direction, and
wind speed. Some of this data could be retrieved in advance
and with notable accuracy, for example, the topography of the
area and the predominant vegetation types.

However, there is some data that turns out to be very
difficult to be reliably obtained. For instance, getting an
accurate fire perimeter is very complicated because of the
difficulties involved in getting real-time images. Live and
dead fuel moistures are examples of data which cannot be
retrieved with reliability at the moment of the emergency.
Another kind of data sensitive to imprecisions is that of
meteorological data, which is often distorted by the fire itself.
However, this circumstance is not only related to forest fires
but also happens in any system with a dynamic state evolution
over time, for example, floods [14], thunderstorms [15, 16],
and so forth. These uncertainties, added to the fact that these
inputs are set up only at the very beginning of the simulation
process, become an important drawback because, as the
simulation time goes on, variables previously initialized could
change dramatically, misleading simulation results. In order
to overcome these restrictions, we need a system capable of
properly estimating the values of the input parameters needed
by the underlying simulator so that the results we obtain
correspond to reality.

Introducing a previous adjustment step, the set of
input parameters is optimized before every prediction step.
Figure 2 schematizes this process. In this figure, the € process
consists of the comparison between the actual and the
simulated fire spreads. As it is explained in Section 3, for this
calculation we rely on the symmetric difference between sets
of burned cells.

Thus, the proposed solution comes from reversing the
problem: how to find a parameter configuration such that,
given this configuration as input, the fire simulator would
produce predictions that match the actual fire behavior.

Having detected the simulator input that best describes
current environmental conditions, the same set of parameters
could also be used to best describe the immediate future,
assuming that meteorological conditions remain constant
during the next prediction interval. Then, the prediction
becomes the result of a series of automatically adjusted input
configurations.

The process of input parameters adjustment can be seen
as a global optimization process, where we search for an
instance in an N-dimensional space (N equals the number
of input parameters to be adjusted) which minimizes the
difference between the simulated fire spread produced and
the real observed spread. There is a great variety of works
which rely on the so-called Global Optimization Algorithms
[17] to solve different problems of this kind [18-21]. In
the specific case of forest fire spread, several adjustment
techniques have been tested to calibrate the input parameter
set, from which stands out the use of bioinspired evolutionary
computation, specifically Genetic Algorithms (GAs), which
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FIGURE 2: Two-stage prediction method.

has provided outstanding results as a parallel adjustment
technique within the two-stage prediction framework [22].

In order to be useful, any evolution prediction of an
ongoing hazard must be delivered as fast as possible in
order not to be outdated. When relying on the two-stage
prediction method, accuracy also depends on the amount
of computational resources we have access to performing
different simulations, since the use of parallel computation
favors the evolutionary methods used in the adjustment stage.
As it will be studied in Section 4, the fact that the adjustment
strategies for parameter optimization may be carried out in a
parallel way allows us to take advantage of the simultaneous
execution of different simulations.

The rest of this paper is organized as follows. In the next
section, we explain the proposed methodology to assess in
advance the quality of the predictions. In Section 3, the details
concerning the characterization of the GAs as adjustment
strategy, based on the principles of probability theory, are
given. Section 4 presents a statistical study based on the area
of El Cap de Creus (northeast of Spain) in order to validate our
propose methods. Finally, the main conclusions are given in
Section 5.

2. Methodology for Time
Response and Quality Assessment for
Forest Fire Spread Prediction

From the point of view of attending an ongoing emergency,
it is necessary to be able to assess, in advance, the amount of
computational resources needed to deal with. This is due to
the existing strict deadlines for giving a response. Moreover,
it is also necessary to accurately assess the quality that the
prediction system will give us, since this kind of emergency
may threaten urban areas and even human lives.

Based on the two-stage prediction framework, some
previous studies were carried out in order to choose the

most suitable adjustment strategy [23, 24]. GAs turned out
to be the most appropriate technique among other Global
Optimization Algorithms (such as Tabu Search and Simulated
Annealing,) not only for their outstanding results but also
because their nature favors parallel computing. The use of
such an iterative adjustment technique implies that it leads
us to the desired solution progressively, that is, the more the
iterations we are able to perform, the better the solution we
will be able to find. Obviously, this fact has a direct impact
on the time incurred in the prediction process. So, in order
to reach a good trade-off between quality and urgency, one
must consider three main interrelated issues.

(a) The quality of the prediction is directly related to
the quality of the adjustment, and the quality of
the adjustment depends on how many times the
adjustment technique is iterated, as well as on the
number of scenarios tested per iteration.

(b) The amount of computing resources determines the
amount of simulations that can be simultaneously
executed per iteration at the adjustment stage.

(c) The response time in providing a prediction is a
critical point and seriously limits the number of
iterations that can be executed at the adjustment stage.

The solution proposed is conceived to fulfill the necessity
of deploying a way to set up in advance:

(i) the prediction scheme settings, in particular the
adjustment policy’s specific parameters, for a required
quality of the prediction; this is especially relevant
when the ongoing fire may threaten urban areas and
even human lives;

(ii) the computational resources needed to deliver a
required quality of the prediction, given certain time
constraints.

In order to properly tackle this objective, the details of
the proposed methodology for the characterization of the
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TaBLE 1: Dependencies between each factor belonging to the two-stage prediction framework.
Simulation Adjustment Final prediction
Time Quality Time Quality Time Quality
Input settings Input settings Simulation time Adjustment time Simulation time ~ Adjustment quality
Computational Computational and real-time
resources resources eventualities

Configuration of
the adjustment
method

two-stage prediction method are given in the subsequent
subsection.

2.1. Two-Stage Prediction Method Characterization. Based
on the assumptions and requirements detailed above, we
have designed a methodology to characterize the two-stage
prediction process. For this methodology to be as flexible
as possible (simulator-independent), we have to analyze the
behavior of the aforementioned processes in terms of the
main variables that we must deal with: the time spent and the
quality of the results. Table 1 summarizes the dependencies
for each case. As one can see, there is a series of dependencies
from the prediction quality to the simulation time.

As regards the time needed for the final prediction
process, it consists of a single simulation of the winning
input setting at the adjustment stage, and the quality of this
simulation is directly correlated to the quality obtained at the
end of the adjustment process [25].

Since the developed adjustment methods are all iterative,
the quality obtained at the end of the adjustment stage
presents a single dependence: the time available to perform
it. Regarding the necessary time, this process presents a
couple of dependencies; obviously, the time incurred in each
simulation will determine the overall adjustment time, but it
also depends on the specific configuration of the adjustment
method itself. Since the adjustment strategies may be runina
parallel way, in many cases this configuration can take greater
advantage of the available resources. Thus, the time incurred
in the adjustment process will also depend on the available
computational resources.

Finally, each simulation, in terms of time needed, is
dependent on the input parameters that describe the scenario
being simulated and the underlying computational resources
where it is executed. The quality of each simulation will
depend on the input parameters, since it is determined by
the similarity between the simulation run using those input
parameters and the actual evolution of the fire. Therefore, the
characterization must be done from the simulation process
to the prediction process, so that by means of characterizing
the time incurred in the simulation process in terms of its
inputs and the computational resources, we can reach the
final prediction assessment.

To accomplish this goal, it is necessary to characterize
the adjustment strategy in such a way that it is possible
to determine beforehand the number of iterations and the
number of scenarios per iteration that should be executed

to ensure a certain prediction quality. Since each scenario
implies one execution of the simulation kernel, it is also
necessary to characterize this simulation kernel to estimate
the time required to run each simulation. For this reason, we
rely on a methodology for classifying the scenarios according
to how long their simulation will take before their execution,
based on the use of Decision Trees [26] as classification
strategy. This methodology is widely discussed in previous
works, such as [27, 28], and allows us to carry out a premature
detection of lengthy simulations so that we can avoid their
inclusion in the adjustment process. As it will be seen in
Section 4, this represents a very important advantage for the
success of our proposed methods.

Having characterized the adjustment technique and the
simulation time, then it is possible to determine the necessary
computing resources to execute a certain number of iterations
with a certain number of simulations per iteration. Thus, our
methodology allows us to determine the required computing
resources to reach a certain prediction quality in a given time.

3. Genetic Algorithm Characterization

By their own nature, GAs constitute a technique that works
in an iterative way; that is, the quality of its results directly
depends on the times it is iterated as well as its specific
configuration settings.

It starts with an initial population of individuals which
will be evolved over several iterations in order to guide them
to better search space areas. The individuals used in the case
of forest fire spread prediction are defined as a sequence
of different genes, namely, wind speed and wind direction,
moisture content of the live fuel, moisture content of the dead
fuel (at three different times), and type of vegetation, out of
the 13 standard Northern Forest Fire Laboratory fuel models
[29]. Topographic data is constant, so it is not considered in
the evolutionary process.

Operators such as elitism, selection, crossover, and muta-
tion are applied to every population to obtain a new one
superior to the previous one. Elitism consists of keeping the
best individuals from one generation to the next one. By this
way, it is guaranteed that the solution coming from a certain
generation is, at least, as good as the one obtained from the
previous generation. Selection operation selects good quality
parents to create children that will inherit their parents’ good
characteristics (by crossover operation). In order to guarantee
natural diversity of individual characteristics, mutation can
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occur for each child characteristic (under a very slight
probability).

Each individual from a population is ranked according
to a predefined fitness function. Since simulated fires can be
represented as a grid of cells map, indicating which cells were
burned as a consequence of the simulated fire, in our case the
quality of a specific individual is determined by means of the
fitness function expressed by (1). This equation calculates the
differences in the number of cells burned, both missing or
in excess, between the simulated and the real fire. Formally,
this formula corresponds to the symmetric difference between
the actual spread and the simulated spread, divided by the
actual spread, so as to express a proportion. UnionCells is the
union of the number of cells burned in the real fire and the
cells burned in the simulation, IntersecCells is the intersection
between the number of cells burned in the real fire and in the
simulation, RealCells are the cells burned in the real fire, and
InitCells are the cells burned at the starting time:

Error

_ (UnionCells — InitCells) — (IntersecCells — InitCells)

RealCells — InitCells
€]

The iterative nature of GAs leads to a near optimal
solution in the adjustment stage after a certain number
of iterations. For this reason, it is mandatory to analyze
the GA convergence for the particular case of forest fire
spread prediction, as well as to be able to extract a general
characterization of its behavior.

The characterization of GAs as an adjustment technique
for the two-stage prediction method must allow us to prop-
erly estimate the adjustment quality we may obtain, given
certain restrictions, both in terms of timing and resource
availability when the adjustment stage is done. Adjustment
quality stands for the difference between the simulation result
once the adjustment process is completely carried out and the
real state of the hazard.

In general terms, this issue is addressed by means of
performing a statistical analysis to determine, for each adjust-
ment strategy, the features that affect the quality of the results.
Then, a study of the particular impact of these factors on the
convergence of each method is done, to infer criteria in order
to estimate the achievable quality of results under certain
restrictions.

Parameters, such as number of generations, individuals
per population, elitism factor, and mutation probability, affect
the quality of the winner individual, that is, the final solution
we will deliver at the end of the adjustment process.

3.1. GA Characterization Methodology. Thus, our proposed
methodology for the GA characterization can be summarized
in the following steps.

(1) GA key settings identification: it is necessary to
assess and determine the settings that could affect the
quality of the results when using GA as the adjustment
technique. So far, the analyzed factors in this work are

- Area burnt 5 times
|:| Area burnt 4 times
|:| Area burnt 3 times
- Area burnt 2 times
|:| Area burnt 1 time

F1GURE 3: Fire occurrences in Catalonia in the period 1975-2010 (fire
sizes bigger than or equal to 30 ha).

the size of the populations, the number of generations,
and the mutation probability.

(2) Study of the impact on convergence: depending on
the specific case (mainly, the topographic area), the
influence of certain GA settings upon the quality
of the results may be decreased in favor of others
and vice versa. Therefore, it is necessary to study the
particular impact of these factors on the convergence
for each case.

(3) Statistical analysis: this analysis consists of identifying
which probability distribution best fits the results
obtained, in terms of the quality of the adjustment
obtained. Then, by means of the corresponding prob-
ability density function, we are able to establish
a guarantee degree in our estimations, as well as
determine which configuration of the GA is most
suitable.

These steps are made offline, which means that they are
all already carried out at the moment of the fire occurrence.
It is also worth mentioning that the results and applicability
of this methodology are independent of the features of the
computational platforms being used.

Having completed these three processes, we are ready to
infer criteria to determine the achievable adjustment quality
under certain restrictions and are therefore able to advise on
the best specific settings for the GA.



FIGURE 4: Cap de Creus, Catalonia (image from FARSITE simulator).
Different colors indicate different types of vegetation.

4. Experimental Study: GA Characterization
Based on Cap de Creus Landscape

The experimental study presented in this work is based on
one of the most problematic areas in Catalonia (northeast of
Spain). Figure 3 shows the occurrences of fires bigger than 30
hectares in the period 1975-2010 [2, 30]. The most recurrent
area corresponds to the northeast cape (EI Cap de Creus). This
area is zoomed in in Figure 4 and has an approximate real
extension of 900 square kilometers.

Subsequently, we test our methodology using this land-
scape. The fire spread simulator used was FARSITE [9].

4.1. GA Statistical Study. The analysis of the convergence and
the statistical study were performed in the following terms:

(i) populations composed of 25 and 100 individuals;
(ii) populations evolved over 10 generations;
(iii) mutation probability: 10%;
(iv) crossover probability: 70%;
(v) initial fire consisting of a single initial ignition point;

(vi) adjustment time interval: 0h-6 h (from the ignition
to 6 hours after).

Using these configurations for the GA, we carried out the
evolution process for 100 different populations.

From the obtained results, a statistical study carrying
out the Kolmogorov-Smirnov, Anderson-Darling, and Chi-
squared tests allowed us to determine that the probability
distribution which best fits the obtained data, regarding the
obtained quality of adjustment, is the Lognormal distribution,
which is a continuous probability distribution of a random
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variable, whose logarithm is normally distributed. Its proba-
bility density function (PDF) is as follows:

1 —(In x—y)z/ZJ2 ( )
e x> 0. 2
xoV2r

In this equation, x is the random variable (which corre-
sponds to the error obtained at the end of the adjustment
process), y is the mean, and o is the standard deviation of
the variables natural logarithm (by definition, the variables
logarithm is normally distributed).

Although the probability distribution of the data is the
same throughout the whole evolution process, these factors
vary depending on the iteration of the GA we are evaluating.
So, Figure 5 depicts the different PDFs for each generation,
for the particular case of 25-individual populations.

By means of these PDFs, we can guarantee the maximum
adjustment error we will obtain, given a certain configuration
of the GA, with different degrees of certainty. In addition,
since the number of generations has a direct impact on both
the available resources and the time needed to perform the
adjustment process, it is worth highlighting that we are able
to give this guarantee taking into account the number of
generations we are able to execute.

For instance, Tables 2 and 3 show the different maximum
adjustment errors (considering the adjustment time interval
[0 hours-6 hours]) for which we have different guarantee
degrees in the cases of 25 and 100 individuals per population,
respectively. Here, guarantee degree stands for the probability
of obtaining an adjustment error lesser than or equal to the
specified value, on the basis of the above presented PDF (2).

Figures 6 and 7 also depict this information, from a
guarantee degree of 90% down to 70%. As can be easily
understood, the lesser the error requested is, the lesser the
degree of guarantee, for the same number of iterations of the
GA.

Considering a real situation, where the quality of the
prediction is a parameter fixed by the decision control
centre in charge of making the appropriate decisions, this
information turns out to be very important, since we are able
to give a certain guarantee of quality in the final prediction,
taking into account how many evolution steps (i.e., how many
generations) we can perform. Moreover, it is also possible
to fix the quality of the adjustment and then determine the
guarantee degree of reaching such an error in a given number
of iterations.

PDF (x;4,0) =

4.2. Real Emergency Recreation. In order to prove the correct-
ness of the above presented characterizations, we consider a
hypothetical situation based on the Cap de Creus landscape,
where we have to meet the following restrictions regarding
both the quality of the adjustment and the time available to
perform it.

(i) Response time: one hour for the adjustment process.
(ii) Quality of adjustment: a maximum error of approxi-
mately 0.5 is required.

As stated in Section 2.1, we rely on a Decision Tree-based
method which allows us to rapidly assess the simulation time
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FIGURE 5: Probability density functions for the obtained errors at each generation of the evolution process.

a certain configuration of the scenario will produce, without
the necessity of executing it [27, 28]. Therefore, by means of
the premature detection and discard of lengthy simulations,
we are able to limit the elapsed time in the adjustment stage.

For the particular case of this work, we applied this
method to allow the inclusion of individuals whose simu-
lations do not exceed 750 seconds (this detection process
presented a hit ratio of 96.4% using a test set of 1000
individuals randomly generated). By this way, assuming that
we have enough computational resources so as to execute
25 simulations in parallel (25 computing cores), we are able
to evolve a population composed of 25 individuals over
5 generations in 3750 seconds (1 hour, 2 minutes, and 30
seconds), which would be appropriate.

By analyzing the data in Table 2, we assume that we could
bring an error approximately equal to 0.5 with an 80% degree
of guarantee at the end of the fifth generation (the error
indicated is 0.519, row “80%”, column “G5”).

So, we carried out an experiment consisting of the
evolution of 30 populations composed of 25 individuals. At
the fifth generation, we should obtain an error equal to or
lesser than 0.519 in approximately 80% of cases.

Table 4 shows the results obtained from these evolutions.
These evolution processes were extended up to 10 generations
for further analysis purposes. As can be seen, only 3 pop-
ulations (pl, p19, and p22) out of 30 exceeded an error of
0.5 at the end of the fifth generation, which goes beyond the
assumed 80% degree of guarantee. Moreover, by limiting the
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TABLE 2: Achievable error with different degrees of guarantee (populations composed of 25 individuals).

Guarantee degree G2 G3 G4 G5 G6 G7 G8 G9 G10
95% 2.06 172 1.58 151 1.36 0.888 0.79 0.752 0.585
90% 1.27 1.08 0.987 0.933 0.848 0.582 0.525 0.497 0.398
85% 0.92 0.782 0.719 0.673 0.615 0.438 0.399 0.357 0.307
80% 0.711 0.607 0.559 0.519 0.476 0.349 0.32 0.301 0.25
75% 0.57 0.488 0.45 0.415 0.383 0.288 0.265 0.248 0.209
70% 0.467 0.402 0.371 0.34 0.314 0.242 0.224 0.209 0.178
65% 0.388 0.335 0.31 0.283 0.262 0.206 0.192 0.179 0.154
60% 0.326 0.283 0.261 0.237 0.22 0.177 0.165 0.154 0.134
55% 0.275 0.239 0.222 0.2 0.186 0.152 0.143 0.133 0.117
50% 0.233 0.203 0.188 0.169 0.158 0.132 0.124 0.115 0.102

TaBLE 3: Achievable error with different degrees of guarantee (populations composed of 100 individuals).

Guarantee degree G2 G3 G4 G5 G6 G7 G8 G9 G10
95% 0.552 0.325 0.289 0.211 0.164 0.164 0.138 0.121 0.113
90% 0.399 0.251 0.226 0.172 0.136 0.134 0.114 0.101 0.095
85% 0.32 0.212 0.191 0.149 0.12 0.116 0.1 0.09 0.085
80% 0.269 0.185 0.168 0.133 0.109 0.104 0.09 0.082 0.077
75% 0.232 0.164 0.15 0.121 0.099 0.095 0.083 0.076 0.071
70% 0.203 0.148 0.135 0.111 0.092 0.087 0.077 0.07 0.066
65% 0.179 0.134 0.123 0.103 0.086 0.08 0.071 0.066 0.062
60% 0.159 0.122 0.113 0.095 0.08 0.074 0.067 0.062 0.058
55% 0.142 0.112 0.103 0.089 0.075 0.069 0.062 0.058 0.055
50% 0.127 0.102 0.095 0.082 0.071 0.064 0.058 0.055 0.052
Ldqoooo I 0457 -
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FIGURE 6: Achievable error.wi.th. different degrees of guarantee. FIGURE 7: Achievable error with different degrees of guarantee.
Populations composed of 25 individuals. Populations composed of 100 individuals.
time involved in the adjustment process to 750 seconds, the Indeed, we can observe that in this experimental set

response time restriction was also met. only populations p19 and p22, in some generations, exceeded
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TABLE 4: Errors obtained from the evolution of 30 populations composed of 25 individuals in Cap de Creus landscape.
Population G2 G3 G4 G5 G6 G7 G8 G9 G10
pO 0.447 0.414 0.265 0.265 0.124 0.124 0.08 0.08 0.072
pl 0.673 0.673 0.673 0.614 0.164 0.164 0.164 0.164 0.164
p2 0.251 0.251 0.251 0.18 0.025 0.025 0.025 0.025 0.025
p3 0.445 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
p4 0.235 0.125 0.099 0.035 0.035 0.035 0.019 0.019 0.005
p5 0.601 0.455 0.45 0.427 0.139 0.139 0.139 0.139 0.139
poé 0.417 0.417 0.417 0.246 0.246 0.219 0.12 0.12 0.105
p7 0.518 0.055 0.055 0.055 0.055 0.038 0.038 0.033 0.018
p8 0.716 0.411 0.122 0.061 0.044 0.044 0.044 0.044 0.044
p9 0.567 0.552 0.494 0.491 0.49 0.49 0.488 0.488 0.488
pl0 0.742 0.694 0.59 0.353 0.351 0.351 0.351 0.351 0.351
pll 0.453 0.147 0.147 0.125 0.125 0.095 0.095 0.058 0.054
pl2 0.31 0.31 0.31 0.31 0.241 0.234 0.097 0.096 0.096
pl3 0.565 0.174 0.174 0.122 0.122 0.122 0.115 0.115 0.111
pl4 0.341 0.339 0.223 0.223 0.217 0.217 0.217 0.117 0.117
pl5 0.388 0.257 0.117 0.061 0.061 0.061 0.061 0.038 0.038
plo 0.75 0.414 0.272 0.272 0.248 0.248 0.245 0.179 0.038
pl7 0.603 0.218 0.218 0.218 0.212 0.169 0.169 0.15 0.134
p18 0.507 0.48 0.342 0.224 0.22 0.197 0.197 0.197 0.034
p19 1.221 1.201 1.201 0.995 0.995 0.995 0.728 0.624 0.444
p20 0.448 0.448 0.448 0.23 0.23 0.17 0.17 0.17 0.092
p21 0.758 0.758 0.407 0.407 0.407 0.126 0.126 0.126 0.087
p22 1.01 1.01 1.01 1.01 0.876 0.612 0.612 0.312 0.259
p23 0.108 0.108 0.108 0.108 0.108 0.105 0.105 0.071 0.071
p24 0.214 0.111 0.111 0.111 0.104 0.104 0.104 0.086 0.086
p25 0.303 0.175 0.172 0.172 0.109 0.109 0.109 0.091 0.091
p26 0.637 0.549 0.444 0.042 0.039 0.037 0.037 0.037 0.032
p27 0.338 0.338 0.099 0.099 0.099 0.099 0.099 0.092 0.092
p28 0.75 0.51 0.155 0.155 0.066 0.066 0.066 0.066 0.016
p29 0.57 0.461 0.425 0.193 0.193 0.096 0.096 0.096 0.096

the errors corresponding to 90% degree of guarantee (see
Table 2), which turns out to be an absolutely satisfactory
result.

5. Conclusions

The novelty of our approach is the design of a methodology
for the early assessment of both the time needed to perform
a prediction and its quality within the proposed two-stage
prediction framework, focusing on the specific case of forest
fire spread prediction.

In the field of fire spread simulation and prediction, deal-
ing with high degrees of uncertainty on the input parameters
is common, which may lead to important losses in the quality
of the predictions. The two-stage prediction scheme was
introduced to relieve the problem of such input parameter
uncertainty. This prediction framework highly improves the

quality of the predictions but, due to its complexity, it could
be very hard to know (or even to estimate) how much time is
necessary in such processes, as well as the ideal amount and
type of computational resources to be used.

Given the high level of uncertainty and complexity in
the underlying scenario that describes the initial conditions
of the catastrophe, it is necessary to rely on the so-called
Global Optimization Algorithms to improve the quality of the
predictions. The performance of these kinds of algorithms,
however, may present high variability due to their specific
initial settings. This variability may have impact on the
quality of the results as well as the time needed to carry out
the optimization process. For this reason, we present our
methodology to characterize a well-known Artificial Intel-
ligence technique, Genetic Algorithms, which has proven
to be a powerful technique for performing the adjustment
process in our two-stage prediction method. Thus, we relied
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on the probability theory area to carry out a statistical study
based on a huge set of fire spread simulations using the
Cap de Creus landscape as a real case study. Then, we have
identified the probability distribution which corresponds to
the results obtained, so that we can rely on its probability
density function in order to establish certain degrees of
guarantee in accuracy estimations.

This methodology allows us to keep to the occasional
existing limitations as regards the time available to provide
a prediction and the amount of computing resources we can
access. This represents a great advantage for the forest fire
operation management teams.

The experimental study presented highlights the suitabil-
ity of the proposed methods, which can be easily extrapolated
in order to be applied in management actions related to other
kinds of natural hazards.
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