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Water becomes ordered in the form of hexagonal ice at room temperature under controlled humid-
ity conditions upon confinement in the nanometer range between protective graphene sheets and
crystalline (111) surfaces with hexagonal symmetry of the alkali earth fluoride BaF,. Interfacial
water/substrate pseudoepitaxy turns out to be a critical parameter since ice is only formed when the
lattice mismatch is small, an observation based on the absence of ice on (111) surfaces of isostructural
CaF, © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798941]

When water becomes spatially confined between two
parallel surfaces separated by distances comparable to the
water mean molecular diameter (~0.28 nm), the structural
isotropy characteristic of bulk water is lost and water becomes
layered.'™ Such layering effect has been experimentally evi-
denced recently by means of scanning probe microscopy mea-
surements using protective graphene sheets as one of the con-
fining surfaces.”® When graphene sheets are deposited on
cleaved mica surfaces in ambient conditions, room temper-
ature (RT), and controlled relative humidity (RH), the trapped
water layers grow in a two dimensional (2D) mode, forming
atomically flat structures with heights of 0.37 nm, the distance
between adjacent bilayers (BLs) in hexagonal ice (Ih).

The same 2D growth has been observed using highly ori-
ented pyrolytic graphite (HOPG)® and sapphire'” substrates.
The observed BL structure corresponds to the commonly ac-
cepted structure for the first water monolayer (ML) on many
surfaces.'"!> The fact that 0.37 nm high water layers are ob-
served on different surfaces with very different affinity to wa-
ter draws the attention towards the role of the water/graphene
interface. On SiO;,, despite the fact that the presence of ice Th
BLs has been suggested'® no such structures have been ob-
served when using graphene.’ The similitude in the measured
heights on different surfaces has been ascribed to the reor-
ganization of hydrogen bonding induced by the hydrophobic
graphene sheet.!”

Note that the ice Ih BL structure is formed at RT, so that
the term RT ice is fully justified. RT ice can be also prepared
by applying external pressures, although in crystal structures
different from ice Ih. Above 2 GPa, ice VII is formed and
well above such value, at 65.8 GPa, another polymorph (ice
X) is obtained.'* Ice has been imaged at RT with an atomic
force microscope (AFM) in contact mode (c-AFM)'> and us-
ing a friction force microscope'® on cleaved HOPG surfaces
in air, in spite of its hydrophobic character. The viscoelas-
tic response of confined water has been also studied with
an AFM.!7 In this case the elastic (solid-like) and viscous
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(liquid-like) response oscillates with molecular layering as
the tip-surface gap is reduced, corresponding to short-range
ordering of the water in the tip-surface gap.'® In addition, a
stepwise behavior with a periodicity of about 0.25 nm has
been observed using a shear force microscope.'”

In this work, we have studied the combined effect of
graphene and cleaved surfaces of alkali earth fluorides with
hexagonal symmetry at ambient conditions on the structura-
tion of water into RT ice. We have used single crystalline
isostructural BaF, and CaF,(111) substrates (Fm3m space
group) because of their differentiated surface lattice con-
stants, 0.438 and 0.384 nm, respectively, which are to be
compared to the surface lattice constant of the basal plane
of ice Th (0.45117 nm at 223 K2°). The results shown here
evidence that water layers confined between graphene sheets
and BaF,(111) surfaces are highly structured and compatible
with an ice Th structure, as opposed to previous AFM exper-
iments performed on free BaF,(111) surfaces (without pro-
tective graphene sheets)?'~>* and to theoretical calculations.?
This suggests a strong effect of the graphene sheet on the
structure of the trapped water films. However, water is not
structured on CaF,(111) surfaces indicating that the interac-
tion between water molecules and the substrate is also playing
an important role.

Graphene sheets were transferred through the standard
method of mechanical exfoliation of Kish graphite flakes>®
onto freshly cleaved (111) BaF, and CaF, surfaces inside a
globe box at controlled RH.?! The samples were then stud-
ied using an Agilent 5500 and an MFP-3D Asylum Research
AFM at ambient conditions. Large areas were scanned us-
ing the amplitude modulation (AM-AFM) mode and the wa-
ter layers trapped between graphene sheets and crystal sur-
faces were imaged in c-AFM mode using the same cantilever
tip (PPP-FMR and PPP-EFM from Nanosensors) with typ-
ical resonance frequencies of 70 kHz and force constants
of 2 N/m.

In Fig. 1(a), a large AM-AFM image of few nm thick
(few layer) graphene sheets deposited at ~30% RH on
a freshly cleaved BaF,(111) surface is shown. Substrate
steps are observed under the graphene sheets evidencing the

© 2013 American Institute of Physics
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FIG. 1. (Top) Freshly cleaved BaF(111) surface partially covered with few
layer graphene flakes deposited at 30% RH. (a) AM-AFM and (b) c-AFM
images taken at RT. Bright stripes in (a) correspond to graphene wrinkles.
The image in (b) corresponds to a magnified view of the area enclosed in
the square in (a). (Bottom) AM-AFM images taken at 50% RH and RT of a
freshly cleaved BaF,(111) surface covered with water layers corresponding
to the (c) unperturbed and (d) perturbed case, respectively.

capability of measuring structures below few layer graphene
sheets. A detailed look in Fig. 1(b), taken in c-AFM mode
and corresponding to the area enclosed in the square in
Fig. 1(a), reveals the characteristic V-shaped step structure of
the surface.?” The measured step height is 0.35 & 0.02 nm for
both the free and covered surfaces, a value that corresponds
to the distance between adjacent trilayer planes (0.36 nm ac-
cording to the known crystallographic structure), thus almost
identical to the water 0.37 nm interbilayer distance. In the
covered regions noticeable changes are observed due to the
presence of water, trapped by the graphene during the depo-
sition procedure. The observed water-induced structures are
rather stable. When such surfaces are exposed to RH cycles
of low RH (<10%), high RH (~80%), and back to low RH
no significant modifications are observed, contrary to recently
reported experiments.’

We compare the c-AFM image with AM-AFM images
for freshly cleaved free BaF,(111) surfaces at RH ~ 50% in
Figs. 1(c) and 1(d). Both figures correspond to intentionally
unperturbed and perturbed surfaces by the controlled action of
the oscillating tip, respectively.?* Using nonperturbative real
non-contact AM-AFM in ambient conditions rounded water
patches on terraces>!"?* and water ribbons and menisci deco-
rating the steps>> are observed with heights in the 0.5-1 nm
range at 20 < RH < 60%. Thus, the unconfined structures
are morphologically different and exhibit different heights as
compared to the layered structures observed for water con-
fined between BaF,(111) surfaces and a graphene sheet.

The confined structures depend on the RH at which the
graphene sheets were deposited. In Fig. 2, c-AFM images
of graphene sheets deposited on freshly cleaved BaF,(111)
surfaces at different RHs are shown. Even at very low hu-
midity (RH < 10%) small patches of water can be observed
specially along the steps. At 15% RH, a well-defined lay-
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FIG. 2. c-AFM images of few layer graphene deposited on freshly cleaved
BaF;(111) surfaces at 7%, 15%, 30%, 50%, 70%, and 90% RH, respectively.
Bright stripes correspond to graphene wrinkles.

ered structure covers most of the substrate surface. The lay-
ers are flat and limited by well-defined step edges and still
reveal the underlying BaF, step structure. No remarkable dif-
ferences are observed for samples prepared at 15%, 30%, and
50% RH. The layers observed for the sample prepared at 50%
RH are of particular interest. In this case the low density of
steps of the cleaved BaF, (111) surface allows a better inves-
tigation of the water layers and the interaction with steps, as
will be discussed below. At 70% RH multilayers are observed
on the surface showing rounded edges with a well-defined
layer-by-layer structure. Finally, at 90% RH a thick homo-
geneous film is observed with trapped tens of nm high water
droplets.

Figure 3(a) shows a c-AFM image (zoom of Fig. 2 cor-
responding to 50% RH) together with a cross section line
profile and a height distribution histogram plots. We observe
that water layers cover the terraces limited by the triangu-
lar steps and that two different heights are observed, 0.36
4 0.03 and 0.25 = 0.03 nm, for the water layers. The first one
is practically identical to the intrinsic BaF,(111) step height
(0.36 nm), which can be used as an internal height reference
because it corresponds to the distance between adjacent tri-
layers of the solid. The 0.36 nm water layers are in line with
the presence of an ice Ih BL since the Ih interbilayer distance
is ¢/2 = 0.37 nm, where c stands for the lattice constant of ice
Ih along the direction perpendicular to the basal plane.

Let us now discuss on the twofold structuring charac-
ter that the water molecules sense when sandwiched be-
tween both surfaces. Water molecules on BaF,(111) surfaces
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FIG. 3. (a) (left) c-AFM image of few layer graphene deposited on freshly
cleaved BaF,(111) surfaces at 50% RH (as in Fig. 2), where the crystallo-
graphic [110] direction is indicated. (Top right) Cross section of the line
drawn in the image and (bottom right) histogram of the distribution of
heights. (b) (left) Scheme of the (111) surface showing the main directions (in
red) corresponding to the angles 0°, 60°, and 120° refereed to [110] extracted
from the histogram (right).

exposed to the atmosphere have a high diffusion according to
AFM?? and infrared®’ experiments and density functional the-
ory (DFT)?® calculations and become trapped at defects such
as vacancies and steps. The effect of the graphene is to ef-
ficiently limit such mobility on the surface allowing for 2D
nucleation and growth, emulating the effect of low tempera-
tures in a vacuum. On the other hand graphene hinders any
displacement out of the surface. Graphene is hydrophobic,
exhibiting contact angles as high as 127°,% but it has been
shown that water adsorbs on it when deposited on SiO; acting
as a discharging agent’*3! and showing some transparency to
van der Waals interactions.?? In aqueous media water is highly
structured on the graphene surface, which has been attributed
to the distribution of hydrogen bonds at the interface.’3*
Thus, the combined effect of both surfaces eliminates one de-
gree of freedom (perpendicular to the interface), forces the
saturation of hydrogen bonds (graphene), and triggers nucle-
ation (substrate). This would explain the coverage observed at
RH as low as 15%. Actually, a coverage of half of a ML is al-
ready expected at 15% RH according to isotherms calculated
from infrared measurements.”’

The 0.25 nm high features are of the order of the mean
molecular diameter, suggesting that the molecules lie flat on
the interface. Such a configuration is compatible with a cross-
linked structure in which all water molecules are at the same
vertical position (i.e., no BL is formed).?> In this case the in-
teraction with the substrate is strong enough to avoid the for-
mation of ice Ih BLs probably caused by a local lower den-
sity. Surface potential measurements performed at RT indi-
cate the unlikeliness of the formation of ice Ih BLs on the
free BaF,(111) surface®' so that probably both configurations,
cross-linked and ice Ih BL, coexist at the interface.

An analysis of the angular distribution of the water layer
edges with respect to the crystallographic [110] direction, de-

J. Chem. Phys. 138, 121101 (2013)
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FIG. 4. Height profiles of two different regions of the c-AFM image from
Fig. 2 (sample prepared at RH ~ 70%). The images have been slightly shaded
in order to enhance the contrast at water layers edges. Discontinuous parallel
lines indicate the expected location of ice Th BLs planes and the interbilayer
distance (0.37 nm).

fined by one of the steps in Fig. 3(a), is shown in Fig. 3(b)
(right). The distribution is centered at about 0°, 60°, and 120°,
indicating a clear directionality induced by the hexagonal
symmetry of the substrate as previously shown on uncovered
mica surfaces.*

It is interesting to observe that the layered structure is
maintained when more water layers are adsorbed on the sur-
face. This is illustrated in Fig. 4 where two regions from the
70% RH case of Fig. 2 are shown together with their corre-
sponding height profiles. From the cross sections we observe
that the layers are integer multiples of ~0.37 nm.

The comparison with CaF,(111) is quite revealing. BaF,
and CaF, are isostructural and water molecules adsorb on
their (111) surface with similar binding energies and diffu-
sion barriers?® but due to the difference in the lattice mismatch
with the basal plane of ice Ih water adlayers at both nanometer
and macroscopic level are very different on both surfaces.?’
Water trapped between graphene and CaF,(111) shows very
different structures as compared to BaF, as it can be observed
in Fig. 5. Water patches exhibit rounded edges with thickness
in the order of 1 nm. No water patches of 0.37 nm or 0.25 nm
have been observed indicating the absence of ice Th structures
on CaF,. The observed structures remind the water layers ob-
served with AM-AFM techniques after perturbation with the
cantilever tip [see Fig. 1(d)]. In the CaF,(111) case the results
indicate that graphene interaction with the water molecules is
not sufficient to induce the formation of ice-like structures.
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FIG. 5. c-AFM images of few layer graphene on CaF,(111) (left) and

BaF;(111) (right) prepared at 40% RH. Bright stripes correspond to graphene
wrinkles.

In summary, we have deposited few layer graphene films
on freshly cleaved (111) surfaces of BaF, and CaF, single
crystals in controlled humidity conditions. Atmospheric water
becomes sandwiched and confined between both surfaces. In
the case of BaF, water BLs are built compatible with the ice Th
structure, given their height (0.37 nm), as well as multilayers
for humidities above 50%. 0.25 nm high features are also ob-
served which might correspond to a cross-linked distribution,
so that both configurations (ice Ih and cross-linked) coexist
at the graphene/BaF,(111) interface. However, such ordered
structure is not observed for CaF,, with exhibits a large lat-
tice mismatch with respect to ice [h. We conclude that ice Th
at room temperature is grown by the combined effect of the
substrate and graphene provided that lattice registry is met.
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