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ON THE SET OF PERIODS FOR THE MORSE–SMALE
DIFFEOMORPHISMS ON THE DISC WITH n HOLES

JUAN LUIS GARCÍA GUIRAO1 AND JAUME LLIBRE2

Abstract. For every homological class we present a complete description of
the minimal Lefschetz set of periods for the Morse–Smale diffeomorphisms with-
out periodic points in the boundary defined on the disc with n holes Dn for
n = 1, 2, 3, 4, 5 by using the Lefschetz zeta function. The technical applied for
obtaining these results also works for n > 5.

1. Introduction

We deal with discrete dynamical systems defined by a self–diffeomorphism f on
a given compact manifold M with or without boundary. The periodic orbits play
an important role in the dynamics of these systems. In discrete dynamical systems
often the topological information can be used to study qualitative and quantitative
properties of the system. The best known example in this direction are the results
contained in the paper entitle Period three implies chaos for continuous self–maps on
the interval, see [16].

For continuous self–maps on compact manifolds one of the most useful tools for
proving the existence of fixed points, or more generally of periodic points, is the
Lefschetz Fixed Point Theorem and its improvements, see for instance [1, 2, 6, 7, 8,
9, 14, 17, 19]. The Lefschetz zeta function Zf (t) simplifies the study of the periodic
points of f . This function is a generating function for the Lefschetz numbers of all
iterates of f .

In this paper we put our attention in the class of discrete smooth dynamical systems
defined by the Morse–Smale diffeomorphisms on the disc with holes without periodic
points in the boundary. First we recall the definition of a Morse–Smale diffeomor-
phism.

We denote by Diff(M) the space of C1 diffeomorphisms on a compact manifold M.
This space is a topological space endowed with the topology of the supremum with
respect to f and its differential Df . In this work all the diffeomorphisms will be C1.

Let fm be the m–th iterate of f ∈ Diff(M). A point x ∈ M is a nonwandering
point of f if for any neighborhood U of x there is a positive integer m such that
fm(U) ∩ U 6= ∅. We denote by Ω(f) the set of nonwandering points of f .

Key words and phrases. periodic point, minimal Lefschetz set of periods, Morse–Smale diffeo-
morphism, disc with n holes, Lefschetz number.
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Assume that x ∈ M. If f(x) = x and the derivative of f at x, Df(x), has all its
eigenvalues disjoint from the unit circle, then x is called a hyperbolic fixed point.

Let y be a periodic point of period p. Then y is a hyperbolic periodic point if y is a
hyperbolic fixed point of fp. We call the set {y, f(y), . . . , fp−1(y)} the periodic orbit
of the periodic point y.

Suppose that d is the metric on M induced by the norm of the supremum, and
p is a hyperbolic fixed point of f . Then the stable manifold of x is W s(x) = {y ∈
M : d(x, fm(y)) → 0 as m → ∞}, and the unstable one is Wu(x) = {y ∈ M :
d(x, f−m(y)) → 0 as m → ∞}. We extend these notions to a hyperbolic periodic
point x of period p as follows. The stable and unstable manifolds are defined as the
stable and unstable manifolds of x under fp.

A diffeomorphism f :M→M is Morse–Smale if

(1) Ω(f) is finite,
(2) all periodic points are hyperbolic,
(3) for each x, y ∈ Ω(f), W s(x) and Wu(y) have a transversal intersection.

Condition (1) implies that Ω(f) is the set of all periodic points of f .

We say that two diffeomorphisms f, g ∈ Diff(M) are topologically equivalent if
and only if there exists a homeomorphism h : M → M such that h ◦ f = g ◦ h.
A diffeomorphism f is structurally stable if there exists a neighborhood U of f in
Diff(M) such that each g ∈ U is topologically equivalent to f . The class of Morse–
Smale diffeomorphisms is structurally stable inside the class of all diffeomorphisms
(see [21, 22, 23]). Therefore it is interesting to understand the dynamics of this class
of diffeomorphims.

Several authors have published papers analyzing the relationships between the
dynamics of the Morse–Smale diffeomorphisms and the topology of the manifold where
they are defined, see for instance [3, 4, 5, 9, 10, 11, 12, 20, 22, 24, 25, 26]. In the
class of all diffeomorphisms the Morse–Smale have a relative simple dynamics. Thus
the sets of all their periodic orbits are finite, and their structure are preserved under
small perturbations.

Let Dn be the disc with n holes. Our main objective is to describe the minimal
Lefschetz sets of periods of the Morse–Smale diffeomorphisms without periodic points
in the boundary of Dn for n = 1, 2, 3, 4, 5 (see Theorem 7) and show that the algorithm
used for obtaining these results extends to n > 5.

In section 2 we provide the definitions of Lefschetz number and Lefschetz zeta
function. Additionally we recall a fundamental result on this last function which
works for the Morse–Smale diffeomorphisms without periodic points in the boundary,
see Theorem 2. This result will be one of the main tools of this paper.

The definition of minimal Lefschetz set of periods for Morse–Smale diffeomorphisms
is given in section 3. This definition already has been used for studying the periodic
orbits of the Morse–Smale diffeomorphisms on the compact connected surfaces with-
out boundary [18], and on the n–dimensional torus [13].

As we will see the characteristic polynomials of the homomorphisms induced in
the homological groups of Dn by the Morse–Smale diffeomorphisms are product of
cyclotomic polynomials. We define them and describe their basic properties in section
4. These polynomials also will play a key role in the proof of our results.



PERIODS FOR THE MORSE–SMALE DIFFEOMORPHISMS ON THE DISC WITH n HOLES 3

In section 5 we compute the Lefschetz zeta function for the Morse–Smale diffeo-
morphisms without periodic points on the boundary in Dn for n = 1, 2, 3, 4, 5. Finally
in section 6 we prove our main result Theorem 7.

2. Lefschetz zeta function

Probably the main goal of Lefschetz’s work in the 1920’s was to link the homology
class of a given map with an earlier work on the indices of Brouwer on the continuous
self–maps on compact manifolds. These two notions provide equivalent definitions
for the Lefschetz numbers, and from their comparison, can be obtained information
about the existence of fixed points.

Let M be a n–dimensional manifold. We denote by Hk(M,Q) for k = 0, 1, ..., n the
homological groups of M with coefficients in Q. Each of these groups is a finite linear
space over Q.

Given a continuous map f :M→M it induces n+1 linear maps f∗k : Hk(M,Q) →
Hk(M,Q). Every linear map f∗k is given by a nk × nk matrix with integer entries
where nk is the dimension of Hk(M,Q) for k = 0, 1, ..., n.

The Lefschetz number L(f) of f is defined as

L(f) =

n∑

k=0

(−1)ktrace(f∗k).

One of the main results connecting the algebraic topology with the fixed point theory
is the Lefschetz Fixed Point Theorem:

Theorem 1. Let f : M → M be a continuous map on a compact manifold without
fixed points in the boundary and L(f) be its Lefschetz number. If L(f) 6= 0 then f has
a fixed point.

For a proof of Theorem 1 see [6].
Our aim is to obtain information on the set of periods of f . To this purpose it

is useful to have information on the whole sequence {L(fm)}∞m=0 of the Lefschetz
numbers of all iterates of f . Thus we define the Lefschetz zeta function of f as

Zf (t) = exp

( ∞∑

m=1

L(fm)

m
tm

)
.

This function generates the whole sequence of Lefschetz numbers, and it may be
independently computed through

(1) Zf (t) =

n∏

k=0

det(Ink
− tf∗k)

(−1)k+1

,

where n = dim M, nk = dim Hk(M,Q), Ink
is the nk × nk identity matrix, and we

take det(Ink
− tf∗k) = 1 if nk = 0. Note that the expression (1) is a rational function

in t. So the information on the infinite sequence of integers {L(fm)}∞m=0 is contained
in two polynomials with integer coefficients, for more details see [9].

Let f be a diffeomorphism on a compact manifold M having finitely many hyper-
bolic periodic orbits none of the them in the boundary. If γ is a hyperbolic periodic
orbit of period p, then for each x ∈ γ let Eu

x denotes the subspace of TxM generated by
the eigenvectors of Dfp(x) corresponding to the eigenvalues whose moduli are greater
than one. Let Es

x be the subspace of TxM generated by the remaining eigenvectors.
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We define the orientation type ∆ of γ to be +1 if Dfp(x) : Eu
x → Eu

x preserves orien-
tation, and -1 if it reverses orientation. The index u of γ is the dimension of Eu

x for
some x ∈ γ. We note that the definitions of ∆ and u do not depend on the periodic
point x, only depend on the periodic orbit γ. Finally we associated the triple (p, u,∆)
to the periodic orbit γ.

For f the periodic data is defined as the collection composed by all triples (p, u,∆),
where a same triple can occur more than once provided it corresponds to different
periodic orbits. Franks [9] proved the following result.

Theorem 2. Let f be a C1 map on a compact manifold having finitely many hyper-
bolic periodic orbits none of them in the boundary, and let Σ be the period data of f .
Then the Lefschetz zeta function of f satisfies

(2) Zf (t) =
∏

(p,u,∆)∈Σ

(1−∆tp)(−1)u+1

.

We note that the original formulation of Theorem 2 was stated for any arbitrary
compact manifold but going into its proof we find that, in the case of having a
manifold with boundary, the arguments based on Smale [26] only work if the map f
has no periodic points in the boundary. Additionally we present a counter-example
to Theorem 2 in the case of having a manifold with boundary and a map with some
periodic points in it. Consider the two–dimensional closed disk and let f be a map
with two fixed points p and q in the boundary and the orbits of the rest of points have
α-limit p and ω-limit q respectively. Such a map can be C1 with only two hyperbolic
points one attractor (with index 0) and the other repeller (with index 2). This makes
the right hand side of (2) equal to 1

(1−t)2 but the left hand side, the Lefschetz zeta
function of a map of a disk into itself always is equal to 1

1−t because the disk is a
space contractible to a point.

Clearly the Morse–Smale diffeomorphisms on Dn without periodic points on the
boundary satisfy the hypotheses of Theorem 2.

3. Minimal Lefschetz set of periods of Morse–Smale diffeomorphisms

The statement of Theorem 2 allows us to define the minimal Lefschetz set of periods
for a C1 map on a compact manifold having finitely many hyperbolic periodic points.
From now on in the case of domains with boundary we assume that the map has no
periodic points on it. Such a map has a Lefschetz zeta function of the form (2).

Note that in general the expression of one of these Lefschetz zeta functions is not
unique as product of the elements of the form (1± tp)±1. For instance the following
Lefschetz zeta function for a Morse–Smale diffeomorphism on T4 can be written in
four different ways in the form given by (2):

Zf (t) =
(1− t3)2(1 + t3)

(1− t)6(1 + t)3
=

(1− t3)(1− t6)

(1− t)6(1 + t)3
=

(1− t3)(1− t6)

(1− t)3(1− t2)3
=

(1− t3)2(1 + t3)

(1− t)3(1− t2)3
.

According with Theorem 2, the first expression will provide the periods {1, 3} for f ,
the second the periods {1, 3, 6}, the third the period {1, 2, 3, 6}, and finally the fourth
the periods {1, 2, 3}. Then for this Lefschetz zeta function Zf (t) we will define its
minimal Lefschetz set of periods as

MPerL(f) = {1, 3} ∩ {1, 3, 6} ∩ {1, 2, 3, 6} ∩ {1, 2, 3} = {1, 3}.



PERIODS FOR THE MORSE–SMALE DIFFEOMORPHISMS ON THE DISC WITH n HOLES 5

In general for the Lefschetz zeta function Zf (t) of a C1 map f on a compact man-
ifold having finitely many hyperbolic periodic points, we define its minimal Lefschetz
set of periods as the intersection of all sets of periods forced by the finitely many
different representations of Zf (t) as products of the form (1± tp)±1.

The minimal set of periods of a Morse–Smale diffeomorphism f defined on a com-
pact manifold M is

(3) MPerms(f) =
⋂

h∼f

Per(h),

where h runs over all the Morse–Smale diffeomorphisms of M which are homotopic
to f .

For Morse–Smale diffeomorphisms and from the definition of minimal Lefschetz set
of periods it follows always that

MPerL(f) ⊆ MPerms(f).

We note that when the minimal Lefschetz set of periods of a map is empty but the
Lefschetz zeta function is not equal to one, we always have some information about
the periods of the map. Indeed, suppose that Zf (t) = 1 + t2, since

1 + t2 =
1− t4

1− t2
=

1− t4

(1 + t)(1− t)
,

we know that MPerL(f) = ∅, but clearly by Theorem 2 the map f has either the period
2, or the periods 2 and 4, or the periods 1 and 4, due to the different expressions of
its Zf (t).

Remark 3. Assume that n is an even positive integer. The expressions

1− tn = (1 + tn/2)(1− tn/2),

1 + tn =
1− t2n

1− tn
=

1− t2n

(1 + tn/2)(1− tn/2)
,

show that the even period n never will appear in the minimal Lefschetz set of periods.

4. Cyclotomic polynomials

By definition the n–th cyclotomic polynomial is given by

cn(t) =
∏

k

(wk − t),

where wk = e2πik/n and k runs over all the relative primes smaller than or equal to
n. For more details about these polynomials see [15]. An alternative way to express
cn(t) is

(4) cn(t) =
1− tn∏
d|n

d < n

cd(t)
.
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Let ϕ(n) be the degree of cn(t). Then n =
∑

d|n
ϕ(d). So ϕ(n) is the Euler function,

which satisfies ϕ(n) = n
∏

p|n
p prime

(
1− 1

p

)
. Therefore, if the prime decomposition of

n is pα1
1 · · · pαk

k , then ϕ(n) =

k∏

j=1

p
αj−1
i (pj − 1).

From the formula (4), we have

(5) cn(t) =
∏

d|n
(1− td)µ(n/d),

where µ is the Möbius function, i.e.

µ(m) =





1 if m = 1,
0 if k2|m for some k ∈ N,
(−1)r if m = p1 · · · pr distinct primes factors.

Table 1. The first thirty cyclotomic polynomials.

c1(t) = 1− t c2(t) = 1 + t c3(t) =
1− t3

1− t

c4(t) = 1 + t2 c5(t) =
1− t5

1− t
c6(t) =

1 + t3

1 + t

c7(t) =
1− t7

1− t
c8(t) = 1 + t4 c9(t) =

1− t9

1− t3

c10(t) =
1 + t5

1 + t
c11(t) =

1− t11

1− t
c12(t) =

1 + t6

1 + t2

c13(t) =
1− t13

1− t
c14(t) =

1 + t7

1 + t
c15(t) =

(1− t15)(1− t)

(1− t3)(1− t5)

c16(t) = 1 + t8 c17(t) =
1− t17

1− t
c18(t) =

1 + t9

1 + t3

c19(t) =
1− t19

1− t
c20(t) =

1 + t10

1 + t2
c21(t) =

(1− t21)(1− t)

(1− t3)(1− t7)

c22(t) =
1 + t11

1 + t
c23(t) =

1− t23

1− t
c24(t) =

1 + t12

1 + t4

c25(t) =
1− t25

1− t5
c26(t) =

1 + t13

1 + t
c27(t) =

1− t27

1− t9

c28(t) =
1 + t14

1 + t2
c29(t) =

1− t29

1− t
c30(t) =

(1 + t15)(1 + t)

(1 + t3)(1 + t5)



PERIODS FOR THE MORSE–SMALE DIFFEOMORPHISMS ON THE DISC WITH n HOLES 7

Proposition 4. For 0 < k < n, wk is a root of cn(t) if and only if w−1
k is also a root

of cn(t).

Proof. If wk = e2πik/n then w−1
k = e−2πik/n = e2πi(n−k)/n with n− k and n coprime

if and only if k and n are coprime. Then the proposition follows directly from the
definition of cn(t). ¤

In what follows there are some elementary properties of the cyclotomic polynomials
(cf. [15]).

(p1) If p is prime, then cp(t) = (1− tp)/(1− t).
(p2) If p = 2r with r odd, then c2r(t) = cr(−t).
(p3) If p = 2n, then cp(t) = 1 + t2

n−1

.
(p4) If p = rα with r prime, then cp(t) = cr(t

rα−1

) = (1− tr
α

)/(1− tr
α−1

).
(p5) If p = 2nr with r odd and n > 1, then cn(t) = c2r(t

2n−1

).
(p6) For all n cn(0) = 1 and the leading term of cn is 1 if n ≥ 2.
(p7) The degree of cn is even for n > 2.

5. Zf for Morse–Smale diffeomorphisms on Dn

We start recalling the homological groups of the two–dimensional disc with n holes
Dn with coefficients in Q. More precisely H0(Dn,Q) = Q, H1(Dn,Q) = Q⊕ n). . . ⊕Q,
and H2(Dn,Q) = 0 for every n ≥ 0.

Given a continuous map f : Dn → Dn it induces linear maps f∗k : Hk(Dn,Q) →
Hk(Dn,Q), k = 0, 1, 2. It is well known that f∗0 = (1) is the identity map over Q,
and f∗2 = 0. The linear map f∗1 is given by a n× n matrix with integer entries and
by the expression (1) the Lesfchetz zeta function of f has the form

(6) Zf (t) =

2∏

k=0

det(Ink
− tf∗k)

(−1)k+1

=
det(In1 − tf∗1)

1− t
.

Let f : Dn → Dn be a Morse–Smale diffeomorphism. It is known (cf. [24]) that
if a homotopy class admits a Morse–Smale diffeomorphism, then the linear maps
corresponding to its homology must be quasi–unipotent, i.e. all their eigenvalues are
roots of unity. Consequently the characteristic polynomials associated to the matrix
f∗1 must be product of cyclotomic polynomials.

The next result from [18] links expression (6) with the characteristic polynomial of
f∗1 and hence according with the previous paragraph with the cyclotomic polynomials.
Since its proof is shorter we provide it.

Proposition 5. If f∗1 is quasi–unipotent, then

(7) det(In1 − tf∗1) = (−1)1+det(f∗1) det(f∗1 − tIn1).

Proof. Let p(t) = det(f∗1 − tIn1) be the characteristic polynomial of f∗1 and q(t) =
det(In1 − tf∗1). They are related by q(t) = tn1p(t−1). Since f∗1 is quasi–unipotent,
p(t) is a product of cyclotomic polynomials. Therefore it follows that if w is a root
of p(t), then wn1 = 1. So from Proposition 4 q(w) = 0. By the properties of the
cyclotomic polynomials |p(0)| = 1, therefore

det(In1 − tf∗1) = det(f∗1 − tIn1) if f is orientation preserving,
det(In1 − tf∗1) = − det(f∗1 − tIn1) if f is orientation reversing.

So the proof is completed. ¤
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From Proposition 5 it follows that for computing all the possible values of det(In1
−

tf∗1) for a certain n1 fixed, it is sufficient to consider the product of all cyclotomic
polynomials such that the degree of the product be equal to n1.

The following result shows the Lefschetz zeta functions which we shall need in the
proof of the Theorem 7 where the minimal Lefschetz set of periods are described.

Proposition 6. For n = 1, 2, . . . , 5 let f be a Morse–Smale diffeomorphisms on
Dn. Then, up to the sign, the zeta function of Lefschetz Zf is one of the following
functions:

(a) 1, 1+t
1−t if n = 1;

(b) 1− t, 1−t3

(1−t)2 ,
1+t2

1−t ,
1+t3

(1+t)(1−t) , 1 + t, (1+t)2

1−t if n = 2;

(c) (1− t)2, (1+t)3

1−t , 1−t3

1−t , 1+ t2, 1+t3

1+t , (1− t)(1+ t), (1+t)(1−t3)
(1−t)2 , (1+t)(1+t2)

1−t , 1+t3

1−t ,
(1 + t)2 if n = 3;

(d) (1−t)3, 1−t5

(1−t)2 ,
1+t4

1−t ,
1+t5

(1+t)(1−t) ,
1+t6

(1+t2)(1−t) ,
(1+t)4

1−t , (1+t)3, 1−t3, (1+t)(1−t3)
1−t ,

(1− t)(1+ t2), (1+ t)(1+ t2), (1−t)(1+t3)
1+t , 1+ t3, (1+ t)(1− t)2,(1− t)(1+ t)2,

(1+t)2(1−t3)
(1−t)2 , (1+t)2(1+t2)

1−t , (1+t)(1+t3)
1−t , (1−t3)2

(1−t)3 , (1+t2)2

1−t , (1+t3)2

(1−t)(1+t)2 ,
(1−t3)(1+t3)
(1−t)2(1+t) ,

(1+t2)(1−t3)
(1−t)2 , (1+t2)(1+t3)

(1−t)(1+t) if n = 4;

(e) (1−t)4, (1+t)5

1−t ,
(

1−t3

1−t

)2

, (1+t)(1−t3)2

(1−t)3 , (1+t2)2, (1+t)(1+t2)2

1−t ,
(

1+t3

1+t

)2

, (1+t3)2

(1−t)(1+t) ,

(1 − t)2(1 + t)2, (1 + t)3(1 − t), 1−t5

1−t ,
(1+t)(1−t5)

(1−t)2 , 1 + t4, (1+t)(1+t4)
1−t , 1+t5

1+t ,
1+t5

1−t ,
1+t6

1+t2 ,
(1+t)(1+t6)
(1−t)(1+t2) , (1 + t)(1 − t)3, (1 + t)4, (1 − t)(1 − t3), (1 + t)(1 −

t3), (1+t)2(1−t3)
1−t , (1 − t)2(1 + t2), (1 − t)(1 + t)(1 + t2), (1 + t)2(1 + t2),

(1−t)2(1+t3)
1+t , (1 − t)(1 + t3), (1 + t)(1 + t3), (1 + t)2(1 − t)2, (1 − t)(1 +

t)(1 + t)2, (1+t2)(1+t)3

1−t , (1+t)2(1+t3)
1−t , (1−t3)(1+t)3

(1−t)2 , (1−t3)(1+t2)
1−t , (1−t3)(1+t3)

(1−t)(1+t) ,
(1−t3)(1+t)(1+t2)

(1−t)2 , (1−t3)(1+t3)
(1−t)2 , (1+t2)(1+t3)

1+t , (1+t2)(1+t3)
1−t if n = 5.

Proof. According to the form of the homological groups of the disk with n holes Dn

described in Section 5, the Lefschetz zeta function is given by expression (6) in the
form Zf (t) =

det(In1−tf∗1)
1−t . By Proposition 5 det(In1−tf∗1) = (−1)1+det(f∗1) det(f∗1−

tIn1). So, up to the sign, Zf (t) =
det(f∗1−tIn1 )

1−t . By [24] if a homotopy class admits
a Morse–Smale diffeomorphism, then the linear maps corresponding to its homology
must be quasi–unipotent, i.e. all their eigenvalues are roots of unity. Consequently the
characteristic polynomials associated to the matrix f∗1 must be product of cyclotomic
polynomials. Therefore

(8) Zf (t) =

∏
k

ck(t)

1− t

where the product comes over k’s such that
∑
k

ϕ(k) = n. Using expression (8) and

Table 4 the result is obtained. ¤

6. Proof of the main result

The aim of this section is to prove our main result.
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Theorem 7. Let f be a Morse–Smale diffeomorphisms on Dn without periodic points
in the boundary for n = 1, 2, . . . , 5. Then,

(a) If n = 1 then MPerL(f) = {1} if |Zf (t)| = 1, 1+t
1−t .

(b) If n = 2 then MPerL(f) is
{1} if |Zf (t)| = 1− t, 1 + t, (1+t)2

1−t , 1+t2

1−t ;

{3} if |Zf (t)| = 1+t3

(1+t)(1−t) ;

{1, 3} if |Zf (t)| = 1−t3

(1−t)2 .
(c) If n = 3 then MPerL(f) is

{∅} if |Zf (t)| = (1− t)(1 + t), 1 + t2;

{1} if |Zf (t)| = (1− t)2, (1 + t)2, (1+t)3

1−t , (1+t)(1+t2)
1−t ;

{1, 3} if |Zf (t)| = 1−t3

1−t ,
1+t3

1+t ,
(1+t)(1−t3)

(1−t)2 , 1+t3

1+t .
(d) If n = 4 then MPerL(f) is

{1} if |Zf (t)| = (1− t)3, (1 + t)3, (1− t)(1 + t)2, (1 + t)(1− t)2, (1+t)4

1−t ,
(1−t3)(1+t3)
(1−t)2(1+t) ; (1−t)(1+t2), (1+t)(1+t2), (1+t)2(1+t2)

1−t , (1+t2)2

1−t , 1+t4

1−t ,
1+t6

(1+t2)(1−t) ;

{3} if |Zf (t)| = 1− t3, 1 + t3, (1+t2)(1+t3)
(1−t)(1+t) ;

{5} if |Zf (t)| = 1+t5

(1+t)(1−t) ;

{1, 3} if |Zf (t)| = (1+t)(1−t3)
1−t , (1−t)(1+t3)

1+t , (1+t)2(1−t3)
(1−t)2 , (1+t)(1+t3)

1−t , (1−t3)2

(1−t)3 ,
(1+t3)2

(1−t)(1+t)2 ,
(1+t2)(1−t3)

(1−t)2 ;

{1, 5} if |Zf (t)| = 1−t5

(1−t)2 .
(e) If n = 5 then MPerL(f) is

∅ if |Zf (t)| = (1 − t)2(1 + t)2, (1−t3)(1+t3)
(1−t)(1+t) , (1 + t2)2, (1 − t)(1 + t)(1 +

t2), 1 + t4, 1+t6

1+t2 ;

{1} if |Zf (t)| = (1 − t)4, (1 − t)2(1 + t)2, (1 + t)3(1 − t), (1 + t)(1 −
t)3, (1+t)4, (1−t3)(1+t3)

(1−t)2 , (1+t)5

1−t , (1−t)2(1+t2), (1+t)2(1+t2), (1+t2)(1+t)3

1−t ,
(1+t)(1+t2)2

1−t , (1+t)(1+t4)
1−t , (1+t)(1+t6)

(1−t)(1+t2) ;

{3} if |Zf (t)| = (1+t3)2

(1−t)(1+t) ;

{1, 3} if |Zf (t)| = (1− t)(1− t3), (1+ t)(1− t3), (1− t)(1+ t3), (1+ t)(1+

t3),
(

1−t3

1−t

)2

, (1+t)(1−t3)2

(1−t)3 ,
(

1+t3

1+t

)2

, (1+t)2(1−t3)
1−t , (1−t)2(1+t3)

1+t , (1+t)2(1+t3)
1−t ,

(1−t3)(1+t)3

(1−t)2 , (1−t3)(1+t2)
1−t , (1−t3)(1+t)(1+t2)

(1−t)2 , (1+t2)(1+t3)
1+t , (1+t2)(1+t3)

1−t ;

{1, 5} if |Zf (t)| = 1−t5

1−t ,
(1+t)(1−t5)

(1−t)2 , 1+t5

1+t ,
1+t5

1−t .

Proof. By the Remark 3 we do not take care of the even periods. For the cases
such that the Lefschetz zeta function Zf (t) has a unique representation as products
of the form (1 ± tp)±1, or finitely many different representations as products of the
form (1 ± tp)±1 forcing the same set of periods, the result is a direct consequence
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of Proposition 6 and the application of Theorem 2. The remainder cases where the
Lefschetz zeta function has finitely many different representations as products of the
form (1± tp)±1 forcing different sets of periods, by definition of the minimal Lefschetz
set of periods, we take the intersection of the finite number of sets of forced periods:

For n = 2 and |Zf (t)| = 1+t3

(1+t)(1−t) =
1+t3

1−t2 , MPerL(f) = {1, 3} ∩ {3} = {3}.
For n = 3 and |Zf (t)| = (1− t)(1 + t) = 1− t2, MPerL(f) = {1} ∩ ∅ = ∅.
Assume n = 4.

If |Zf (t)| = 1+t5

(1−t)(1+t) =
1+t5

1−t2 , then MPerL(f) = {1, 5} ∩ {5} = {5}.
If |Zf (t)| = (1+t2)(1+t3)

(1−t)(1+t) = (1+t2)(1+t3)
(1−t2) , then MPerL(f) = {1, 3} ∩ {3} =

{3}.
If |Zf (t)| = (1−t3)(1+t3)

(1−t)2(1+t) = (1−t3)(1+t3)
(1−t)(1−t2) = (1−t6)

(1−t)2(1+t) = (1−t6)
(1−t)(1−t2) , then

MPerL(f) = {1, 3} ∩ {1, 3} ∩ {1} ∩ {1} = {1}.
Suppose n = 5.

If |Zf (t)| = (1−t3)(1+t3)
(1−t)(1+t) = 1−t6

1−t2 = (1−t3)(1+t3)
1−t2 = (1−t6)

(1−t)(1+t) , then
MPerL(f) = {1, 3} ∩ ∅ ∩ {3} ∩ {1} = ∅.
If |Zf (t)| = (1 − t)2(1 + t)2 = (1 − t)(1 + t)(1 − t2) = (1 − t2)2, then
MPerL(f) = {1} ∩ {1} ∩ ∅ = ∅.
If |Zf (t)| = (1−t3)(1+t3)

(1−t)2 = 1−t6

(1−t)2 , then MPerL(f) = {1, 3} ∩ {1} = {1}.
If |Zf (t)| = (1−t)(1+t)3 = (1−t2)(1+t)2, then MPerL(f) = {1}∩{1} =
{1}.
If |Zf (t)| = (1 − t)(1 + t)(1 + t2) = (1 − t2)(1 + t2), then MPerL(f) =
{1} ∩ ∅ = ∅.
If |Zf (t)| = (1+t3)2

(1−t)(1+t) =
(1+t3)2

1−t2 , then MPerL(f) = {1, 3} ∩ {3} = {3}.
¤

Clearly the algorithm used for computing the minimal Lefschetz set of periods for
n = 1, 2, 3, 4, 5 extends to values of n > 5.
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