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PERIODIC STRUCTURE OF TRANSVERSAL MAPS
ON CPn, HPn AND Sp × Sq

JUAN LUIS GARCÍA GUIRAO1 AND JAUME LLIBRE2

Abstract. A C1 map f : M → M is called transversal if for all m ∈ N the
graph of fm intersects transversally the diagonal of M ×M at each point (x, x)
being x a fixed point of fm. Let CPn be the n–dimensional complex projective
space, HPn be the n–dimensional quaternion projective space and Sp×Sq be the
product space of the p–dimensional with the q–dimensional spheres, p 6= q. Then
for the cases M equal to CPn, HPn and Sp × Sq we study the set of periods of f
by using the Lefschetz numbers for periodic points.

1. Introduction and statement of the main results

We consider the discrete dynamical system (M, f) where M is a topological space
and f : M → M be a continuous map. A point x is called fixed if f(x) = x, and
periodic of period k if fk(x) = x and f i(x) 6= x if 0 ≤ i < k. By Per(f) we denote the
set of periods of all the periodic points of f .

If x ∈ M the set {x, f(x), f2(x), . . . , fn(x), . . .} is called the orbit of the point x.
Here fn means the composition of n times f with itself. To study the dynamics of
the map f is to study all the different kind of orbits of f . Of course if x is a periodic
point of f of period k, then its orbit is {x, f(x), f2(x), . . . , fk−1(x)}, and it is called
a periodic orbit.

In this work we study the possible sets of periods for transversal maps defined
on CPn (the n–dimensional complex projective space), on HPn (the n–dimensional
quaternion projective space) and on Sp × Sq (the product space of the n–dimensional
with the m–dimensional spheres) when n 6= m. Here a transversal map is a C1 map
f :M→M defined on a C1 differentiable manifold such that f(M) ⊂ Int(M) and for
all m ∈ N at each point x fixed by fm we have that det(I−Dfm(x)) 6= 0, i.e. 1 is not
an eigenvalue of Dfm(x). Note that if f is transversal then for all m ∈ N the graph
of fm intersects transversally the diagonal {(y, y) : y ∈M} at each point (x, x) being
x fixed by fm.

The periodic orbits play an important role in the general dynamics of the sys-
tem, for studying them we can use topological information. Perhaps the best known
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example in this direction are the results contained in the seminal paper entitle Pe-
riod three implies chaos for continuous self–maps on the interval, see [11]. In the
case of transversal maps different studies appear in the literature in general from
other point of view, see for instance Franks [7, 8]; Matsuoka [15]; Babenko y Bogatyi
[1]; Casasayas, Llibre and Nuñes [3]; Llibre, Paraños and Rodriguez [12], Llibre and
Swanson [14] and Fagella and Llibre [6].

Probably the main contribution of the Lefschetz’s work in 1920’s was to link the
homology class of a given map with an earlier work on the indices of Brouwer on the
continuous self–maps on compact manifolds. These two notions provide equivalent
definitions for the Lefschetz numbers, and from their comparison, can be obtained
information about the existence of fixed points.

Let M be an n–dimensional manifold. We denote by Hk(M,Q) for k = 0, 1, ..., n
the homological groups with coefficients in Q. Each of these groups is a finite linear
space over Q.

Given a continuous map f : M → M there exist n + 1 induced linear maps f∗k :
Hk(M,Q) → Hk(M,Q) for k = 0, 1, . . . , n by f . Every linear map f∗k is given by an
nk × nk matrix with integer entries, where nk is the dimension of Hk(M,Q).

Given a continuous map f :M→M on a compact n–dimensional manifold M, its
Lefschetz number L(f) is defined as

(1) L(f) =

n∑

k=0

(−1)ktrace(f∗k).

One of the main results connecting the algebraic topology with the fixed point theory
is the Lefschetz Fixed Point Theorem which establishes the existence of a fixed point
if L(f) 6= 0, see for instance [2].

Our aim is to characterize the possible sets of periods of f . For doing that we can
consider the Lefschetz number of fm but, in general, it is not true that L(fm) 6= 0
implies that f has a periodic point of period m; it only implies the existence of a
periodic point with period a divisor of m. Thus, we shall use the Lefschetz numbers
for periodic points introduced in [4] (see also [13]) for analyzing if a given period
belongs to the set of periods of a self–map. More precisely, for every m ∈ N we define
the Lefschetz number of period m l(fm) as follows

l(fm) =
∑

r|m
µ(r)L(fm/r),

where
∑

r|m denotes the sum over all positive divisors r of m, and µ is the Möebius
function defined by

µ(m) =





1 if m = 1,

0 if k2|m for some k ∈ N,
(−1)r if m = p1 . . . pr distinct prime factors.

By the inversion formula, for more details see for instance [17],

L(fm) =
∑

r|m
l(fr).

The Lefschetz number of period m will play an important role after showing the
following result for transversal maps (see [13] and [10]).
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Theorem 1. Let f : M → M be a transversal map and M be a compact manifold.
Suppose that l(fm) 6= 0 for some m ∈ N.

(a) If m is odd then m ∈ Per(f).
(b) If m is even then

{m

2
,m

}
∩ Per(f) 6= 0.

The results on transversal maps on arbitrary compact manifolds stated in Theorem
1 are in general difficult to apply as a consequence of the computation of l(fm). Thus,
if the homological rational groups are simple then these computations become easier
and this is the case for the manifolds studied in the present paper. Our main results
are the following.

In what follows the spaces HPn and CPn are identified to real differentiable man-
ifolds of dimension and 2n and 4n respectively.

Theorem 2. Let f be a transversal map defined on CPn (respectively HPn) with
n ≥ 1, and let f∗2 = (a) (respectively f∗4 = (a)) be. Then the following statements
hold.

(a) 1 ∈ Per(f) if either a = −1 and n odd, or a = 0, or a = 1.
(b) {1, 2} ∩ Per(f) 6= ∅ if a = −1 and n even.
(c) {1, 3, 5, 7, . . .} ⊂ Per(f) and Per(f) contains infinitely many even periods if

either a > 1, or a < −1 and n even.
(d) Per(f) contains infinitely many even periods if a < −1 and n odd.

Theorem 2 will be proved in section 3

Theorem 3. Let f be a transversal map defined on Sp × Sq with 1 ≤ p < q, and let
f∗p = (a), f∗q = (b) and f∗p+q = (c) be. Assume that {a, b, c} 6= {−1, 0, 1} and that if
at least two of the elements of the set {a, b, c} are equal in absolute value and larger
than or equal to the absolute value of the third, we have that |A| = |B| ≥ |C| > 1 if
{(A, r), (B, s), (C, t)} = {(a, p), (b, q), (c, p + q)}. Then there exists a positive integer
m∗ such that all the odd integers larger than m∗ belong to Per(f), and there are
infinitely many even periods contained in Per(f).

Theorem 3 will be proved in section 4 while in section 2 we present some auxiliary
results which help us to computed the Lefschetz numbers for periodic points.

We note that for transversal maps on Sp1 × · · · × Spk such that all their groups of
homology are either 0 or Q we can study their set of periods in the same way than in
the proof of Theorem 3.

The set of periods for C1 maps on CPn, HPn and Sp × Sq having all their periodic
orbits hyperbolic have been studied in [9]. We recall that if x is a periodic point of
period k of f , then x is hyperbolic if dfk(x) has no eigenvalues in the unit circle of
the complex plain. Of course these results cannot be applied to the transversal maps
of Theorems 2 and 3 because transversal maps do not need to have all their periodic
points hyperbolic.

2. Lefschetz numbers for periodic points

Let f : M → M be a transversal map and suppose that the rational homology of
M is of the form

Hq(M,Q) =

{
Q if q ∈ J ∪ {0},
0 otherwise.
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where J is a finite subset of natural numbers with cardinality less than or equal to
the dimension n of M.

Let (aj) be the 1×1 integer matrix defined by the induced homology endomorphism
f∗j : Hj(M,Q) → Hj(M,Q) for each j ∈ J . We have that H0(M,Q) ≈ Q and that
f∗0 is the identity, because M is assumed connected (see [16] for more details). Then
L(fm) = 1 +

∑
j∈J(−1)jamj for all m ∈ N. Note that

∑

r|m
µ(r) = 1−

( ∑

1≤i≤r

1
)
+

( ∑

1≤i<j≤r

1
)
− . . .+ (−1)r

= 1−
(
r

1

)
+

(
r

2

)
− . . .+ (−1)r

(
r

r

)

= (1− 1)r = 0,

where m = pα1
1 pα2

2 . . . pαr
r with p1 . . . pr distinct primes. Thus, if m > 1 the Lefschetz

number of period m is

l(fm) =
∑

r|m
µ(r)


1 +

∑

j∈J

(−1)ja
m/r
j


 =

∑

j∈J

(−1)j
∑

r|m
µ(r)a

m/r
j .

For each m > 1 we define the polynomial

(2) Qm(x) =
∑

r|m
µ(r)xm/r.

Then, if m > 1 we can write

(3) l(fm) =
∑

j∈J

(−1)jQm(aj).

Due to Theorem 1 we must study when l(fm) is zero or not. We do that by
analyzing the polynomials Qm(x) and evaluating them at aj . For doing this we shall
use as a key point the properties of Qm described in the next proposition proved in
[10]. Let N be the set of positive integers.

Proposition 4. Let m ∈ N. Then the following properties hold.

(a) If m is odd, then Qm is an odd function.
(b) If 4|m, then Qm is an even function.
(c) If 2|m and 4 6 |m, then Qm(x) = Qm/2(x

2)−Qm/2(x).
(d) Qm(0) = 0.
(e) If m > 1, then Qm(1) = 0.
(f) If m > 2, then Qm(−1) = 0.

(g) For all i ∈ N we have Q
(i)
m (1) ≥ 0, where Q

(i)
m (x) denotes the i–th derivative

of Qm(x) with respect to the variable x.
(h) Qm(x) is positive and increasing in (1,+∞).
(i) If m is even, then the function Qm(x) is positive and decreasing in (−∞,−1).

Furthermore, if 2|m and 4 6 |m we have that Qm(x) ≤ Qm(−x) for all x ∈
[1,+∞).

(j) If m > 2, then Qm(1.6) > 2.
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3. Transversal maps on CPn and HPn

3.1. Case CPn. For n ≥ 1 let f : CPn → CPn be a C1 map. The homological groups
of CPn over Q are of the form

Hq(CPn,Q) =

{
Q if q ∈ {0, 2, 4, ..., 2n},
0 otherwise.

The induced linear maps are f∗q = (aq/2) for q ∈ {0, 2, 4, ..., 2n} with a ∈ Z, and
f∗q = (0) otherwise (see for more details [18, Corollary 5.28]).

From (3) we have that

(4) l(fm) =

n∑

j=0

Qm(aj),

for m > 1.

3.2. Case HPn. For n ≥ 1 let f : HPn → HPn be a C1 map. The homological
groups of HPn over Q are of the form

Hq(HPn,Q) =

{
Q if q ∈ {0, 4, 8, ..., 4n},
0 otherwise.

The induced linear maps are f∗q = (aq/4) for q ∈ {0, 4, 8, ..., 4n} with a ∈ Z, and
f∗q = (0) otherwise (see for more details [18, Corollary 5.33]).

Proof of Theorem 2. Assume a = 1. From (1) we get that L(f) = n + 1, and from
(3) and Proposition 4(e) we have that l(fm) = 0 for m > 1.

Suppose a = 0. From (1) we get that L(f) = 1, and from (3) and Proposition 4(e)
we have that l(fm) = 0 for m > 1.

Assume a = −1 and n odd. From (1) we get that L(f) = [1 − (−1)n]/2. From
(3) we obtain that l(f2) = L(f2) − L(f). Since L(f2) = 1 +

∑n
q=1(−1)2q = n + 1 it

follows that l(f2) 6= 0. From (3) and statements (e) and (f) of Proposition 4 we have
that l(fm) = 0 for m > 2. In short, by using Theorem 1 we have proved statement
(a).

Suppose a = −1 and n even. From the previous paragraph we have that L(f) = 0,
l(f2) = n+1 and l(fm) = 0 for m > 2. By Theorem 1 we have proved statement (b).

Assume that a > 1. From (1) we get that L(f) = (1 − an+1)/(1 − a) 6= 0, and
from (3) and Proposition 4(h) we have that l(fm) > 0 for m > 1. So by Theorem
1(a) we obtain that {1, 3, 5, 7, . . .} ⊂ Per(f). By applying Theorem 1(b) to l(fm)
with m = 4, 16, 64, . . . we get that infinitely many even periods belongs to Per(f).
Therefore statement (c) for a > 1 is proved.

Suppose that a < −1. From (1) we get that L(f) = (1+ (−1)n)/2. Let m be even.
From (4) and by statements (h) and (i) of Proposition 4 we obtain that l(fm) > 0.
Repeating the arguments of the previous paragraph it follows that infinitely many
even periods belongs to Per(f). note that this result is independent of the parity of
n, and consequently statement (d) is proved. Additionally now we assume that m is
odd and n is even. By (4) and statements (a) and (e) of Proposition 4 we get that

l(fm) =

n∑

k=1

(−1)kQm(|a|k).
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By Proposition 4(h) we have that Qm(|a|2l) − Q|a|2l−1 > 0 for any positive inte-
ger l. Therefore l(fm) > 0 because n is even. Hence by Theorem 1(a) we obtain
{1, 3, 5, 7, . . .} ⊂ Per(f) and the proof of statement (c) is completed. ¤

4. Transversal maps on Sp × Sq

For 1 ≤ p < q, let f : Sp × Sq → Sp × Sq be a C1 map. The homological groups of
Sp × Sq over Q are of the form

Hq(Sp × Sq,Q) =
{
Q if q ∈ {0, p, q, p+ q},
0 otherwise.

The induced linear maps are f∗0 = (1), f∗p = (a), f∗q = (b) with a, b ∈ Z, f∗p+q = (c),
where c is the degree of the map f and f∗i = (0) for i ∈ {0, ..., p+q} and i 6= 0, p, q, p+q
(see for more details [5]).

From (4) and for m > 1 we get

(5) l(fm) = (−1)pQm(a) + (−1)qQm(b) + (−1)p+qQm(c),

because Qm(0) = Qm(1) = 0 due to statements (d) and (e) of Proposition 4.

Proposition 5. Let f be a transversal map on Sp × Sq with f∗p = (a), f∗q = (b) and
f∗p+q = (c). Suppose that the assumptions (i) and (ii) in the statement of Theorem
3 hold. Then there exists some m∗ such that l(fm) 6= 0 for all m ≥ m∗.

Proof. First we assume that exists in the set {a, b, c} one element in absolute value
larger than the absolute value of the others two, let a be such element. If such element
is b or c the arguments of the proof would be the same. Since the polynomial Qm(x)
has dominant term xm (see (2)), from the expression of l(fm) given in (5) we get that
there exists a positive integer m∗

1 such that in the expression (5) we have that am for
m ≥ m∗

1 dominates all the other terms. Therefore l(fm) 6= 0 for m ≥ m∗
1.

Suppose that in the set {a, b, c} there are two elements such that their absolute
values are equal and larger than the absolute value of the third. Let a and b such two
values. If a and b are not such two values the proof is similar. If in the expressions
(−1)pQm(a) and (−1)qQm(b) the coefficients of am and bm respectively are the same,
the argument of the above case can be applied for obtaining that there exists a positive
integer m∗

2 such that l(fm) 6= 0 for m ≥ m∗
2. Consider now that the mentioned

coefficients of am and bm have different sign, then the dominant term in the expression
(5) of l(fm) is cm and since |c| > 1, we obtain that l(fm) 6= 0 for m > m∗

3 for some
positive integer m∗

3.
Finally assume that |a| = |b| = |c|. So |a| > 1. Clearly from the expression of

l(fm) given in (5) and by statements (a), (h) and (i) of Proposition 4, it follows that
l(fm) 6= 0 for m > 1. For m∗ = max{m∗

1,m
∗
2,m

∗
3} the statement of the proposition

follows. ¤

After Proposition 5 it remains to study l(fm) in the case that the set {a, b, c} ⊂
{−1, 0, 1}. But from statements (d), (e) and (f) of Proposition 4 it follows that in
such a case l(fm) = 0 for m > 2.

Proof of Theorem 3. Under the assumptions of Theorem 3 and from Proposition 5
there exists a positive integer m∗ such that l(fm) 6= 0 for m ≥ m∗. By Theorem 1 it
follows that all the odd integers larger than m∗ belong to Per(f). Moreover repeating
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the arguments of the proof of Theorem 2 we get that there are infinitely many even
periods contained in Per(f). ¤
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