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UNIVERSAL CENTERS AND

COMPOSITION CONDITIONS

JAUME GINÉ1, MAITE GRAU1 AND JAUME LLIBRE2

Abstract. In this paper we characterize the universal centers of the
ordinary differential equations dρ/dθ =

∑∞
i=1 ai(θ)ρ

i+1, where ai(θ)
are trigonometric polynomials, in terms of the composition conditions.
These centers are closely related with the classical Poincaré center prob-
lem for planar analytic differential systems.

Additionally we show that the notion of universal center is not in-
variant under changes of variables, and we also provide different families
of universal centers. Finally we characterize all the universal centers for
the quadratic polynomial differential systems.

1. Introduction and statement of the main results

We consider the analytic ordinary differential equation

(1)
dρ

dθ
=

∞∑

i=1

ai(θ)ρ
i+1,

on the cylinder (ρ, θ) ∈ R × S1 in a neighborhood of ρ = 0 and where
ai(θ) are trigonometric polynomials in θ. When all ai(θ) are identically
zero, we say that (1) is a trivial center. We shall denote the derivative of
ρ with respect θ by dρ/dθ or ρ′. We can solve equation (1) by the Picard
iteration method and find a solution which is unique with the prescribed
initial value ρ(0) = ρ0, where |ρ0| is small enough. The differential equation
(1) is determined by its coefficients a = (a1(θ), a2(θ), . . .).

We say that equation (1) determines a center if for any sufficiently small
initial value ρ(0) the solution of (1) satisfies ρ(0) = ρ(2π). The center
problem for equation (1) is to find conditions on the coefficients ai under
which this equation has a center.

The center problem and an explicit expression for the first return map of
the differential equation (1) has been studied by Brudnyi in [12, 14] for a
more general class of equations. The expression of the first return map is
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given in terms of the following iterated integrals of order k

(2) Ii1...ik(a) :=

∫
· · ·
∫

0≤s1≤···≤sk≤2π
aik(sk) · · · ai1(s1) dsk · · · ds1,

where, by convention we assume that for k = 0 the previous expression is
equal to 1. By the Ree formula [29] the linear space generated by all such
functions is an algebra. A linear combination of iterated integrals of order
≤ k is called an iterated polynomial of degree k. Iterated integrals appear
in a similar context in the study of several differential equations, see for
instance [2, 18, 19, 21, 23]. Let ρ(θ; ρ0; a) with θ ∈ [0, 2π] be the solution
of equation (1) corresponding to a with initial value ρ(0; ρ0; a) = ρ0. Then
P (a)(ρ0) := ρ(2π; ρ0; a) is the first return map of this equation and in [12, 14]
it is proved the following.

Theorem 1. For sufficiently small initial values ρ0 the first return map

P (a) is an absolute convergent power series P (a)(ρ0) = ρ0 +
∞∑

n=1

cn(a)ρn+1
0 ,

where

cn(a) =
∑

i1+···+ik=n

ci1...ikIi1...ik(a), and

ci1...ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1.

By Theorem 1, the center set C of the differential equation (1) is deter-
mined by the system of polynomial equations cn(a) = 0, for n = 1, 2, . . ..

The following definition is given in [13]: The differential equation (1) has
a universal center if for all positive integers i1, . . . , ik with k ≥ 1 the iterated
integral Ii1...ik(a) = 0.

The set of universal centers will be denoted by U . It is known that, in
general, U ̸= C, see for instance Proposition 9.

We say that differential equation (1) satisfies the composition conditions
if there is a trigonometric polynomial q and there are polynomials pi ∈ R[z],
for i ≥ 1 such that

(3) ãi = pi ◦ q, i ≥ 1, where ãi(θ) =

∫ θ

0
ai(s)ds.

The first time that such conditions appear in the literature was in the paper
of Alwash and Lloyd [5]. The composition conditions are studied in several
papers, see for instance [1, 3, 4, 5, 8, 9, 10, 11].

Now we consider the differential equation (1) with a finite number of
terms, i.e.

(4)
dρ

dθ
=

n∑

i=1

ai(θ)ρ
i+1.
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Brudnyi in Corollary 1.19 of [14] proved that equation (4) with all ai trigono-
metric polynomials has a universal center if and only if it satisfies the com-
position conditions (3) for 1 ≤ i ≤ n. Therefore the universality condition
for a center of (4) is equivalent to composition conditions (3) for all ai with
i = 1, 2, . . . , n. In this paper we generalize this result to the differential
equation (1), i.e. note that now the equation has infinitely many ai’s. In
short the result of [14] for polynomial differential equations in ρ as (4) is
extended to analytic differential equations in ρ as (1). In particular this ex-
tension allow us to complete the characterization of the universal quadratic
centers in the plane, see Proposition 9.

One of the main results of this paper is:

Theorem 2. Any center of the differential equation (1) is universal if and
only if equation (1) satisfies the composition condition.

Theorem 2 is proved in subsection 2.1.

A related result with Theorem 2 was given by Brudnyi in section 1.8 of
[14] providing sufficient conditions in order that if equation (1) restricted
to the first n terms has a universal center, then equation (1) has also a
universal center.

In what follows we present two big families of universal centers.

Given an angle α ∈ [0, π), we say that the differential equation (1) is
α-symmetric if its flow is symmetric with respect to the straight line θ = α.
Obviously, this is equivalent to that equation (1) is invariant under the
change of variables θ 7→ 2α − θ. Any differential equation (1) which is
α-symmetric has a center, due to the symmetry.

We say that the differential equation (1) is of separable variables if the
function on the right-hand side of equation (1) splits as product of two
functions of one variable, one depending on ρ and the other on θ, that is,
dρ
dθ = a(θ) b(ρ). In such a case there is only one center condition which is∫ 2π
0 a(θ) dθ = 0.

Theorem 3. If the differential equation (1) has a center which is either
α-symmetric, or of separable variables, then it is universal.

Theorem 3 is proved in subsection 2.3.

Another family of universal centers is the following one.

Proposition 4. Let m and n be positive integers with m ≥ 2, and let f(θ)
and g(θ) be trigonometric polynomials. The differential equation

(5)
dρ

dθ
=

f(θ)ρm

1 + g(θ)ρn

has a universal center if and only if there exists a nonconstant trigonometric
polynomial q(θ) and two polynomials p0, p1 ∈ R[z] such that

∫ θ

0
f(t) dt = p0(q(θ)),

∫ θ

0
f(t)g(t) dt = p1(q(θ)).
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Proposition 4 is proved in subsection 2.3.

As we will show in the proof of the next result there is a change of variable
passing the differential equation (6) to the differential Abel equation (7),
but the existence of a universal center is not equivalent in both equations.
Therefore the notion of universal center is not invariant under changes of
variables.

Theorem 5. Let f(θ) and g(θ) be trigonometric polynomials and s ≥ 2 be
an integer.

(a) If the differential equation

(6)
dr

dθ
=

f(θ)rs

1 + g(θ)rs−1

has a universal center, the corresponding Abel equation

(7)
dρ

dθ
=
(
(s− 1)f(θ) − g′(θ)

)
ρ2 − (s− 1)f(θ)g(θ)ρ3

has also a universal center.
(b) There are Abel equations (7) having a universal center but the center

of the corresponding equation (6) is not universal.

Theorem 5 is proved in subsection 3.1.

In the particular case of the differential equation (1) with only two terms,
i.e. the Abel equation

(8)
dρ

dθ
= a1(θ)ρ2 + a2(θ)ρ3,

where a1(θ) and a2(θ) are trigonometric polynomials, we have the following
relation between centers of equation (8) and the composition condition. This
relation was studied in [7] where it is proved the following result.

Proposition 6. All centers of equation (8) when a1(θ) and a2(θ) are trigono-
metric polynomials of degree 1 and 2 are universal, and consequently they
satisfy the composition condition.

Let p ∈ R2 be a singular point of an analytic differential system in R2,
and assume that p is a center. Recall that p is a center if there exists a
neighborhood U of p such that all the orbits of U \ {p} are periodic. With-
out loss of generality we can assume that p is at the origin of coordinates.
Then after a linear change of variables and a constant rescaling of the time
variable, if necessary, the system can be written in one of the following three
forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y);(9)

ẋ = y + P (x, y), ẏ = Q(x, y);(10)

ẋ = P (x, y), ẏ = Q(x, y);(11)

where P (x, y) and Q(x, y) are real analytic functions without constant and
linear terms defined in a neighborhood of the origin. In what follows a center
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of an analytic differential system in R2 is called non-degenerate, nilpotent or
degenerate if after an affine change of variables and a constant rescaling of
the time it can be written as system (9), (10) or (11), respectively.

The classical non-degenerate center problem arises from the study of the
planar analytic differential systems first studied by Poincaré [28] and later
by Liapunov [27] and other authors, see [6, 20, 22, 25, 26]. In the case of a
non-degenerate singular point the system can be written into the form

(12) ẋ = −y +

∞∑

i=2

Pi(x, y), ẏ = x+

∞∑

i=2

Qi(x, y),

where Pi and Qi are homogeneous polynomials of degree i. Poincaré proved
that the origin of system (12) is a center if and only if the coefficients of P and
Q satisfy a certain infinite system of algebraic equations called the Poincaré-
Liapunov constants. We note that taking polar coordinates x = r cos θ and
y = r sin θ system (12) becomes

(13) ṙ =

∞∑

s=2

fs(θ)r
s, θ̇ = 1 +

∞∑

s=2

gs(θ)r
s−1,

where

fi(θ) = cos θ Pi(cos θ, sin θ) + sin θ Qi(cos θ, sin θ),

gi(θ) = cos θ Qi(cos θ, sin θ) − sin θ Pi(cos θ, sin θ).

We remark that fi and gi are homogeneous trigonometric polynomials of
degree ≤ i + 1 in the variables cos θ and sin θ. In the region R = {(r, θ) :

θ̇ > 0} the differential system (13) is equivalent to the differential equation

(14)
dr

dθ
=

∞∑

s=2

fs(θ)r
s

1 +
∞∑

s=2

gs(θ)r
s−1

.

We can expand the right-hand side of (14) as an analytic series in r to
obtain equation (1) whose coefficients are trigonometric polynomials. This
reduces the center problem for the planar differential system (12) to the
center problem for the class of differential equations (1). This reduction
explains the importance of the study of the center problem for the differential
equation (1).

We say that a non-degenerate center (9) is universal if its associated
equation (14) has a universal center.

The first statement of the next result is well-known but we provide here
a new proof. The second statement shows that any non-degenerate center
after a convenient change of variables is universal.

Theorem 7. The following statements hold.
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(a) The differential system (12) has centers which are not universal, and
consequently the differential equation (1) also has centers which are
not universal.

(b) Any non-degenerate center after a convenient analytic change of
variables becomes universal.

Theorem 7 is proved in subsection 3.2.

We remark that the notion of universal center given only for non-degene-
rate centers can be extended to nilpotent centers transforming system (10)
into a similar equation (14) but working with generalized Liapunov polar
coordinates, see [27]. Then, in a similar way to the proof of statement
(b) of Theorem 7 for the non-degenerate centers, we would prove that any
nilpotent center after a convenient analytic change of variables (given by

Strózyna and Żo la̧dek [30]) and a non-constant (in general) time rescaling
becomes universal.

The next result provides two families of non-degenerate universal centers.

The center at the origin of system (9) is time–reversible when its flow is
symmetric with respect to a straight line passing through it.

Let H = (x2 + y2)/2 + Hs+1(x, y) be a polynomial with Hs+1(x, y) a
homogeneous polynomial of degree s+ 1 ≥ 3. In what follows we deal with
the Hamiltonian systems:

(15) ẋ = −y − ∂Hs+1

∂y
, ẏ = x+

∂Hs+1

∂x
.

Theorem 8. The following statements hold.

(a) Any time–reversible system (9) has a universal center at the origin.
(b) Any Hamiltonian system (15) has a universal center at the origin.

Theorem 8 is proved in section 4.

We note that Theorem 8 for s = 2, 3 was already proved by Blinov in [7].

The study of non-degenerate centers (9) has a long history starting at
the beginning of the last century, see for instance [20, 22, 25, 26]. The
first systems studied where the quadratic systems, i.e. systems (9) with
homogeneous P and Q of degree 2. Such systems can be written in the
Dulac-Kapteyn form with five parameters using an appropriate rotation of
the plane:

(16)
ẋ = −y − λ3x

2 + (2λ2 + λ5)xy + λ6y
2,

ẏ = x+ λ2x
2 + (2λ3 + λ4)xy − λ2y

2.

It has been established by Dulac [20] that the centers of these systems are
described by:

(a) Lotka-Volterra component: λ3 = λ6;
(b) Symmetric component: λ2 = λ5 = 0;
(c) Hamiltonian component: λ4 = λ5 = 0;
(d) Darboux component: λ5 = λ4 + 5λ3 − 5λ6 = λ3λ6 − 2λ2

6 − λ2
2 = 0.
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In [14] the following universal quadratic centers were detected:

(i) A linear two-dimensional subspace in the Lotka-Volterra component:
λ3 − λ6 = 4λ2 + λ5 = 4λ3 + λ4 = 0, and

(ii) symmetric component: λ2 = λ5 = 0.

In fact many other quadratic centers are universal as we state in the following
proposition.

Proposition 9. The quadratic system (16) has a universal center at the
origin if and only if one of the following conditions holds.

(a) Lotka-Volterra component: λ3 = λ6 and λ2λ4(λ2
4 − 3λ2

5) + λ5(λ3
4 −

λ4λ
2
5 + 3λ6λ

2
4 − λ6λ

2
5) = 0.

(b) Symmetric component: λ2 = λ5 = 0.
(c) Hamiltonian component: λ4 = λ5 = 0.
(d) The Darboux component: λ5 = λ4 +5λ3−5λ6 = λ3λ6−2λ2

6−λ2
2 = 0,

is universal only when λ2 = 0 and, then the system belongs to the
symmetric component.

Proposition 9 is proved in section 4.

2. Universal centers of equation (1)

This section is divided into three subsections. In the first one we mainly do
the proof of Theorem 2. In the second we characterize when the differential
equation (1) satisfies the composition condition. In the last subsection we
provide families of universal centers.

2.1. Proof of Theorem 2. The proof of this result is based on several
properties of iterated integrals that we summarize below.

From (3) we have

ãi(θ) :=

∫ θ

0
ai(t) dt for i ≥ 1.

We recall that equation (1) satisfies the composition condition if there exist
polynomials pi(z) ∈ R[z] and a nonconstant trigonometric polynomial q(θ)
such that

(17) ãi(θ) = pi (q(θ)) , for all i ≥ 1.

Given a k-vector of indexes i1i2 . . . ik, we define

(18) Ĩi1i2...ik(θ) =

∫
· · ·
∫

0≤s1≤···≤sk≤θ
aik(sk) · · · ai1(s1) dsk · · · ds1.

We remark that Ĩi1i2...ik(2π) = Ii1i2...ik(a), as defined in (2). If we denote

by i⃗ = i1i2 . . . ik, by the definition of (18), it is clear that

(19) Ĩ⃗ij(θ) =

∫ θ

0
Ĩ⃗i(t) aj(t) dt.

By convention we have that Ĩ∅(θ) = 1.
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The “if” part of Theorem 2 is proved by manipulation of the iterated inte-
grals. However the “only if” part of Theorem 2 is based upon the algebraic
structures of these iterated integrals. Moreover we introduce some notation
for working with these iterated integrals.

We denote by R(θ) the field of all rational functions quotient of two
trigonometric polynomials with coefficients in R. We remark that R(θ)
is a simple transcendental extension of R as it can be seen from the fact
that we have a field isomorphism φ between R(θ) and R(T ), the field of
quotients of polynomials with coefficients in R and independent variable T .
We can define φ : R(θ) −→ R(T ) as the field homomorphism such that
φ (cos θ) = (1 − T 2)/(1 + T 2) and φ (sin θ) = 2T/(1 + T 2). Any field
homomorphism is injective and this φ is surjective because we have that
φ−1(T ) = sin θ/(1 + cos θ).

The following lemma establishes that, given any index i ≥ 1, the function
ãi(θ) belongs to the field R(θ) when equation (1) has a universal center.

Lemma 10. If the differential equation (1) has a universal center, then
ãi(θ) is a trigonometric polynomial for all i ≥ 1.

Proof. Given an index i ≥ 1 we consider the expansion in Fourier series of
the coefficient ai(θ) of ρi+1 in equation (1). We denote by di the degree of
the trigonometric polynomial ai(θ).

ai(θ) =
c0i

2
+

di∑

ℓ=1

(
cℓi cos(ℓθ) + sℓi sin(ℓθ)

)
,

where c0i, cℓi, sℓi are real numbers defined by

(20)

c0i =
1

π

∫ 2π

0
ai(θ) dθ,

cℓi =
1

π

∫ 2π

0
ai(θ) cos(ℓθ) dθ, sℓi =

1

π

∫ 2π

0
ai(θ) sin(ℓθ) dθ,

for ℓ ≥ 1. We have that

ãi(θ) =

∫ θ

0
ai(t) dt

=

∫ θ

0

(
c0i

2
+

di∑

ℓ=1

(
cℓi cos(ℓt) + sℓi sin(ℓt)

)
)
dt

=
c0i

2
θ +

di∑

ℓ=1

(cℓi
ℓ

sin(ℓθ) +
sℓi

ℓ
(1 − cos(ℓθ))

)
.

Since ãi(2π) = Ii(a) and (1) has a universal center, we have ãi(2π) = 0.
Therefore we conclude that c0i = 0 and ãi(θ) is a trigonometric polynomial.

�
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Given an equation (1) we denote by Σ(a) the minimal field containing all
the functions ãi(θ) and R. We remark that Σ(a) is the quotient field of the
polynomial domain formed by all the linear combinations with coefficients
in R of monomials of the form

(21) ãm1
i1

(θ) ãm2
i2

(θ) . . . ãmk
ik

(θ) ,

where ij ≥ 1 and mj ≥ 0 for j = 1, 2, . . . , k.

As a consequence of the Ree’s formula [29], see also [16], we have that any
of these monomials (21) can be written as a linear combination of iterated
integrals of order m1 + m2 + . . . + mk. In our notation the Ree’s formula
establishes how to write the product of two iterated integrals Ĩ⃗i(θ) and Ĩ⃗j(θ)

as a summation of all the iterated integrals indexed by the shuffle products
of the indexes i⃗ and j⃗.

Lemma 11 (Ree’s formula). Given two sets of indexes i⃗ = i1i2 . . . ir and

j⃗ = j1j2 . . . js, the following property holds:

Ĩ⃗i(θ) Ĩ⃗j(θ) =
∑

σ

Ĩσ(⃗i,⃗j)(θ),

where the sum runs over all σ(⃗i, j⃗) of (r, s)-shuffles.

We recall that a (r, s)-shuffle is a permutation σ of r + s letters with
σ−1(1) < σ−1(2) < . . . < σ−1(r) and σ−1(r + 1) < σ−1(r + 2) < . . . <
σ−1(r + s).

For instance, Ree’s formula gives that

Ĩi1 Ĩi2 = Ĩi1i2 + Ĩi2i1 ,

Ĩm
i = m! Ĩii···(m)i,

Ĩi1 Ĩi2i3 = Ĩi1i2i3 + Ĩi2i1i3 + Ĩi2i3i1 ,

Ĩi1i2 Ĩi3i4 = Ĩi1i2i3i4 + Ĩi1i3i2i4 + Ĩi1i3i4i2 + Ĩi3i1i2i4 + Ĩi3i1i4i2 + Ĩi3i4i1i2 ,

where we have omitted the dependence on θ for the sake of simplicity.

As a direct consequence of Lemma 11 we have the following result which
is applied to the monomials of the form (21).

Lemma 12. There exist nonnegative integer numbers nj for j = 1, 2, . . . , L,
such that

ãm1
i1

(θ) ãm2
i2

(θ) . . . ãmk
ik

(θ) =

L∑

j=1

nj Ĩσj (⃗i)
(θ),

where σj runs over all the permutations of the vector

i⃗ = i1i1 · · ·(m1) i1 i2i2 · · ·(m2) i2 . . . ikik · · ·(mk) ik

and L = (m1 +m2 + . . .+mk)!
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Given an equation (1) we recall that Σ(a) denotes the minimal field con-
taining all the functions ãi(θ) and R. We consider two polynomials A(θ)
and B(θ) of Σ(a), that is two functions formed by linear combinations of
monomials of the form (21) with coefficients in R. The following result shows
that, when equation (1) has a universal center, the property (19) for iterated
integrals can be extended in some sense to the polynomials A(θ) and B(θ).

Lemma 13. Consider two polynomials A(θ), B(θ) ∈ Σ(a). If the differential
equation (1) has a universal center, then

∫ 2π

0
A(θ)B′(θ) dθ = 0.

Proof. We will show this result assuming that A(θ) is a monomial of the
form (21) and B(θ) = ãb(θ), where b is an index with b ≥ 1. Then the
result follows from the linear properties of integration. Hence we consider
A(θ) = ãm1

i1
(θ) ãm2

i2
(θ) . . . ãmk

ik
(θ) and B′(θ) = ab(θ) and we have that

∫ θ

0
A(t)B′(t) dt =

∫ θ

0
ãm1

i1
(t) ãm2

i2
(t) . . . ãmk

ik
(t) ab(t) dt.

By Lemma 12 we have that

ãm1
i1

(θ) ãm2
i2

(θ) . . . ãmk
ik

(θ) =

L∑

j=1

nj Ĩσj (⃗i)
(θ),

where σj runs over all the permutations of the vector

i⃗ = i1i1 · · ·(m1) i1 i2i2 · · ·(m2) i2 . . . ikik · · ·(mk) ik

and L = (m1 +m2 + . . .mk)! Thus we have

∫ θ

0
A(t)B′(t) dt =

L∑

j=1

nj

∫ θ

0
Ĩσj (⃗i)

(t) ab(t) dt.

We consider each one of the integrals in the summation. By the relation
(19) we get that ∫ θ

0
Ĩσj (⃗i)

(t) ab(t) dt = Ĩσj (⃗i)b
(θ).

Since equation (1) has a universal center, we have that Ĩσj (⃗i)b
(2π) = 0.

Therefore ∫ 2π

0
A(t)B′(t) dt =

L∑

j=1

nj · 0 = 0.

�
We need the previous lemmas to show that Σ(a) is an intermediate field

between R and R(θ). Then we will be able to apply Lüroth’s Theorem in
the proof of Theorem 2. For a proof of Lüroth’s Theorem see [31] (page
218). We have adapted the statement of Lüroth’s Theorem to our purposes.
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Theorem 14 (Lüroth’s Theorem). Every intermediate field Σ(a) with R (
Σ(a) ( R(θ) is a simple transcendental extension, that is, Σ(a) = R (q(θ)),
where q(θ) is a nonconstant quotient of trigonometric polynomials.

We first state a couple of lemmas related with the degree of a trigonomet-
ric polynomial. We recall that the degree d of a trigonometric polynomial
is the maximum positive integer such that either the monomial cos(dθ) or
sin(dθ) appear in its Fourier development. Let A(θ) be a trigonometric
polynomial whose Fourier development is

A(θ) =
c0
2

+

d∑

ℓ=1

(
cℓ cos(ℓθ) + sℓ sin(ℓθ)

)
.

The degree of A is the maximum positive integer such that c2d + s2d ̸= 0.
Then the polynomial cos2 θ + sin2 θ is of degree 0.

Lemma 15. Let A(θ) and B(θ) be two trigonometric polynomials of degrees
d and d̄, respectively. The following statements hold.

(a) The trigonometric polynomial A′(θ) is of degree d.
(b) The trigonometric polynomial A(θ)B(θ) is of degree d+ d̄.

Proof. The Fourier development of A′(θ) is

A′(θ) =

d∑

ℓ=1

(
− ℓcℓ sin(ℓθ) + ℓsℓ cos(ℓθ)

)
,

which is also of degree d.
The Fourier development of B(θ) is

B(θ) = =
c̄0
2

+

d̄∑

ℓ=1

(
c̄ℓ cos(ℓθ) + s̄ℓ sin(ℓθ)

)
.

Thus, the product of A(θ) and B(θ) gives:

A(θ)B(θ) = (cd cos(dθ) + sd sin(dθ))
(
c̄d̄ cos(d̄θ) + s̄d̄ sin(d̄θ)

)
+ · · ·

=
(cdc̄d̄ − sds̄d̄) cos((d+ d̄)θ) + (cds̄d̄ + sdc̄d̄) sin((d+ d̄)θ)

2
+ · · ·

where the dots denote terms of lower degree. We remark that

cdc̄d̄ − sds̄d̄ = 0 and cds̄d̄ + sdc̄d̄ = 0

if and only if the following linear system of equations is verified:
(
c̄d̄ −s̄d̄

s̄d̄ c̄d̄

)(
cd
sd

)
=

(
0
0

)
.

The determinant of this system is c̄2
d̄
+s̄2

d̄
which is different from 0 by hypothe-

sis. Hence, the system has only one solution which needs to be cd = sd = 0,
which is a contradiction with A(θ) being of degree d. We conclude that the
product of the two polynomials is of degree d+ d̄. �
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The thesis of Lüroth’s Theorem 14 is about fields generated by a noncon-
stant quotient of trigonometric polynomials. Let q(θ) = N(θ)/D(θ) this
generator, where N(θ) and D(θ) are trigonometric polynomials which we
can assume to be coprime. The following lemma shows that if the field
R(q(θ)) contains a trigonometric polynomial, then there is a nontrivial al-
gebraic relationship between N(θ) and D(θ).

Lemma 16. Let q(θ) = N(θ)/D(θ) with N(θ) and D(θ) trigonometric
polynomials which are coprime. Let ã(θ) be a nonconstant trigonometric
polynomial with ã(θ) ∈ R(q(θ)). Then, either D(θ) is a nonzero constant
or there exists a homogeneous real polynomial R(X,Y ) ∈ R[X,Y ] of degree
k ≥ 1 such that R(N(θ), D(θ)) ≡ 1.

Proof. If D(θ) is a nonzero constant, then the thesis holds. We assume that
D(θ) is nonconstant for the rest of the proof. Since ã(θ) ∈ R(q(θ)), there
exist two real polynomials s(z), r(z) ∈ R[z] of degree k1 and k2 respectively,
which we can assume to be coprime and such that

ã(θ) =
s(z)

r(z)

∣∣∣∣
z=q(θ)

=
s (N(θ)/D(θ))

r (N(θ)/D(θ))
.

We define S(X,Y ) and R(X,Y ) homogeneous polynomials in R[X,Y ] of
degree k1 and k2 respectively such that

s (N(θ)/D(θ)) = S(N(θ), D(θ))/D(θ)k1 ,

r (N(θ)/D(θ)) = R(N(θ), D(θ))/D(θ)k2 .

Therefore,

ã(θ) =
D(θ)k2−k1S(N(θ), D(θ))

R(N(θ), D(θ))
.

Since ã(θ) is a trigonometric polynomial and s and r are coprime, we obtain
that k2 ≥ k1 and that R(N(θ), D(θ))) is a constant, that we can choose
without loss of generality equal to 1. We get that k2 ≥ 1 because ã(θ) is
nonconstant. �

We have that any Moëbius transformation of q(θ) generates the same
field. That is, if we consider

η(θ) =
µ11 q(θ) + µ12

µ21 q(θ) + µ22
=

µ11N(θ) + µ12D(θ)

µ21N(θ) + µ22D(θ)
,

where µij are real numbers with µ11µ22−µ12µ21 ̸= 0, we have that R(q(θ)) =
R(η(θ)). The following proposition shows that when the field R(q(θ)) con-
tains a nonconstant trigonometric polynomial then we can choose, by a
Moëbius transformation, a generator which is either a trigonometric poly-
nomial or the function tan(mθ) with m a positive integer.

Proposition 17. Let ã(θ) be a nonconstant trigonometric polynomial with
ã(θ) ∈ R(q(θ)). Then, either there exists a nonconstant trigonometric poly-
nomial p(θ) such that R(q(θ)) = R(p(θ)), or R(q(θ)) = R(tan(mθ)) with
m a positive integer.
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Proof. By Lemma 16 if D(θ) is constant, we are done because q(θ) is a
trigonometric polynomial. We assume thatD(θ) is not a constant for the rest
of the proof. By Lemma 16 again, there exists a homogeneous polynomial
R(X,Y ) such that R(N(θ), D(θ)) ≡ 1. We can assume that this polynomial
R(X,Y ) ∈ R[X,Y ] is one of the lowest degree k satisfying this property.
Since R(X,Y ) is a homogeneous polynomial of degree k, with k ≥ 1, by
Euler’s formula for homogeneous polynomials we have that

(22) XRX(X,Y ) + Y RY (X,Y ) = kR(X,Y ),

where the subindexes denote partial derivatives.

We assume that there exists a value θ∗ such that RX(N(θ∗), D(θ∗)) =
RY (N(θ∗), D(θ∗)) = 0. By formula (22) we would have that

N(θ∗)RX(N(θ∗), D(θ∗)) +D(θ∗)RY (N(θ∗), D(θ∗)) = kR(N(θ∗), D(θ∗)).

Since R(N(θ∗), D(θ∗)) = 1 and k ≥ 1, we get a contradiction. Therefore,
there is no value θ∗ such that RX(N(θ∗), D(θ∗)) = RY (N(θ∗), D(θ∗)) = 0.

We derive the relationship R(N(θ), D(θ)) ≡ 1 with respect to θ and we
obtain

RX(N(θ), D(θ))N ′(θ) +RY (N(θ), D(θ))D′(θ) ≡ 0.

By this relation and by the previous paragraph, we have that all the zeroes
of RX(N(θ), D(θ)) need to be zeroes of D′(θ) and that all the zeroes of
RY (N(θ), D(θ)) need to be zeroes of N ′(θ). Indeed, we have that there
exists a trigonometric polynomial p̄(θ) such that

(23) N ′(θ) = p̄(θ)RY (N(θ), D(θ)), D′(θ) = −p̄(θ)RX(N(θ), D(θ)).

We denote by dN and by dD the degrees of the polynomials N(θ) and D(θ),
respectively. By a Moëbius transformation, if necessary, we can assume that
dN ≥ dD, because R (N(θ)/D(θ)) = R (D(θ)/N(θ)). By the second of the
relations in (23) and by Lemma 15 we have the following relation among the
degrees

(24) dD = deg(p̄) + dN (k − 1).

We consider three cases: k = 1, k = 2 and k > 2.

Case k = 1. We have that dD = deg(p̄) and that R(X,Y ) is a ho-
mogeneous polynomial of degree 1. Let α and β be real constants with
R(X,Y ) = αX + βY . The relations (23) become

N ′(θ) = p̄(θ) · β, D′(θ) = −p̄(θ) · α.
We denote by p(θ) a trigonometric polynomial with p′(θ) = p̄(θ). We have
that p(θ) is periodic because p̄(θ) is already the derivative of a trigonometric
polynomial (either N ′(θ) or D′(θ)). Hence, we get that

N(θ) = βp(θ) + γ, D(θ) = −αp(θ) + δ,
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where α, β, γ and δ are real numbers with βδ + αγ ̸= 0. If this value was
zero, we would have that the quotient N(θ) over D(θ) would be a constant.
Thus,

q(θ) =
βp(θ) + γ

−αp(θ) + δ
.

We conclude that, by a Moëbius transformation R(q(θ)) = R(p(θ)) where
p(θ) is a trigonometric polynomial.

Case k = 2. By relation (24) we have that dD = deg(p̄) + dN . We recall
that dN ≥ dD by assumption. Thus, we have that deg(p̄) = 0, and hence
p̄(θ) = c constant, and dD = dN . The relations (23) become

N ′(θ) = cRY (N(θ), D(θ)), D′(θ) = −cRX(N(θ), D(θ)).

We see that

N ′(θ)D(θ) −N(θ)D′(θ)

= c (RY (N(θ), D(θ))D(θ) +N(θ)RX(N(θ), D(θ)))

= c · 2 ·R(N(θ), D(θ)) = 2c,

where we have used Euler’s formula for homogeneous polynomials (22) (with
k = 2) and that R(N(θ), D(θ)) ≡ 1. Hence,

q′(θ) =
N ′(θ)D(θ) −N(θ)D′(θ)

D(θ)2
=

2c

D(θ)2
.

Since R(X,Y ) is a homogeneous polynomial of degree k, we have that

R(X,Y )/Y k = R̄(X/Y ) with R̃(z) a polynomial in R[z] of degree k. As we
are in the case k = 2, we have that R̄(q) = b̄0 + b̄1q+ b̄2q

2 with b̄0, b̄1 and b̄2
real numbers. We note that if b̄21 − 4b̄0b̄2 ≥ 0 then R(X,Y ) factorizes in two
linear polynomials with real coefficients. Thus, there would be a product of
two linear polynomials in N(θ) and D(θ) equivalently equal to 1, which is a
contradiction with Lemma 15. Therefore, we have that

1

D(θ)2
=

R(N(θ), D(θ))

D(θ)2
= R̄(q(θ)) = b̄0 + b̄1q(θ) + b̄2q(θ)

2.

Consequently, q(θ) satisfies the following Riccati equation with constant
coefficients:

q′(θ) = b0 + b1q(θ) + b2q(θ)
2,

where bi = 2cb̄i are real numbers, i = 0, 1, 2. We also have that b21 −4b0b2 <
0 which implies that b0 and b2 are both different from zero. We denote by
∆2 := −b21 + 4b0b2 and the solution of the above Riccati equation is

q(θ) =
(∆ + b1C) tan(∆θ/2) + (∆C − b1)

−2b2C tan(∆θ/2) + 2b2
,

where C is any real constant. We observe that since q(θ) is a rational trigono-
metric function, we have that ∆ = 2m withm ≥ 1 a positive integer. Hence,
by a Moëbius transformation, we deduce that R(q(θ)) = R(tan(mθ)).
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Case k > 2. By relation (24) we have that dD = deg(p̄) + dN (k − 1)
and that dN ≥ dD by assumption. These two facts imply a contradiction
because deg(p̄) ≥ 0. �
Proof of Theorem 2. We first show the “if” part of the statement. We as-
sume that equation (1) satisfies the composition condition (17) and we will

show that (1) has a universal center. We take an iterated integral Ĩ⃗i(θ) of or-
der k, and doing induction on k we shall prove that there exists a polynomial
P⃗i(z) ∈ R[z] such that Ĩ⃗i(θ) = P⃗i (q(θ)) and P⃗i (q(0)) = 0.

When the order is k = 1, given any index i ≥ 1, we have that

Ĩi(θ) =

∫ θ

0
ai(t) dt = ãi(θ).

Thus, since the equation satisfies the composition condition, there exists a
polynomial pi(z) ∈ R[z] such that Ĩi(θ) = pi (q(θ)). Note that pi (q(0)) = 0.

We assume that the statement holds for order k and we want to show that
it holds for order k+1. We take i⃗ = i1i2 . . . ik and by induction hypothesis we
have that there exists a polynomial P⃗i(z) ∈ R[z] such that I⃗i(θ) = P⃗i (q(θ)).
We consider any index j ≥ 1 and by (19) we have that

Ĩ⃗ij(θ) =

∫ θ

0
Ĩ⃗i(t) aj(t) dt.

Since ã′
j(θ) = aj(θ) and by the composition condition there exists a poly-

nomial pj(z) ∈ R[z] such that ãj(θ) = pj (q(θ)), we get that

Ĩ⃗ij(θ) =

∫ θ

0
P⃗i (q(t)) p′

j (q(t)) q′(t) dt = P⃗ij (q(θ)) − P⃗ij (q(0)) ,

where P⃗ij(z) is a polynomial and a primitive of the polynomial P⃗i(z)p′
j(z),

that is, P ′
i⃗j

(z) = P⃗i(z)p
′
j(z). Without loss of generality we can assume that

P⃗ij(z) satisfies P⃗i,j (q(0)) = 0.

The equation (1) has a universal center if any iterated integral I⃗i(a) = 0.

Given any i⃗ we have proved that there exists a polynomial P⃗i(z) ∈ R[z] such

that Ĩ⃗i(θ) = P⃗i (q(θ)) and P⃗i (q(0)) = 0. Thus

I⃗i(a) = Ĩ⃗i(2π) = P⃗i (q(2π)) .

Since q(θ) is a trigonometric polynomial, we have that q(2π) = q(0) and,
since P⃗i (q(0)) = 0, we obtain that I⃗i(a) = 0.

Now, we prove the “only if” part of the statement. We want to show that
when (1) has a universal center, then equation (1) satisfies the composition
condition. If equation (1) has a trivial center, that is, ai(θ) ≡ 0 for all i, then
the composition condition trivially holds taking any polynomial q(θ) and all
the pi ≡ 0. We assume that equation (1) has a nontrivial universal center
from now on. As before we denote by Σ(a) the minimal field containing
all the functions ãi(θ) and R. In order to apply Theorem 14, we need to
show that Σ(a) is an intermediate field between R and R(θ). By definition
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R ⊂ Σ(a), but if these two fields were equal we would have that all the
functions ãi(θ) would be constant and, since ã′

i(θ) = ai(θ), we would have
a trivial universal center. We have already discarded this possibility. Thus
we have that R ( Σ(a).

By Lemma 10 we have that Σ(a) ⊂ R(θ). If these two fields were equal,
then we would have that the polynomials A(θ) = sin θ and B(θ) = cos θ
belong to Σ(a). We consider the integral described in Lemma 13. We have
that ∫ 2π

0
A(θ)B′(θ) dθ = −

∫ 2π

0
sin2 θ dθ = −π,

in contradiction with the thesis of Lemma 13 (this integral should be 0).
Therefore we deduce that Σ(a) ( R(θ).

Applying Theorem 14, we have that there exists a nonconstant quotient
of trigonometric polynomials q(θ) such that Σ(a) = R (q(θ)). Since Σ(a)
contains at least one ãi which is a non-constant trigonometric polynomial, by
Proposition 17 we have that either there exists a nonconstant trigonometric
polynomial p(θ) such that Σ(a) = R(p(θ)) or Σ(a) = R(tan(mθ)), with
m ≥ 1 an integer. To discard this second possibility, we remark that if ã(θ) is
a nonconstant trigonometric polynomial and ã(θ) ∈ R(tan(mθ)), then ã′(θ)
also belongs to R(tan(mθ)). This fact comes from the derivative of tan(mθ)
with respect to θ which is m(1 + tan(mθ)2). Since ã(θ) ∈ R(tan(mθ)) there
exists a rational function s(z)/r(z) ∈ R(z) such that

ã(θ) =
s(z)

r(z)

∣∣∣∣
z=tan(mθ)

.

We see that

ã′(θ) =
d

dz

(
s(z)

r(z)

)∣∣∣∣
z=tan(mθ)

m(1 + tan(mθ)2) ∈ R(tan(mθ)).

We consider Lemma 13 and we take A(θ) = ã′(θ) and B(θ) = ã(θ). We
have that ∫ 2π

0
A(θ)B′(θ)dθ =

∫ 2π

0

(
ã′(θ)

)2
dθ ̸= 0,

in contradiction with Lemma 13. In conclusion, Σ(a) = R(p(θ)) with p(θ)
a trigonometric polynomial. �

The following statement is a consequence of Theorem 2.

Lemma 18. If the differential equation (1)

dρ

dθ
=
∑

i≥1

ai(θ)ρ
i+1,
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where ai(θ) are trigonometric polynomials for all i has a universal center,
then the differential equation

(25)
dρ

dθ
=
∑

i≥1

λi ai(θ)ρ
i+1,

has a universal center for arbitrary real numbers λi.

Proof. If equation (1) has a universal center, by Theorem 2 there exists a
nonconstant trigonometric polynomial q(θ) and polynomials pi(z) ∈ R[z]
for all i such that ãi(θ) = pi(q(θ)). Hence for any value of λi we have that

∫ θ

0
λiai(t)dt = λiãi(θ) = λipi(q(θ)).

So equation (25) has a universal center. �

The centers of Lemma 18 when all λi’s are equal are related with the
persistent centers defined in [17].

2.2. The composition condition in equation (1). In this subsection we
consider a differential system of the form

(26)
dρ

dθ
= F(ρ, θ),

where F(ρ, θ) is an analytic function in a neighborhood of ρ = 0 which takes
the form (1) when it is expanded in power series of ρ. Now we are interested
in translating the composition condition in terms of the function F(ρ, θ).

We define G(ρ, θ) :=

∫ θ

0
F(ρ, ξ) dξ.

Proposition 19. The differential equation (26) satisfies the composition
condition if and only if the function G(ρ, θ) can be written as G(ρ, θ) =
A(ρ, q(θ)), where q(θ) is a trigonometric polynomial and A(ρ, z) is analytic
in ρ in a neighborhood of ρ = 0 and the coefficient of each power of ρ is a
polynomial in z.

Proof. From definition of G(ρ, θ) we have

G(ρ, θ) =

∫ θ

0
F(ρ, ξ) dξ =

∫ θ

0


∑

i≥1

ai(ξ)ρ
i+1


 dξ

=
∑

i≥1

(∫ θ

0
ai(ξ)dξ

)
ρi+1 =

∑

i≥1

ãi(θ)ρ
i+1,

where we have interchanged the integral sign by the summation sign which
is possible because F(ρ, ξ) is an analytic function, and consequently uni-
formly convergent. If we take into account the composition condition ãi(θ) =
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pi(q(θ)) where pi ∈ R[z] for all i and q is a trigonometric polynomial, we
have

G(ρ, θ) =
∑

i≥1

pi(q(θ))ρ
i+1 = A(ρ, q(θ)),

where A(ρ, z) is an analytic function in a neighborhood of ρ = 0 and the
coefficients of the powers of ρ are polynomials in z. �

2.3. Families of centers which are universal centers. In this subsec-
tion we will see that the α-symmetric centers and the separable variables
centers are universal.

Proof of Theorem 3. We first consider the α-symmetric case. We have that
equation (1) is α-symmetric and by the change θ → θ − α we can assume,
without loss of generality, that the equation is α-symmetric with α = 0.
Since the equation is now invariant under the change θ → −θ we deduce that
ai(−θ) = −ai(θ) for all i ≥ 1. We recall that, given an index i ≥ 1, ai(θ)
is the coefficient of ρi+1 in the right-hand side of equation (1). We denote
by di the degree of the trigonometric polynomial ai(θ) and we consider the
expansion in Fourier series of ai(θ):

ai(θ) =
c0i

2
+

di∑

ℓ=1

cℓi cos(ℓθ) + sℓi sin(ℓθ),

where the coefficients are defined in (20). Since ai(−θ) = −ai(θ) for all
θ ∈ R, we have that ai(−θ) + ai(θ) ≡ 0 and, hence

ai(−θ) + ai(θ) = c0i +

di∑

ℓ=1

2cℓi cos(ℓθ) ≡ 0.

We deduce that c0i = 0 and cℓi = 0 for ℓ ≥ 1. In this way we have that

ai(θ) =

di∑

ℓ=1

sℓi sin(ℓθ), and therefore ãi(θ) =

∫ θ

0
ai(t) dt is

ãi(θ) =

di∑

ℓ=1

sℓi

ℓ
(1 − cos(ℓθ)) =

di∑

ℓ=1

sℓi

ℓ
(1 − Tℓ(cos θ)) ,

where Tℓ(z) is the Chebyshev polynomial of first kind and degree ℓ. We
conclude that ãi(θ) is of the form ãi(θ) = pi(cos θ), where

pi(z) :=

di∑

ℓ=1

sℓi

ℓ
(1 − Tℓ(z))

is a polynomial with real coefficients. Thus the differential α-symmetric
equation (1) satisfies the composition condition and by Theorem 2, we have
that it has a universal center.
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In the case of separable variables we have that the equation takes the
form dρ/dθ = a(θ) b(ρ), where a(θ) is a trigonometric polynomial and b(ρ)
is an analytic function in a neighborhood of ρ = 0 with b(0) = b′(0) = 0.

We have that this equation has a center if and only if
∫ 2π
0 a(t) dt = 0.

Hence the function q(θ) :=
∫ θ
0 a(t) dt is a trigonometric polynomial and the

differential equation satisfies the composition condition (with this q and all
the polynomials pi(z) equal to the identity z). By Theorem 2 the differential
equation has a universal center. �

Proof of Proposition 4. If f(θ) is identically zero, we have that equation (5)
is a trivial universal center. We assume that f(θ) is not identically zero. We
develop equation (5) in power series of ρ and we see that the coefficient of
ρm+in is (−1)if(θ)g(θ)i for i ≥ 0. By Theorem 2 we have that equation (5)
has a universal center if and only if there exist a nonconstant trigonometric
polynomial q(θ) and polynomials pi ∈ R[z] such that

∫ θ

0
f(t)gi(t) dt = pi(q(θ)) for i ≥ 0.

We will see that the two first of these conditions imply all the rest. Taking
the derivative with respect to θ of the first two conditions we get that

f(θ) = p′
0(q(θ))q′(θ), f(θ)g(θ) = p′

1(q(θ))q′(θ).

We divide the second identity with respect to the first one and we get that

g(θ) =
p′
1

p′
0

(q(θ)).

Thus g(θ) is a rational function of q(θ), but since g(θ) is a trigonometric
polynomial we conclude that p′

0 divides p′
1 and, hence there exists a polyno-

mial h ∈ R[z] such that g(θ) = h(q(θ)). Therefore we obtain the integral
∫ θ

0
f(t)gi(t) dt =

∫ θ

0
p′
0(q(t))q′(t)hi(q(t)) dt = pi(q(θ)),

where pi(z) is a primitive of the polynomial p′
0(z)hi(z) for all i ≥ 0. �

3. Invariance under change of variables

In this section we will see that the universal centers are in general not
invariant under changes of variables. Moreover there exist appropriate coor-
dinates where any non-degenerate center of system (12) is a universal center.

3.1. Rational transformations. If we apply the Cherkas transformation
(see [15])

(27) ρ =
rs−1

1 + rs−1g(θ)
, whose inverse is r =

ρ1/(s−1)

(1 − ρg(θ))1/(s−1)
,
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to the differential equation (6) we obtain the Abel differential equation (7).
By the regularity of the Cherkas transformation and its inverse at r = ρ = 0,
equation (6) has a center if and only if equation (7) has a center.

Blinov in [7] studied the centers corresponding to the Hamiltonian systems
(15) and the time–reversible symmetric centers of the systems

ẋ = −y + Ps(x, y), ẏ = x+Qs(x, y),

with Ps and Qs homogeneous polynomials of degree s ≥ 2. He showed that
these centers, passing first to polar coordinates and second doing Cherkas
transformation, become centers of an Abel equation of the form (7). Fi-
nally he proved that these last centers are universal. We prove that this
Hamiltonian and symmetric centers are universal already for equation (6),
see Theorem 8. Moreover, we will show that when a center of equation (6)
is universal, then the corresponding center of equation (7) is also universal,
but the converse is not true, see Theorem 5.

We remark that for s = 2 and s = 3 Blinov showed that the above
Hamiltonian and symmetric centers are universal once they are written as
the Abel differential equation (7), and that the other centers of these Abel
equations in general are not universal, see [7].

We will see that the notion of universal center is not invariant under
changes of variables.

Proposition 20. The following statements hold.

(a) A rational transformation does not maintain a center to be universal
for equation (1).

(b) The transformation ρ = rs−1/(1 + rs−1g(θ)), where s ≥ 2 and g(θ)
is any trigonometric polynomial, does not maintain a center to be
universal.

Proof. (a) We consider R(ρ, θ) = ρ/(1 + ã1(θ)ρ + ã2(θ)ρ2) where ãi(θ) are
trigonometric polynomials for i = 1, 2. We take the equation

dρ

dθ
=

−∂R/∂θ
∂R/∂ρ

=
ρ2a1(θ) + ρ3a2(θ)

1 − ρ2ã2(θ)
,

where ai(θ) = ã′
i(θ), for i = 1, 2. We have that this equation has a center at

the origin because it has a well-defined first integral R(ρ, θ) in a neighbor-
hood of ρ = 0. We expand the previous equation in power series of ρ and
we get dρ/dθ = ρ2a1(θ) + ρ3a2(θ) + h.o.t. We integrate the coefficients in θ
and we get ã1(θ) and ã2(θ) which are not, in general, composite polynomials
of the same trigonometric polynomial q(θ), due to their arbitrariness. Take
for instance ã1(θ) = sin θ and ã2(θ) = cos θ. Then the equation has not a
universal center. We take the rational transformation r = R(ρ, θ), and we
have that dr/dθ = 0, which is a trivial universal center.

(b) We take the following Abel differential equation

dρ

dθ
= sin θρ2 + cos θ sin θρ3,
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which has a universal center because the integration of the coefficients give
− cos θ for ρ2 and − cos2 θ/2 for ρ3. These two expressions are both poly-
nomials of cos θ and, therefore, we have a universal center. We consider the
transformation ρ = r/(1 − rµ sin θ), where µ is any nonzero real number.
After this change we get an equation of the form

dr

dθ
= (sin θ − µ cos θ) r2 + sin θ cos θ r3 + h.o.t.

If we integrate the coefficients we obtain − cos θ−µ sin θ for r2 and − cos2 θ/2
for r3. These two polynomials do not satisfy the composition condition
because µ ̸= 0. Hence the resulting equation has not a universal center. �
Proof of Theorem 5. (a) Differential equation (6) after the change (27) be-
comes the Abel equation (7). If f(θ) ≡ 0, we have that both equations have
universal centers. We assume that f(θ) ̸≡ 0. By Proposition 4, we have that
equation (6) has a universal center if and only if there exists a nonconstant
trigonometric polynomial q(θ) and two polynomials p0, p1 ∈ R[z] such that

(28)

∫ θ

0
f(t) dt = p0(q(θ)),

∫ θ

0
f(t)g(t) dt = p1(q(θ)).

We assume that (6) has a universal center and we want to prove the existence
of two polynomials A0(z), A1(z) ∈ R[z] such that:
∫ θ

0

(
(s− 1)f(t) − g′(t)

)
dt = A0(q(θ)),

∫ θ

0
f(t)g(t)dt = A1(q(θ)).

This fact implies that the Abel equation (7) has a universal center. We take
A1(z) to be p1(z) and the second condition is verified. Taking the derivatives
of the identities (28) with respect to θ we get

f(θ) = p′
0(q(θ)) q′(θ), f(θ) g(θ) = p′

1(q(θ)) q′(θ).

We divide the second condition by the first one and we obtain that

g(θ) =
p′
1

p′
0

(q(θ)).

Thus g(θ) is a rational function of q(θ) but since g(θ) is a trigonometric
polynomial we conclude that p′

0 divides p′
1. Hence there exists a polynomial

h ∈ R[z] such that g(θ) = h(q(θ)). Therefore
∫ θ

0

(
(s− 1)f(t) − g′(t)

)
dt = (s− 1)p0(q(θ)) −

∫ θ

0
h′(q(t))q′(t)dt

= (s− 1)p0(q(θ)) − h(q(θ)) +K,

where K = h(q(0)). Taking A0(z) = (s− 1)p0(z) − h(z) +K the statement
follows.

(b) We take the Abel differential equation (7) with s = 2 and f(θ) =
−2(ν1 cos θ − ν2 cos(2θ) + ν2 sin θ − ν1 sin(2θ)) and g(θ) = ν1 + 2ν2 cos θ +
ν1 cos(2θ) +ν2 sin(2θ), where ν1 and ν2 are nonzero real numbers. The Abel
differential equation (7) defined by these polynomials has a universal center
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because the integration of its coefficients f(θ)−g′(θ) and −f(θ)g(θ) are both
two polynomials in sin θ. However the corresponding equation (6) has not a
universal center because the integral

∫ 2π

0
f(t)g2(t)dt = −4πν2

1ν2 ̸= 0,

and the vanishing of this integral is a necessary condition in order that
equation (6) be universal. �

3.2. Analytic transformations.

Proof of Theorem 7. Statement (a) follows immediately from the results of
Proposition 9.

Now we shall prove statement (b). Its proof is obtained taking into ac-
count the analytic change of variables that transforms any center of sys-
tem (12) into the Poincaré normal form. According to Poincaré [28] there
exists a near–identity analytic change of coordinates (u, v) = ϕ(x, y) =
(x + o(|(x, y)|), y + o(|(x, y)|)), transforming system (12) with a center at
the origin into the normal form

(29) u̇ = −v [1 + ψ(u2 + v2)] , v̇ = u[1 + ψ(u2 + v2)] ,

with ψ an analytic function near the origin such that ψ(0) = 0. It is clear
that the transformed system (29) is time–reversible, that is symmetric with
respect to an axis through the origin. In this case it is symmetric with
respect the both axes u = 0 and v = 0. In fact taking polar coordinates
u = r cos θ, v = r sin θ system (29) becomes ṙ = 0, and θ̇ = −1 − ψ(r2) and
therefore we have dr/dθ = 0 which is a trivial universal center. �

In summary the notion of universal center depends on the variables in
which the system (12) is expressed. In a similar way that the time–reversible
condition or the Hamiltonian condition of a system are not invariant under
changes of variables. In fact we only can use these conditions as sufficient
conditions in order to have a center but not as an invariant characterization
of any center.

4. Universal analytic centers in the plane

In this section we consider a system in the plane of the form (12) and
we study when its corresponding differential equation (14) has a universal
center.

Proof of Theorem 8. (a) A time-reversible symmetry for system (12) with
respect to a straight line through the origin with slope m = tanα with
α ∈ (−π/2, π/2] is given by

(x, y, t) 7→
(
x+ 2my −m2x

1 +m2
,

−y + 2mx+m2y

1 +m2
, −t

)
.
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We denote by φ the change from polar coordinates to cartesian coor-
dinates, that is φ(r, θ) = (r cos θ, r sin θ). Given m we denote by ψ the
symmetry in the plane with respect to a straight line of slope m passing

through the origin, that is ψ(x, y) =
(

x+2my−m2x
1+m2 , −y+2mx+m2y

1+m2

)
. It is easy

to check that φ−1 ◦ ψ ◦ φ(r, θ) = (r, 2α − θ). Thus if system (12) is time–
reversible, then its corresponding equation (14) after the change to polar
coordinates is α–symmetric. Then any time–reversible center is universal
by Theorem 3.

(b) In polar coordinates system (15) becomes equation (6). After the
change R = rs−1 we obtain

(30)
dR

dθ
=

(s− 1)f(θ)R2

1 + g(θ)R
,

where f(θ) = −h′
s+1(θ) and g(θ) = (s+1)hs+1(θ) with hs+1(θ) the trigono-

metric polynomial defined by hs+1(θ) = Hs+1(cos θ, sin θ). We remark that
the change R = rs−1 modifies nor the center conditions of (6) neither the
universal center conditions.

In a more general context, whenever one takes g′(θ) = kf(θ) with k a
nonzero real number, equation (30) has a center, see [24]. Moreover this
center is universal because

∫ θ

0

f(ξ)R2

1 + g(ξ)R
dξ =

1

k

∫ θ

0

g′(ξ)R2

1 + g(ξ)R
dξ =

R

k
log

(
1 +Rg(θ)

1 +Rg(0)

)
,

and in Proposition 19 we obtain G(r, θ) = rs−1

k log
(

1+rs−1g(θ)
1+rs−1g(0)

)
. So equation

(30) has a universal center when g′(θ) = kf(θ) with k ̸= 0. Since for system
(15) we have g′(θ) = −(s+1) f(θ), it has a universal center at the origin. �

Proof of Proposition 9. Writing system (16) in polar coordinates we obtain

(31)
dr

dθ
=

f(θ)r2

1 + g(θ)r
,

with

f(θ) = −λ3 cos3 θ + (3λ2 + λ5) cos2 θ sin θ

+(2λ3 + λ4 + λ5) cos θ sin2 θ − λ2 sin3 θ,

g(θ) = λ2 cos3 θ + (3λ3 + λ4) cos2 θ sin θ

−(3λ2 + λ5) cos θ sin2 θ − λ6 sin3 θ.

Now we analyze the universal conditions for each center component of
quadratic systems described in the introduction.
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(a) Lotka Volterra component. We put λ3 = λ6 in equation (31) and we
have that it is a center. A simple computation shows that

I4 = ã4(2π) =

∫ 2π

0
a4(θ) dθ

=
π

64

(
λ2λ4(λ2

4 − 3λ2
5) + λ5(λ3

4 − λ4λ
2
5 + 3λ6λ

2
4 − λ6λ

2
5)
)
,

where we recall that a4(θ) is the coefficient of r5 in the expansion in power
series of r of the function which defines equation (31). In this case we have
that a4(θ) = −f(θ)g(θ)3.

When I4 = 0, some computations show that equation (31) is α–symmetric
with α = arctan(λ5/λ4). So, by Theorem 3 we have that the center is
universal. From Proposition 4 this symmetry is equivalent to say that there
exist two polynomials p0(z), p1(z) ∈ R[z] such that

∫ θ

0
f(t) dt = p0(q(θ)),

∫ θ

0
f(t)g(t) dt = p1(q(θ)),

with q(θ) = λ4 sin θ − λ5 cos θ.

(b) Symmetric component. When λ2 = λ5 = 0 equation (31) is α–
symmetric with α = π/2 and, thus it has a universal center.

(c) Hamiltonian component. When λ4 = λ5 = 0, we have that equation
(31) has a universal center as a consequence of Theorem 8(b).

(d) The Darboux component. We put λ5 = λ4 +5λ3 −5λ6 = λ3λ6 −2λ2
6 −

λ2
2 = 0 in equation (31). If λ6 = 0 we have that the center is symmetric

and we have analyzed this case in the second second. If λ6 ̸= 0 we have
that

I4 = ã4(2π) =

∫ 2π

0
a4(θ)dθ = −5πλ2(λ2

2 + λ2
6)3

16λ3
6

,

where, as before, a4(θ) = −f(θ)g(θ)3 with the parameters fixed in order to
be in the Darboux component. The universal condition forces that I4 = 0,
which implies λ2 = 0. Consequently a center in the Darboux component is
universal only when λ2 = 0. In this case equation (31) also belongs to the
symmetric component. �
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