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A CLASS OF GALACTIC POTENTIALS: THEIR PERIODIC ORBITS
AND INTEGRABILITY

FELIPE ALFARO, JAUME LLIBRE, AND ERNESTO PÉREZ-CHAVELA

Abstract. In this work, applying general results from averaging theory, we find peri-
odic orbits for a class of Hamiltonian systems H whose potential models the motion of
elliptic galaxies. Using the above periodic orbits on the energy level H = h we provide in-
formation about the non-integrability, in the sense of Liouville–Arnold, of the respective
Hamiltonian system generated by H .

1. introduction and statement of the main results

Galactic dynamics is a branch of Astrophysics whose development started only around
sixty years ago, when it was possible to have a view of the physical world beyond the
integrable and near integrable systems [4]. Even the importance of the analysis of galactic
potentials, the global dynamics of galaxies is not a simple question and represents a big
challenge for the researches in the field [2]. Most of the work in the analysis of galaxies is
numerical, in this paper we present an analytical technique, the averaging theory, which
allows to find periodic orbits of a differential system.

In the last years, great quantity of the research on galactic dynamics has been focused
on models of elliptical galaxies. In most of these models the terms in the potential are of
even order, so we have adopted this fact in the Hamiltonian system that we are analyzing.
Another important point that appears in these kind of potentials is that the existence of
periodic orbits is a useful tool for constructing new and more complicated self consistent
models. One way to identify periodic orbits is to localize the central fixed points on the
surfaces of constant energy. In [9], the authors study the localization of periodic orbits
and their linear stability for a particular two-component galactic potential. In fact, in our
days the study of individual orbits in some galactic potentials is a new branch of galactic
dynamics [5] .

The calculation of particular orbits in some analytical potentials modeling elliptical
galaxies, indicates that relatively small symmetry breaking corrections can increase dra-
matically the number of stochastic orbits, showing the importance of the study of pertur-
bations of simple models [6]. The class of potentials studied in this paper have not chosen
with the aim of modeling some particular galaxies, our objective is to study systems which
are generic in their basic properties.
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All authors has been partially supported Conacyt México, grant 128790. The second author is partially

supported by MCYT/FEDER grant number MTM2005-06098-C02-01 and by a CICYT grant number
2005SGR 00550.

1

This is a preprint of: “Periodic orbits for a class of galactic potentials”, Felipe Alfaro Aguilar,
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In [10], the authors study the galactic potential

H =
1

2
(p2x + p2y) + V (x2, y2).

These kind of potentials are important in the modeling of elliptic galaxies, as for instance
we can mention the potentials VL = log (1 + x2 + y2/q) and VC =

√
1 + x2 + y2/q − 1,

where the parameter q gives the eccentricity of the elliptic galaxy. In this work we study a
perturbation of the above potential taking into account a parameter which plays the role
of the eccentricity. Our goal is to study which orbits of the unperturbed system persists
under the perturbation, and the main technique that we are using is the averaging theory.
More concretely, along this paper we deal with the Hamiltonian

H =
1

2
(p2x + x2) +

1

2q
(p2y + y2) + ε(ax4 + bx2y2 + cy4) +O(ε2), (1)

and its respective Hamilton’s equation

ẋ = px,

ẏ =
py
q
, (2)

ṗx = −x− ε(4ax3 + 2bxy2) +O(ε2),

ṗy = −y

q
− ε(2bx2y + 4cy3) +O(ε2),

the matrix of the linear part of this system at the origin of coordinates is

M =




0 0 1 0
0 0 0 1

q

−1 0 0 0
0 −1

q
0 0


 ,

with eigenvalues ±i,±i/q where i =
√
−1.

From the above we observe the necessity to split the analysis for the periodic orbits in
two cases

• q is an irrational number. Here the linear part of system (2) has two planes foliated
by periodic orbits. In the first one the orbits have period 2π, each periodic orbit
on this plane is of the form

PO1 = (x0 cos t + px0 sin t, 0, px0 cos t− x0 sin t, 0).

In the second one, the orbits have period 2πq, each periodic orbit on this plane is
of the form

PO2 = (0, y0 cos (t/q) + py0 sin (t/q), 0, py0 cos (t/q)− y0 sin (t/q)).

• q is a rational number. Here the linear part of system (2) has a 4–dimensional
space filled of periodic orbits of period 2πr if q = r/s with (r, s) = 1, where each
periodic orbit is of the form

PO3 = (x0 cos t + px0 sin t, y0 cos (st/r) + py0 sin (st/r),

px0 cos t− x0 sin t, py0 cos ((st/r)− y0 sin (st/r)).



A CLASS OF GALACTIC POTENTIALS 3

When q is an irrational number our first main result is :

Theorem 1.1. For ε sufficiently small and q an irrational number, we have that in every
energy level H = h > 0 the perturbed Hamiltonian system (2) has

(a) at least one periodic solution ((x(t), y(t), px(t), py(t)) such that when ε → 0, we

have that ((x(0), y(0), px(0), py(0)) tends to (
√
2h, 0, 0, 0);

(b) at least one periodic solution ((x(t), y(t), px(t), py(t)) such that when ε → 0, we
have that ((x(0), y(0), px(0), py(0)) tends to (0,

√
2hq, 0, 0).

So, for q irrational, we obtain that in every energy level H = h > 0 the perturbed Hamil-
tonian system has at least 2 periodic orbits.

Unfortunately we cannot obtain periodic solutions when when q is a rational number,
see Remark 3.1.

Our second main result concerns to the non–integrability of system (2) in the sense of
Liouville-Arnold (see definition 2.1), it states the following.

Theorem 1.2. The Hamiltonian system (2) is either Liouville–Arnold integrable with two
independent first integrals H and J , where the gradients of H and J are linearly dependent
on some points of the periodic orbits found in Theorem 1.1; or it is not Liouville–Arnold
integrable with any second first integral of class C1.

The paper is organized as follows. In section 2 we present the theorem from averaging
theory necessary to prove our main results, and the basic results on integrability that we
shall use. In section 3 we give the proofs of Theorems 1.1 and 1.2.

2. Some results from averaging theory and integrability

In order to have a self contained paper, in this section we present the basic results
from the averaging theory and from integrability that are necessary for proving the main
results of this paper.

2.1. Results from averaging theory. We consider the problem of the bifurcation of
T–periodic solutions from the differential system

x′(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (3)

where the functions F0, F1 : R × Ω → Rn and F2 : R × Ω × (−ε0, ε0) → Rn are of class
C2 functions, T–periodic in the first variable, and Ω is an open subset of Rn. When ε = 0
we get the unperturbed system

x′(t) = F0(t,x). (4)

One of the main assumptions on the above system is that it has a submanifold of periodic
solutions. A solution of system (3), for ε sufficiently small is given using the averaging
theory. For a general introduction to the averaging theory see the books of Sanders and
Verhulst [12], and of Verhulst [13].
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Let x(t, z) be the solution of the unperturbed system (4) such that x(0, z) = z. We
write the linearization of the unperturbed system along the periodic solution x(t, z) as

y′ = DxF0(t,x(t, z))y. (5)

In what follows we denote by Mz(t) some fundamental matrix of the linear differential
system (5), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k coordinates;
i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 2.1. Let V ⊂ Rk be open and bounded, and let β0 : Cl(V ) → Rn−k be a C2

function. We assume that

(i) Z = {zα = (α, β0(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the solution
x(t, zα) of (4) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (5) such that the matrix
M−1

zα (0)−M−1
zα (T ) has in the upper right corner the k × (n− k) zero matrix, and

in the lower right corner a (n− k)× (n− k) matrix ∆α with det(∆α) 6= 0.

We consider the function F : Cl(V ) → Rk

F(α) = ξ

(∫ T

0

M−1
zα (t)F1(t,x(t, zα))dt

)
. (6)

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) 6= 0, then there is a T–periodic
solution ϕ(t, ε) of system (3) such that ϕ(0, ε) → za as ε → 0.

Theorem 2.1 goes back to Malkin [7] and Roseau [11], for a shorter proof see [3].

2.2. Results from integrability. We start this subsection with the definition of inte-
grability in the sense of Liouville-Arnold.

Definition 2.1. A completely Liouville-Arnold integrable system is a symplectic manifold
M of dimension 2n together with n functions I1, I2, · · · , In in involution, that is {Ii, Ij} = 0
for all i, j, where {, } is the Poisson bracket, and with differentials dIi independent at
each cotangent space T ∗

x (M). For Hamiltonian systems with two degrees of freedom (the
subject of this paper), we say that a Hamiltonian system with Hamiltonian H is Liouville-
Arnold integrable if it possesses a first integral J independent of H (i.e. the gradients of
H and J are independent in all points of M , except perhaps in a set of zero Lebesgue
measure) and {H, J} = 0.

We also need the following definition.

Definition 2.2. Considerer the smooth dynamical system generated by the differential
equation ẋ = f(x), if all solutions are defined for all time t, we say that the global flow is
complete.

A periodic solution of an autonomous Hamiltonian system on a fixed level of energy,
as in our case, always has one multiplier equal to one. Recall that the multipliers of a
periodic solution are the eigenvalues of the monodromy matrix M(t) of the variational
equations associated to the periodic solution, when it is evaluated at the respective period
of the orbit (remember that M(0) = Id.) The next theorem is due to Poincaré [8], it
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gives a systematic way to study the non integrability in the sense of Liouville-Arnold, in
order to apply it we must find periodic orbits with multipliers different from one.

Theorem 2.2. If a Hamiltonian system with two degrees of freedom and Hamiltonian
H is Liouville–Arnold integrable, and J is a second first integral such that the gradients
of H and J are linearly independent at each point of a given periodic orbit, then all the
multipliers of the variational equations associated to this periodic orbit are equal to one.

3. Proof of the main Theorems

In this section we give the proofs of our main results Theorem 1.1 and Theorem 1.2.

3.1. Proof of Theorem 1.1. We know that the periodic orbits of a Hamiltonian system
always appear in cylinders foliated by periodic orbits, each periodic orbit corresponds
to a different value of the energy h, see for more details [1]. In order to have isolated
periodic orbits and be able to apply the averaging theory we fix the total energy H = h.
Computing px in the energy level H = h we get

px = ±
√

2h− p2y/q − x2 − y2/q − ε(2ax4 + 2bx2y2 + 2cy4) +O(ε2). (7)

The fix value h of the total energy is determined by the initial periodic orbit, which in
our case for the periodic orbit PO1 it corresponds to h = 1

2
(p2x0

+ x2
0), choosing the sign

+ for px, and expanding around ε = 0 we obtain

px =
√

p2x0
− x2 + x2

0 − (y2 + p2y)/q − ε
ax4 + bx2y2 + cy4√

p2x0
− x2 + x2

0 − (y2 + p2y)/q
+O(ε2). (8)

The equations of motion on the energy level H = (p2x0
+ x2

0)/2 are

ẋ =
√

p2x0
− x2 + x2

0 − (y2 + p2y)/q − ε
ax4 + bx2y2 + cy4√

p2x0
− x2 + x2

0 − (y2 + p2y)/q
+O(ε2)

ẏ =
py
q
, (9)

ṗy = −y

q
− ε(2bx2y + 4cy3) +O(ε2).

In order to apply Theorem 2.1 to system (9), let

x = (x, y, py),

F0(t,x) =
(√

p2x0
− x2 + x2

0 − (y2 + p2y)/q, py/q, −y/q
)
,

F1(t,x) =

(
− ax4+bx2y2+cy4√

p2x0−x2+x2
0−(y2+p2y)/q

, 0, −(2bx2y + 4cy3)

)
.

(10)

The set Ω = {(x, y, py)|q(p2x0
− x2 + x2

0) − y2 − p2y 6= 0} is an open subset of R3. Clearly
the above functions are of class C2(Ω). The V of Theorem 2.1 is the set

V = {z = (x0, 0, 0) : |x0| < ρ} for some ρ large enough.
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Let x(t, z) be the solution of the unperturbed system (4) such that x(0, z) = z. The
variational equations of the unperturbed system along the periodic solution PO1 are

y′ = DxF0(t,x(t, z))y, (11)

where y is a 3× 3 matrix.
The fundamental matrix M(t) of the differential system (11) such that M(0) is the

identity matrix of R3 takes the simple form

M(t) =




cos t− x0 sin (t)/px0 0 0
0 cos (t/q) sin (t/q)
0 − sin (t/q) cos (t/q)


 , (12)

whose inverse is given by

M−1(t) =




px0/(px0 cos t− x0 sin t) 0 0
0 cos (t/q) − sin (t/q)
0 sin (t/q) cos (t/q)


 .

An easy computation shows that

M−1(0)−M−1(2π) =




0 0 0
0 2 sin2 (π/q) sin (2π/q)
0 − sin (2π/q) 2 sin2 (π/q)


 .

We observe that this matrix has a couple of zeros in the upper right corner of size 1×2; the
determinant of the 2×2 matrix which appears in the lower right corner is 4 sin2 (π/q) 6= 0
because q is an irrational number. Consequently all the assumptions of Theorem 2.1
are satisfied. Therefore we must compute the simple zeroes of the function F defined in
Theorem 2.1. A straightforward computations shows that

F1(t,x(t, z)) =

(
−a(x0 cos t + px0 sin t)

4

px0 cos t− x0 sin t
, 0, 0

)
,

therefore we get

M−1(t)F1(t,x(t, z)) =

(
−apx0(x0 cos t + px0 sin t)

4

(px0 cos t− x0 sin t)2
, 0, 0)

)
.

Let

f1(x0) =
1

2π

∫ 2π

0

−apx0(x0 cos t + px0 sin t)
4

(px0 cos t− x0 sin t)
2 dt = 3apx0(p

2
x0

+ x2
0)/2 = 3ah

√
2h− x2

0.

In the last equality we have gotten px0 from the energy relation h = (p2x0
+ x2

0)/2. So the

solutions of f1 = 0 are x0 = ±
√
2h, which are simple zeroes. On the other hand we can

verify that both zeroes generate the same periodic orbit . This completes the proof of
statement (a) of Theorem 1.1.

For the proof of statement (b), as in the previous case we fix the value of the total
energy as H = (p2x0

+x2
0)/2q = h determined by the initial periodic orbit PO2. Computing
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py from the equation H = h we obtain

py = ±
√

2qh− qp2x − qx2 − y2 − ε(2aqx4 + 2bqx2y2 + 2cqy4) +O(ε2), (13)

we choose the sign + for py and expand arounf ε = 0 getting

py =
√

2qh− q(p2x + x2)− y2 − ε
q(ax4 + bx2y2 + 2y4)√
2qh− q(p2x + x2)− y2

+O(ε2). (14)

We write the equations of motion on the energy level H = (p2x0
+ x2

0)/2q in the order
(y, x, py), they are given by the system

ẏ =

√
2qh− q(p2x + x2)− y2

q
− ε

ax4 + bx2y2 + 2y4√
2qh− q(p2x + x2)− y2

+O(ε2),

ẋ = px, (15)

ṗy = −y

q
− ε(2bx2y + 4cy3) +O(ε2).

In order to apply Theorem 2.1 to system (15) we are using the same notations and
definitions (with the obvious changes) than in the previous case.

Let x(t, z) be the solution of the unperturbed system (4) such that x(0, z) = z. The
variational equations of the unperturbed system along the periodic solution PO2 are

y′ = DxF0(t,x(t, z))y, (16)

where y is a 3× 3 matrix.
The fundamental matrix M(t) of the differential system (16) such that M(0) is the

identity matrix of R3 takes the simple form

M(t) =




cos (t/q)− y0 sin (t/q)/py0 0 0
0 cos t sin t
0 − sin t cos t


 , (17)

whose inverse is given by

M−1(t) =




py0/(py0 cos (t/q)− y0 sin (t/q)) 0 0
0 cos t − sin t
0 sin t cos t


 .

An easy computation shows that

M−1(0)−M−1(2π) =




0 0 0
0 2 sin2 (πq) sin (2πq)
0 − sin (2πq) 2 sin2 (πq).


 .

We observe that this matrix has two zeros in the upper right corner of size 1 × 2; the
determinant of the 2× 2 matrix which appears in the lower right corner is 4 sin2 (πq) 6= 0
because q is an irrational number. Consequently all the assumptions of Theorem 2.1
are satisfied. Therefore we must compute the simple zeroes of the function F defined in
Theorem 2.1.
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A straightforward computations shows that

F1(t,x(t, z)) =

(
−c(y0 cos (t/q) + py0 sin (t/q))

4

py0 cos (t/q)− y0 sin (t/q)
, 0, 0

)
,

therefore we have

M−1(t)F1(t,x(t, z)) =

(
−cpy0(y0 cos (t/q) + py0 sin (t/q))

4

(py0 cos (t/q)− y0 sin (t/q))2
, 0, 0)

)
.

Let

f1(y0) =
1

2π

∫ 2π

0

(
−cpy0(y0 cos (t/q) + py0 sin (t/q))

4

(py0 cos (t/q)− y0 sin (t/q))2

)
dt

= 3cpy0(p
2
y0
+ y20)/2 = 3chq2

√
2hq − y20.

In the last equality we have gotten px0 from the energy relation h =
(p2x0+x2

0)

2q
. So the

solutions of f1 = 0 are y0 = ±√
2hq, which are simple zeroes. On the other hand we

can verify that both zeroes generate the same periodic orbit. This completes the proof of
statement (b) of Theorem 1.1.

Therefore we have proved that for q an irrational number, in every energy level the
perturbed Hamiltonian system has at least 2 periodic orbits, so Theorem 1.1 holds.

Remark 3.1. Using the methods of averaging theory studied in this paper, we could not
obtain any periodic orbit for the perturbed case when q is a rational number. We have
tried to get some information in two different ways, using cartesian coordinates as in in
statement (a) and using a modified kind of polar coordinates in two different planes. In
the first way we have obtained the variational equations, but unfortunately we could not
solve them. In the second way we have obtained that one of the equations that we must
solve for obtain the periodic solutions is identically zero.

3.2. Proof of Theorem 1.2. We first considerer the 2π–periodic orbit PO1 given in
Section 1. In the proof of Theorem 1.1 we have computed the monodromy matrix for
the variational equations along the periodic solution PO1, it is given by equation (12),
from here we can verify easily that in this case the eigenvalues of M(2π) (the multipliers)
are λ1 = 1 , λ2 = cos (2π/q) + i sin (2π/q) and λ3 = cos (2π/q) − i sin (2π/q). Since q is
an irrational number the last two multipliers are different from 1, applying Theorem 2.2
we obtain that either the Hamiltonian system is not Liouville–Arnold integrable, or it is
integrable and the gradients of H and J are linearly dependent on some points of the
periodic orbit PO1.

We can also use the 2πq–periodic orbit PO2, in this case the multipliers are the eigen-
values of the matrix (17) valuate at 2πq. A straightforward computation shows that they
are λ1 = 1, λ2 = cos (2πq) + i sin (2πq) and λ3 = cos (2πq)− i sin (2πq). We observe that
as as in the previous case, two of them are different from one. This completes the proof
of Theorem 1.2.
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08193, Catalonia, Spain

E-mail address : jllibre@mat.uab.cat
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