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Abstract

We study the existence of periodic solutions of the non–autonomous periodic Lyness’

recurrence un+2 = (an + un+1)/un, where {an}n is a cycle with positive values a,b and

with positive initial conditions. It is known that for a = b = 1 all the sequences

generated by this recurrence are 5–periodic. We prove that for each pair (a, b) 6= (1, 1)

there are infinitely many initial conditions giving rise to periodic sequences, and that

the family of recurrences have almost all the even periods. If a 6= b, then any odd

period, except 1, appears.
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1 Introduction and main results

The dynamics of the autonomous Lyness’ difference equation

un+2 =
a+ un+1

un
with a > 0, and u1, u2 > 0. (1)

is completely understood after the research done in [1, 3] and [25] (see also [15]). In summary,

the dynamics of equation (1) can be studied through the dynamics of the map Fa(x, y) =

(y, (a+ y)/x). This map has a first integral Va such that their level sets in Q+ := {(x, y) ∈
R2 : x > 0, y > 0}, except the one corresponding to the unique fixed point, are the ovals of

some elliptic curves of the form

{Va(x, y) = h} = {(x+ 1)(y + 1)(x+ y + a)− hxy = 0}. (2)

The action of the map on each of the above curves can be described in terms of the group

law of them (the Lyness’ one is, in fact, a particular case of the well known family of QRT

maps, [11]). In particular all possible periods of the recurrences generated by (1) are known,

and for any a /∈ {0, 1} infinitely many different prime periods appear (the cases a = 0 and

1 are globally periodic with periods 6 and 5 respectively).

Recently, there has been some progress concerning the study of the non–autonomous

periodic Lyness’ equations

un+2 =
an + un+1

un
, (3)

when {an}n is a k-periodic sequence taking positive values, and the initial conditions u1, u2

are, as well, positive (see [6, 7, 8, 17, 20], and also [16, 21]). These works focus on some

qualitative aspects of the dynamics like persistence, stability, etc, as well as some integra-

bility issues. In this paper we will focus on the characterization of periodic solutions of the

2–periodic case given by

an =

{
a for n = 2`+ 1,

b for n = 2`,
(4)

where ` ∈ N and a > 0, b > 0. In this sense, in the recent years, and mainly driven by

some conjectures in mathematical biology, there has been some attention to the study of

periodic orbits of periodic non–autonomous difference equations, see [4, 9, 10, 12, 13, 22]

for instance.

The solutions of equation (3) can be studied through the dynamics given by the com-

position map

Fb,a(x, y) := (Fb ◦ Fa)(x, y) =
(a+ y

x
,
a+ bx+ y

xy

)
, (5)

since the relation between the terms of recurrence (3)–(4) and the iterates of the composition

map is given by

(u2n+1, u2n+2) = Fb,a(u2n−1, u2n), and (u2n+2, u2n+3) = Fa,b(u2n, u2n+1), (6)
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where (u1, u2) ∈ Q+ and n ≥ 1.

The map Fb,a is integrable in the sense that it has a first integral given by

Vb,a(x, y) =
(bx+ a)(ay + b)(ax+ by + ab)

xy
. (7)

This means that each map Fb,a preserves a foliation of the plane given by cubic curves which

are, generically, elliptic. The composition maps Fb,a associated to the 2–periodic Lyness’

equations are also particular cases of QRT maps (see again [11]). It is interesting, however,

to notice that the 2–periodic case is one of the few rationally integrable (thus giving rise to

QRT maps) or meromorphically integrable k–periodic Lyness’ equations (see [7, 8]). The

maps Fb,a are also a generalization of the map considered in [14]. The main goal of this

paper is to study the global periodic structure of these maps.

It is known that a map Fb,a has a unique fixed point (xc, yc) ∈ Q+ given by the solution

of the system {
x2 = a+ y,

y2 = b+ x.
(8)

which corresponds to the unique global minimum of Vb,a in Q+. Furthermore, setting

hc := {Vb,a(xc, yc)}, the level sets C+
h := {{Vb,a = h} ∩ Q+ for h > hc} are closed curves

and the dynamics of Fb,a restricted to these sets is conjugate to a rotation on the unit circle

with associated rotation number θb,a(h), [6]. In Section 2 we give an alternative proof of

this fact (see Corollary 6). In this paper we study some properties of the rotation number in

order to characterize the possible periods that can appear in the family of recurrences (3).

The main results of the paper are the following.

Theorem 1. Set

I(a, b) :=

〈
σ(a, b),

2

5

〉
,

where 〈c, d〉 = (min(c, d),max(c, d)), and

σ(a, b) =
1

2π
arccos

(
1

2

[
−1− a+ b xc

xc (b+ xc)

])
=

1

2π
arccos

(
1

2

[
−2 +

1

xc yc

])
.

For any fixed a, b > 0, and any value θ ∈ I(a, b), there exist at least an oval of the form C+
h

such that the map Fb,a restricted to the this oval is conjugate to a rotation, with a rotation

number θb,a(h) = θ.

Notice that F1,1 is the doubling of the well–known globally autonomous Lyness’ map F1

which is globally 5–periodic and whose rotation number function takes the constant value
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1/5∗, and therefore I(1, 1) = {2/5}. In Proposition 18 we give a more precise description

of I(a, b).

Theorem 2. Consider the family of maps Fb,a given in (5) for a, b > 0.

(i) If (a, b) 6= (1, 1), then there exists a computable value p0(a, b) ∈ N such that for any

p > p0(a, b) there exist at least a continuum of initial conditions in Q+ (an oval C+
h )

giving rise to p–periodic orbits of Fb,a.

(ii) For each number θ in (1/3, 1/2) there exists some a > 0 and b > 0 and at least an oval

C+
h , such that the action of Fb,a restricted to this oval is conjugate to a rotation with

rotation number θb,a(h) = θ. In particular, for all the irreducible rational numbers

q/p ∈ (1/3, 1/2), there exist periodic orbits of Fb,a of prime period p.

(iii) The set of periods arising in the family {Fb,a, a > 0, b > 0} restricted to Q+ contains

all prime periods except 2, 3, 4, 6 and 10.

In fact, as we will see in Section 4, the prime periods 2 and 3 do not appear for any a

and b in the whole domain of definition of the dynamical system defined by Fb,a, but periods

4, 6, and 10 appear for some a, b > 0 and some initial conditions in G \ Q+.

Corollary 3. Consider the 2–periodic Lyness’ recurrence (3)-(4) for a > 0, b > 0 and

positive initial conditions u1 and u2.

(i) If (a, b) 6= (1, 1), then there exists a computable value p0(a, b) ∈ N such that for

any p > p0(a, b) there exist continua of initial conditions giving rise to 2p–periodic

sequences.

(ii) The set of prime periods arising when (a, b) ∈ (0,∞)2 and positive initial conditions

are considered contains all the even numbers except 4, 6, 8, 12 and 20. If a 6= b, then

it does not appear any odd period, except 1.

Observe that Theorem 2 characterizes all the prime periods that can appear for the

iterations of the maps Fb,a in Q+. In fact it characterizes the set of periods of any planar

system of first order difference equations associated to any map conjugate to Fb,a, like the

two families of first order systems of difference equations

{
un+1un = a+ vn,

vn+1vn = b+ un+1,
and

{
un+1un = α(1 + vn),

vn+1vn = β(1 + un+1).

∗Here we adopt the notation in [1] and [25] concerning the determination of the rotation number. Notice

that in [6] it is adopted the determination given by 1 − θb,a(h).
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for some choices of a, b, α, β > 0, and u1 > 0, v1 > 0. The second one is associated to the

map G, defined in (11) below.

The paper is structured as follows. In Section 2 we see that on the level sets C+
h , the

action of the map Fb,a can be seen as a linear action of a birational map on an elliptic

curve, and thus we reobtain that on these level sets it is conjugate to a rotation (these

also follows from the fact of being a QRT map, but the notation and elements introduced

here will be useful in our further analysis of the rotation number function). The main

part of this section is devoted to proof the elliptic nature of the invariant curves on R2,

Ch := {Vb,a = h}, as well as to derive a Weierstrass normal form representation of both

the invariant curves and the map. This one, will be a key step in our approach to the

asymptotic behavior of the rotation number function when h tends to infinity. This is done

in Section 3, which is devoted to study the limit of the rotation function. In particular, we

obtain that the asymptotic behavior of this function at the energy level corresponding to

the fixed point and at the infinity do not coincide. It is worth noticing that further tools to

study the rotation intervals have to be developed to face the problem of finding the set of

periods when these limits coincide. The main results, as well as some other ones concerning

periodic orbits are proved in Section 4.

2 Fb,a as a linear action in terms of the group law of a cubic

2.1 An overview from an algebraic geometric viewpoint

In this section we will see Fb,a as a linear action in terms of the group law of the cubic. The

level sets {Vb,a = h} are given by the cubic curves in R2:

Ch = {(bx+ a)(ay + b)(ax+ by + ab)− hxy = 0}.

These curves Ch, in homogeneous coordinates [x : y : t] ∈ CP 2, write as

C̃h = {(bx+ at)(ay + bt)(ax+ by + abt)− hxyt = 0}.

Observe that there are three infinite points at infinity which are common to all the above

curves

H = [1 : 0 : 0]; V = [0 : 1 : 0]; D = [b : −a : 0].

Notice that none of these points is an inflection point.

The map Fb,a extends naturally to CP 2 as

F̃b,a ([x : y : t]) =
[
ayt+ y2 : at2 + bxt+ yt : xy

]
,

and leaves the curves C̃h invariant.
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Notice that only a finite number curves C̃h are singular, and thus correspond to non–

elliptic curves Ch, since the discriminant is a polynomial in h (see Section 2.2.3). In partic-

ular, we will prove that for all the energy levels h > hc, the curves C̃h are non-singular.

Proposition 4. If a > 0 and b > 0, and for all h > hc, the curves C̃h are elliptic.

The above result will be a direct consequence of Proposition 9 (proved in Section 2.2),

and it implies that in Q+ \ {(xc, yc)} the map Fb,a is a birational transformation on an

elliptic curve, and therefore it can be expressed as a linear action in terms of the group law

of the curve ([18, Theorem 3]). Indeed, for those cases such that C̃h is elliptic, if we consider

P0 = [x0 : y0 : 1] ∈ C̃h, and taking the infinite point V as the zero element of C̃h, then

P0 +H can be computed as follows: take the horizontal line passing through P0 and H, it

cuts C̃h in a second point (P0 ∗ H) = (x1, y0) (where M ∗ N denotes the point where the

line MN cuts again the cubic). A computation shows that x1 = (a+ y0)/x0. The vertical

line passing through P0 ∗H cuts C̃h at a new point P1 = [x1 : y1 : 1] = P0 + H. Again a

computation shows that y1 = (a + bx0 + y0)/(x0y0). Hence (x1, y1) = Fb,a(x0, y0), and we

get the following result:

Proposition 5. For each value of h such that C̃h is an elliptic curve, F̃b,a|C̃h
(P ) = P + H,

where + is the addition of the group law of C̃h taking the infinite point V as the zero element.

So we have the following immediate corollary

Corollary 6. On each level set C+
h the map Fb,a is conjugate to a rotation.

Remark 7. Notice that the zero element V of the group law is not an inflection point

of the cubic. So the relation of collinearity for three points A,B,C does not mean that

A+B+C = V , but A+B+C = V ∗V (an inflection point U satisfies U ∗U = U). Another

useful relation is −P = P ∗ (V ∗ V ), where V ∗ V = R := [−a/b : 0 : 1].

The above results are a consequence of the ones proved in the next section. Now we are

able to give a first result about admissible periodic orbits of Fb,a.

Proposition 8. For any admissible period p of Fb,a, there is only a finite number of level

curves of the admissible invariant levels sets Ch, which may have this period.

Proof. As we have noticed, there is only a finite number of energy levels {Vb,a = h}, which

correspond to non–elliptic curves. For the rest of values (those such that C̃h is an elliptic

curve) we have the following: if there is a periodic orbit with minimal period 2n in the

curve C̃h ∩ Q+ with h > hc, since Fb,a is conjugate to a rotation, then C̃h must be filled

by with periodic orbits of minimal period 2n, and also, taking into account the natural
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extension F̃b,a (defined in Proposition 5) we have 2nH = V or, in other words, if and only

if nH = −nH. Using Remark 7 we have that −nH = nH ∗ R, where R = (−a/b, 0, 1). So

there exists 2n–periodic orbits if and only if nH = nH ∗R, that is, if and only if R is on the

tangent line to the curve C̃h at the point nH. Computing this tangent line and imposing

this condition, we obtain that the energy level of corresponding to this curve must be a zero

of a polynomial P2n(h), so it has a finite number of solutions.

Suppose that Ch is filled by periodic orbits of period p = 2n+ 1, then

(2n+ 1)H = V ⇔ nH +H = −nH ⇔ (nH ∗H) ∗ V = nH ∗R,

which is again an algebraic relation on h giving rise to a finite number of solutions.

2.2 Proof of the ellipticity of the curves C̃h for h > hc and a Weierstrass

normal form representation for Fb,a

In this section we prove Proposition 4. In order to simplify the computations we introduce

a preliminary change of variables and parameters. It is easy to check from (7) that the

integral Vb,a admits the following form

Vb,a(x, y)/(a2b2) =
(x
b

+
a

b2

)(y
a

+
b

a2

)(
1 +

x

b
+
y

a

)
/
[ (x

b

)(y
a

) ]
.

This means that taking the new variables

{
X :=

x

b
, Y :=

y

a
, α :=

a

b2
, β :=

b

a2
, (9)

the first integral is now given by

W (X,Y ) =
(X + α)(Y + β)(1 +X + Y )

XY
; (10)

the map Fb,a becomes

G(X,Y ) =
(α(1 + Y )

X
,
β(X + αY + α)

XY

)
; (11)

and the curves C̃h are brought into

DL = {(X + αT )(Y + βT )(T +X + Y )− LXY T = 0},

where L = h/(a2b2). Observe that all the curves DL have three common infinite points

given by H = [1 : 0 : 0]; V = [0 : 1 : 0]; and D = [1 : −1 : 0], and again, none of these points

is an inflection point. The map G extends to CP 2 as

G̃ ([X : Y : T ]) =
[
α(Y T + Y 2) : β(XT + αY T + αT 2) : XY

]
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The level Lc = hc/(a
2b2) corresponds to the level of the global minimum of the invariant

W in Q+. Proposition 4 is, then, a direct consequence of the following result, that will be

proved in Subsection 2.2.3:

Proposition 9. If α > 0 and β > 0, for all L > Lc = hc/(a
2b2), the curves DL are elliptic.

Reasoning as in the case of Fb,a we obtain the following result.

Proposition 10. For each L such that DL is an elliptic curve, G̃|DL (P ) = P + H, where

+ is the addition of the group law of DL taking the infinite point V as the zero element†.

As a consequence of the Propositions 9 and 10 we obtain that the action of G on each

level DL ∩Q+, with L > Lc is conjugate to a rotation.

In order to prove Proposition 9 as well as to significatively simplify some of the proofs

of the results concerning the behavior of θb,a(h) done in Section 3, we first present a new

conjugation between the linear action of G̃ on DL (and therefore for F̃b,a on C̃h) and a linear

action on a standard Weierstrass normal form of the invariant curves. We prove:

Proposition 11. (i) For any fixed L, the curves DL have an associated Weierstass form

given by

EL = {[x : y : t], y2t = 4x3 − g2 xt
2 − g3 t

3}, (12)

being

g2 =
1

192

(
L8 +

7∑

i=4

pi(α, β)Li

)
and g3 =

1

13824

(
−L12 +

11∑

i=6

qi(α, β)Li

)
,

where
p7(a, b) = −4 (α+ β + 1) ,

p6(a, b) = 2
(
3(α− β)2 + 2(α+ β) + 3

)
,

p5(a, b) = −4 (α+ β − 1)
(
α2 − 4βα+ β2 − 1

)
,

p4(a, b) = (α+ β − 1)4 .

and

q11(a, b) = 6 (α+ β + 1) ,

q10(a, b) = 3
(
−5α2 + 2αβ − 5β2 − 6α− 6β − 5

)

q9(a, b) = 4
(
5α3 − 12α2β − 12αβ2 + 5β3 + 3α2 − 3αβ + 3β2 + 3α+ 3β + 5

)

q8(a, b) = 3
(
−5α4 + 16α3β − 30α2β2 + 16αβ3 − 5β4 + 4α3

−12α2β − 12αβ2 + 4β3 + 2α2 − 8αβ + 2β2 + 4α+ 4β − 5
)

q7(a, b) = 6
(
α2 − 4αβ + β2 − 1

)
(α+ β − 1)3

q6(a, b) = − (α+ β − 1)6

† Notice that, again, the zero element V of the group law is not an inflection point of the cubic (see

Remark 7).
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(ii) For any L > Lc, the curve EL is an elliptic curve.

(iii) For any L > Lc, G̃|DL is conjugate to the linear action

Ĝ|EL : P 7→ P ? Ĥ, (13)

where

Ĥ =

[
1

48

(
L2 − 2 (α+ β + 1)L+ (α+ β − 1)2

)
L2 : −1

8
αβL4 : 1

]
(14)

and ? denotes the sum operation of the cubic EL, taking the infinity point V̂ = [0 : 1 : 0]

as the zero of the group law.

In the next subsections we give the proof of the above result.

2.2.1 Computing the Weierstrass normal form of DL

In this section we explicit the transformations which pass DL into their Weierstrass normal

form. Although it is a standard calculation, we prefer to include it because in the proof of

Proposition 11, we need the explicit expressions of some of the intermediate transformations

below.

First transformation: Following [24, Section I.3], we take the following reference projective

system: Let t = 0 be the tangent line to DL at V . This tangent line intersects DL at

R = [−α : 0 : 1], so we will take the reference x = 0 to be the tangent line at R. Finally

y = 0 will be the Y axis. The new coordinates x, y, t are, then, obtained via

x = β(1− α)X + αLY + αβ(1− α)T ; y = X; t = X + αT, (15)

and the equation of the cubic becomes

xy2 + y(a1xt+ a2t
2) = a3x

2t+ a4xt
2 + a5t

3, (16)

where
{
a1 = (α− β − 1− L)/L, a2 = β

(
(1− a)2 + β(1− α)− L

)
/L, a3 = −1/L2,

a4 = (2β(1− α)− L(1 + β)) /L2, a5 = β(β(1− α)− L)(L− 1 + α)/L2.
(17)

Second transformation: We multiply both members of (16) by x, and we take the new

variables (denoted again X, Y, T ):

X = x;Y = xy/t;T = t, (18)
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obtaining the new equation

T 2Y 2 + (a1X + a2T )Y T 2 = a3X
3T + a4X

2T 2 + a5XT
3. (19)

Third transformation: Removing the factor T in (19) and taking the new variables x, y, t

x = X; y = Y + (a1X + a2T )/2; t = T, (20)

we obtain the new equation

ty2 = λx3 + µx2t+ νxt2 + γt3,

where

λ = a3, µ = a4 + a2
1/4, ν = a5 + a1a2/2, γ = a2

2/4. (21)

The last two transformations Let X,Y and T be the new variables given by

X = x/(4λ), Y = y/(4λ2), T = t (22)

In these new variables the curve writes as

TY 2 = 4X3 +
µ

λ2
X2T +

ν

4λ3
XT 2 +

γ

42λ4
T 3.

Finally, with the last change

x =
1

12

12Xλ2 + µt

λ2
, y = Y, t = T, (23)

the curve is written in the Weierstrass’ normal form

y2t = 4x3 − g2xt
2 − g3t

3,

where

g2 =
µ2

12λ4
− ν

4λ3
, g3 = − µ3

216λ6
+

µν

48λ5
− γ

16λ4
. (24)

2.2.2 Proof of Proposition 11

Proof of Proposition 11. (i) The expression of the equation (12) comes from the transforma-

tions leading DL to its Weierstrass form given in Section 2.2.1. In particular the expressions

of the coefficients of g2 and g3 in terms of α, β and L come from formulae (17), (21) and

(24).

(ii) From Proposition 9, the curves DL, with L > Lc are elliptic. This means that for

L > Lc the curves EL will be also elliptic.

Statement (iii) is a direct consequence of Proposition 10. But it is still necessary to

prove that the zero point V is transformed into V̂ = [0 : 1 : 0]. To do this we should obtain

10



the image of V under the same transformations as above, but the image of V under the

first transformation, say V1 := [1 : 0 : 0], has no image for the second transformation. So

we use a continuity argument: Set V1(x) = [x : y(x) : 1], where y(x) is choose in sort that

V1(x) is on the cubic (16), that is, y(x) can be either y+(x) or y−(x), where

y±(x) =
−a1x− a2 ±

√
4 a3x3 + 4 (a4 + a1

2)x2 + 2 (a1a2 + 4 a5)x+ a2
2

2x

The leading term of y±(x) when x→ +∞ is ±√a3 x (observe that these two numbers are

imaginary, because a3 = −1/L2). So we have two complex points of the cubic [x : y±(x) : 1]

where y± = ±√a3 x+O(1):

V1(x) = [x : ±√a3 x+O(1) : 1] = [1 : ±
√
a3/x+O(1/x) : 1/x]

which tends to V1 = [1 : 0 : 0] when x tends to +∞.

But if we take the images of these two complex points, in their first form, by the

transformation (18), we obtain

V2(x) = [1/
√
x : ±√a3 +O(1/

√
x) : 1/

√
x3],

which tends to [0 : ±√a3 : 0] = [0 : 1 : 0]. So this point is V2, the image of V1 obtained by

continuity. Now the successive transformations can be done without any problem and we

obtain V̂ = [0 : 1 : 0].

The point Ĥ is the image of H = [1 : 0 : 0] under the successive transformations (15),

(18), (20), (22) and (23).

2.2.3 Proof of the ellipticity of the curves DL for L > Lc

In this section we prove Proposition 9, but first we notice the following facts:

Fact 1. The curves DL have no singular points at the infinity of CP 2. Indeed, setting

D := (X + αT )(Y + βT )(T +X + Y )− LXY T, we have that

∂D

∂X
(X,Y, 0) = Y (Y + 2X),

∂D

∂Y
(X,Y, 0) = X(2Y +X),

so an straightforward computation shows that on the line T = 0 the only singular point

must satisfy X = 0 and Y = 0, thus not in CP 2.

Fact 2. An straightforward computation shows that the set of affine singular points of DL
coincides with the set of singular points of the invariant function W given in (10). On the

other hand, a computation shows that

W ′x = (Y + β)(X2 − α(1 + Y ))/(X2Y ) and

W ′y = (X + α)(Y 2 − β(1 +X))/(XY 2).
(25)
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So for L > Lc, the other possible singular point of a curve DL is one of the point intersection

of the two parabolas P1 := {X2 = α(1 + Y )} and P2 := {Y 2 = β(1 +X)}.
Fact 3. The equilibrium point P = (p, q) which is in the positive quadrant, is one of the

(at most) four real points on P1 ∩ P2, and it is on DL and singular in this curve only for

L = Lc (in this case, it is a real isolated point).

Now we introduce the some new parameters (p, q) which correspond to the coordinates

of the fixed point in Q+, thus given by
{
p2 = α(1 + q),

q2 = β(1 + p).
(26)

With these new parameters it is easy to obtain an explicit form for Lc:

Lc =
(1 + p+ q)3

(1 + p)(1 + q)
. (27)

In fact this explicit expression allows to obtain an straightforward proof that Lc > 1

since

Lc = (p+ q + 1)

(
1 +

q

p+ 1

)(
1 +

p

q + 1

)
> 1.

Furthermore, after some computations (skipped here) it is possible to prove that

lim
(α,β)→(0,0)

(p, q) = (0, 0).

This implies that the above one is the sharpest lower bound for Lc.

Fact 4. Any singular point of DL with L > Lc must be real. If a singular point is not real,

the conjugate point is also singular and different, and so the (real) line which support these

two points is in the curve, which splits in a right line and a conic. It is easy to see that,

after the identification of the coefficients the equation of the cubic must be written as

D = (X + Y + (1− L)T )

(
XY + βXT + αY T +

αβ

1− LT
2

)
= 0.

The point [0 : −1 : 1] is on the cubic, hence −L (−α+ αβ/(1− L)) = 0, which is impossible

because the above number is positive, since we have just seen that L > Lc > 1.

Taking into account all the above information, to prove Proposition 9, we only need to

show that if DL is singular then L ≤ Lc.

Lemma 12. If the curve DL is singular, then L ≤ Lc.

Proof. Using the Weierstrass form given by (12) and the expressions of g2 and g3 given by

from formulae (17), (21) and (24). We obtain that the discriminant of DL is given by

∆ := g3
2 − 27g2

3 =
1

4096
α2β2L15∆1(L;α, β),
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where ∆1(L) = L4 +
∑3

i=0 δi(α, β)Li, and being

δ3(α, β) = αβ − 4α− 4β − 4,

δ2(α, β) = −3α2β − 3αβ2 + 6α2 − 21αβ + 6β2 + 4α+ 4β + 6,

δ1(α, β) = 3α3β − 21α2β2 + 3αβ3 − 4α3 + 18α2β + 18αβ2 − 4β3 + 4α2

−25αβ + 4β2 + 4α+ 4β − 4,

δ0(α, β) = − (α− 1) (β − 1) (α+ β − 1)3 .

Obviously L = 0 gives a singular curve (a union of three lines). To see that all the real

roots of ∆1 are lower than Lc, we take into account the explicit expression of Lc given by

(27), we use the change {
α =

p2

1 + q
, β =

q2

1 + p
,

and also the translation given by L = L̃+ Lc, obtaining that ∆1(L;α, β) = 0 if and only if

the numerator of ∆1(L̃+ Lc; p
2/(1 + q), q2/(1 + p)) vanishes, which happens if and only if

∆̃1(L̃) := L̃
[∑3

i=0 di(p, q)L̃
i
]

= 0, where

d3(p, q) = (1 + p)3(1 + q)3,

d2(p, q) = (1 + p)2(1 + q)2
(
p2q2 + 12p2q + 12pq2 + 8p2 + 20pq + 8q2 + 8p+ 8q

)
,

d1(p, q) = (1 + p)2(1 + q)2
(
9p4q3 + 9p3q4 + 60p4q2 + 93p3q3 + 60p2q4 + 64p4q + 228p3q2

+228p2q3 + 64pq4 + 16p4 + 176p3q + 312p2q2 + 176pq3 + 16q4 + 32p3 + 160p2q

+160pq2 + 32q3 + 16p2 + 48pq + 16q2
)
,

d0(p, q) = pq
(
p2 + pq + q2 + p+ q

)
(3pq + 4p+ 4q + 4)3 .

Since ∆̃1 is a polynomial with positive coefficients, its real roots are negative or zero, and

thus, the real roots of ∆1 are less or equal than Lc.

3 Behavior of θb,a(h).

To prove Theorem 1, as well as to study the periods appearing in the family Fb,a we need

to analyze the rotation number function θb,a(h), with special emphasis on its asymptotic

behavior when h → h+
c , and when h → +∞. Regarding this last question, in [6], there

were pointed out strong numerical evidences that lim
h→+∞

θb,a(h) = 2/5. Notice that these

evidences agree with the fact, proved in [1], that for the autonomous case the rotation

number associated to the invariants curves (2), say θa(h), satisfies lim
h→+∞

θa(h) = 1/5 so it

is independent of the value of the parameter a. In this section we prove

Proposition 13. The following statements hold

(i) The rotation number map θb,a(h) is analytic on (hc,+∞).

13



(ii) lim
h→+∞

θb,a(h) =
2

5
.

(iii) The rotation number map θb,a(h) is continuous in [hc,+∞). Furthermore, setting

σ(a, b) := lim
h→h+c

θb,a(h), (28)

it holds that

σ(a, b) =
1

2π
arccos

(
1

2

[
−1− a+ b xc

xc (b+ xc)

])
= (29)

=
1

2π
arccos

(
1

2

[
−2 +

1

xc yc

])
. (30)

To prove the statements (i) and (ii) of Proposition 13, it will be helpful to use the

conjugation of Fb,a given by the map Ĝ defined in (13), for which its invariant level sets are

described by the Weierstrass normal form EL defined in (12), and then to apply a similar

machinery as in [1]. First, we recall that given the elliptic curve EL, for L > Lc, there exist

two positive numbers ω1 and ω2 depending on α, β and L and a lattice in C

Λ = {2nω1 + 2miω2 such that (n,m) ∈ Z2} ⊂ C,

such that the Weierstrass ℘ function relative to Λ

℘(z) =
1

z2
+

∑

λ∈Λ\{0}

[
1

(z − λ)2
− 1

λ2

]

gives a parametrization of EL. This is because the map

φ : C/Λ −→ EL

z −→
{

[℘(z) : ℘′(z) : 1] if z /∈ Λ,

[0 : 1 : 0] = V̂ if z ∈ Λ,

(31)

is an holomorphic homeomorphism, and therefore

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 (32)

(see [19, Lemma 5.17] and [23, Proposition 3.6]). Another interesting property of the

parametrization of EL given by φ is that it is injective for the real interval (0, ω1) onto the

real unbounded branch of EL whose points have negative y–coordinates, and that φ(ω1) =

[e1, 0, 1] or, in other words:

e1 = ℘(ω1) (33)

14



(see again [19, 23]). Finally, observe that φ(0) = φ(2ω1) = V̂ , and lim
u→0

℘(u) = +∞. Taking

all the preceding considerations into account, and by direct integration of the differential

equation (32) on [0, u), we have that in real variables

u =

∫ +∞

℘(u)

ds√
4s3 − g2s− g3

. (34)

Proof of Proposition 13 (i). Observe that equation (12) can be written as

ty2 = 4(x− te1)(x− te2)(x− te3),

where

e1 + e2 + e3 = 0, e1e2 + e2e3 + e3e1 = −g2/4, e1e2e3 = g3/4,

and e3 < e2 < e1. Then, equation (34) writes:

u =

∫ +∞

℘(u)

ds√
4(s− e1)(s− e2)(s− e3)

, (35)

and from the above relation and equation (33) we get:

ω1 =

∫ +∞

e1

ds√
4(s− e1)(s− e2)(s− e3)

,

From Proposition 11, the action of Ĝ on each level EL, with L > Lc is conjugate to a

rotation of angle 2πΘ(L), where Θ is the rotation number associated to Ĝ|EL . On the other

hand from the expression of Ĥ given in (14) we know that its y–coordinate is negative, so

from the above considerations on the parametrization φ we know that there exists u ∈ (0, ω1)

such that it has the following representation

exp

(
2πi

2ω1
u

)
= exp (2πiΘ(L)) ∈ [0, 2ω1]/Λ ∼= S1,

so u = 2ω1Θ(L), and since Ĥ is the image of V̂ under the transformation Ĝ|EL , it is given

by φ(2ω1Θ(L)), and therefore

℘(2ω1Θ(L)) = X(L),

where X(L) is the abscissa of point Ĥ given in (14). Applying (35) we obtain that

2ω1Θ(L) =

∫ +∞

X(L)

ds√
4(s− e1)(s− e2)(s− e3)

,

hence

2Θ(L) =

∫ +∞

X(L)

ds√
(s− e1)(s− e2)(s− e3)∫ +∞

e1

ds√
(s− e1)(s− e2)(s− e3)

. (36)
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By using the change of variables s = e1 + 1/r2 and r
√
e1 − e3 = u, it can be proved that

equation (36) becomes

2Θ(L) =

∫ √
e1−e3
ν

0

du√
(1 + u2)(1 + εu2)∫ +∞

0

du√
(1 + u2)(1 + εu2)

, (37)

where ν = X(L)− e1, and ε = (e1 − e2)/(e1 − e3).

The analyticity of Θ(L) in (Lc,+∞) can be derived now from expression (37), by taking

into account that when L > Lc, e1, e2, e3 are different, and that from the geometry of the

problem we have e3 < e2 < e1 < X(L), so all the elements in the left hand side of (37) are

holomorphic in a neighborhood of (Lc,+∞). Hence Θ(L) is analytic on (Lc,+∞).

Observe that lim
h→+∞

θb,a(h) = lim
L→+∞

Θ(L), hence our main objective now is to prove that

lim
L→+∞

Θ(L) = 2/5. To do this we will need the following auxiliary result

Lemma 14. ([1, Lemma 4]) Let λ, ε, γ be positive numbers. For any map φ(ε) such that

lim
ε→0

φ(ε) = 0, and λ+ φ(ε) > 0, set

N(ε, λ, γ) =

∫ λ+φ(ε)
εγ

0

du√
(1 + u2)(1 + εu2)

, and D(ε) =

∫ +∞

0

du√
(1 + u2)(1 + εu2)

.

Then D(ε) ∼ (1/2) ln(1/ε), and if γ < 1/2 we have N(ε, λ, γ) ∼ γ ln(1/ε), where ∼ denotes

the equivalence with the leading term of the asymptotic development at zero.

Proof of Proposition 13 (ii). Following the steps in [1], we will compute lim
L→+∞

Θ(L) by

using the asymptotic developments of the elements involved in equation (37).

Solving the cubic equation 4 s3−g2 s−g3 = 0 by leaving the solutions in terms of g2 and

g3; using the expressions of these coefficients in terms of α, β and L given by Proposition 11;

and after some computations done with a symbolic algebra system (Maple 12), we obtain

that

e1 ∼ L4/48, e2 ∼ L4/48 and e3 ∼ −L4/24,

when L tends to infinity, and

e1 − e2 ∼ αβ L3/2 and e1 − e3 ∼ L4/16.

Setting ε = (e1 − e2)/(e1 − e3), we obtain ε ∼ 16αβ/L5/2 (when L tends to infinity), so

L ∼ 2 23/5 (αβ)2/5

ε2/5
. (38)
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(when ε tends to zero). From the expression of Ĥ given in (14) we have

ν = X(L)− e1 ∼ αβ L2/4,

and therefore, using (38), we get
√
e1 − e3

ν
∼ L

2
√
αβ
∼ Aε−2/5,

where A = 23/5 (αβ)−1/(10). So from equation (37), and Lemma 14 we finally obtain

2Θ(L) =
N(ε,A, 2/5)

D(ε)
∼

2
5 ln(1/ε)
1
2 ln(1/ε)

=
4

5
,

and therefore lim
L→∞

Θ(L) = 2/5.

It is well known (see [2] for instance, and also [5, 25]) that under some regularity con-

ditions the rotation number function of a differentiable planar map F near an elliptic fixed

point, can be extended continuously to the fixed point. In this sense, the proof of statement

(ii) follows by applying the following version of [2, Proposition 8].

Lemma 15. Let U be an open set of R2 and a C1 map F : U → U . Suppose that F has

a unique elliptic fixed point P in U (that is DF (P ) has two distinct non real eigenvalues

with modulus 1). Suppose that F has a first integral V in U , attaining a strict minimum

hp := V (P ) at the point P , and such that

(i) For h > hp, the invariant level sets {V = h} (except the level set {V (P ) = hP }) are

closed curves, surrounding P .

(ii) For h > hp, the sets Int ({V = h}) are starlike with respect to P , and each half line

from P cuts {V = h} ∩ U exactly in one point.

(iii) On each curve {V = h} for h > hp, the map F|{V=h} is conjugate to a rotation of

angle 2πθ(h).

Then,

θ(P ) := lim
h→hP

θ(h) =
1

2π
arccos

(
Trace(DF (P ))

2

)
. (39)

Proof of Proposition 13 (iii). As a direct consequence of Lemma 15, the continuous extension

of θb,a(h) to h+
c , is

σ(a, b) =
1

2π
arccos

(
1

2
Trace(DFb,a(xc, yc))

)
.

Then, the expressions (29–30) are then easily derived from (8) after some easy manipula-

tions.
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4 Periodic solutions

4.1 The rotation interval I(a, b). Proof of Theorem 1

In this Section we prove Theorem 1, and we give a more precise characterization of the

rotation number interval I(a, b).

Proof of Theorem 1. In proposition 13, it is proved that θb,a(h) is an analytic function on

(hc,+∞) and continuous in [hc,+∞]; that lim
h→h+c

θb,a(h) = σ(a, b); and lim
h→+∞

θb,a(h) = 2/5.

It is clear then that for any θ in the interval I(a, b) defined by

I(a, b) :=

〈
lim
h→h+c

θb,a(h), lim
h→+∞

θb,a(h)

〉
=

〈
σ(a, b),

2

5

〉
,

where 〈c, d〉 = (min(c, d),max(c, d)), there is a value of h ∈ [hc,+∞) such that the action

of Fb,a restricted to C+
h is a rotation with rotation number θ, since

I(a, b) ⊆ Image (θb,a((hc,+∞))) .

To have a better description of the interval I(a, b), it would be interesting to know the

relative position of σ(a, b) with respect to 2/5 for given values of a and b. This is issue is

considered in Proposition 18 and Corollary 19 (see also Figure 1), but before proving them

we need a preliminary result.

Set J(a, b) := Image (θb,a ((hc,+∞))) ⊂ [0, 1
2 ]. As as stated above, it holds that I(a, b) ⊆

J(a, b). Observe that both intervals are the same when the function θb,a(h) is monotonic,

but notice that in [6] it is proved that there are values of a and b for which the map is

non–monotonic. With respect the interval J(a, b), we prove:

Lemma 16. The following statements hold.

(i) For any a, b > 0, σ(a, b) >
1

3
.

(ii) lim
b→+∞

σ(b2, b) =
1

2
. Therefore, when b is sufficiently large σ(b2, b) > 2/5, and then

I(b2, b) =
(
2/5, σ(b2, b)

)
.

(iii) lim
b→0+

σ(b2, b) =
1

3
. Therefore, when b is small enough σ(b2, b) < 2/5, and then

I(b2, b) =
(
σ(b2, b), 2/5

)
.
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As a first direct consequence of the above result, we have

Proposition 17. It holds that
(

1

3
,
1

2

)
⊂

⋃

a>0, b>0

J(a, b).

Furthermore (
1

3
,
1

2

)
⊂
⋃

b>0

J(b2, b).

Proof of Lemma 16. (i) Using that

σ(a, b) =
1

2π
arccos

(
1

2
Trace(DFb,a(xc, yc))

)
,

we have that σ(a, b) > 1/3 if and only if Trace(DFb,a(xc, yc))/2 < cos(2π/3) = −1/2 or,

equivalently using equation (29),

−1− a+ b xc
xc (b+ xc)

< −1,

which is true, since a, b and xc are positive.

(ii) From equation (8) we have that yc >
√
b. Suppose that a = b2, then xc =

√
a+ yc >√

a = b. So lim
b→+∞

xc = lim
b→+∞

yc = +∞ and then, using equation (30)

lim
b→+∞

θ(b2, b) = lim
b→+∞

1

2π
arccos

(
1

2

[
−2 +

1

xc yc

])
=

1

2π
arccos(−1) =

1

2
.

(iii) When a = b2, we consider the polynomials R(x, y) := x2−y−b2 and S(x, y) := y2−x−b
whose common zeros are the fixed points of Fb,a. Observe that yc must be a root of the

resultant

Resultant(R,S;x) = −y(−y3 + 2by + 1),

so y3
c = 2byc + 1, thus yc > 1 and yc < y3

c = 2byc + 1, hence

yc <
1

1− 2b
< 2 if b <

1

4
.

So if b < 1/4 we have

1 < y3
c = 1 + 2byc < 1 + 4b;

since the right hand side of the above inequality tends to 1 when b tends to 0, we obtain

that yc tends to 1. Since xc = y2
c + b, we obtain that lim

b→0+
xc = lim

b→0+
yc = 1, hence

lim
b→0+

θ(b2, b) = lim
b→0+

1

2π
arccos

(
1

2

[
−2 +

1

xc yc

])
=

1

2π
arccos(−1) =

1

2
.
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The next result characterizes the relative position of σ(a, b) with respect 2/5.

Proposition 18. Let (xc, yc) be the fixed point of the map Fb,a given by (8). Set R(x, y) :=

φ y − b x− a. Then, σ(a, b) < 2/5 if and only if R(xc, yc) > 0; σ(a, b) = 2/5 if and only if

R(xc, yc) = 0; and σ(a, b) > 2/5 if and only if R(xc, yc) < 0.

Proof. Observe that using expression (29), the condition σ(a, b) ≤ 2/5 gives

1

2

[
−1− a+ b xc

xc (b+ xc)

]
≥ cos

(
4π

5

)
= −1 +

√
5

4
,

thus
a+ b xc
xc (b+ xc)

≤ φ− 1 =
1

φ
,

where φ = (1 +
√

5)/2. By using (8) this last inequality turns to

φ (a+ b xc) ≤ xc (xc + b) = x2
c + b xc = a+ yc + b xc.

Using again φ− 1 = 1/φ, we obtain that φyc − bxc − a ≥ 0.

In order to obtain a characterization of the condition σ(a, b) = 2/5 in terms of the

parameters a and b instead of xc and yc, we isolate a and b from the equations (8) and plug

them in the equation R(xc, yc) = 0, obtaining

yc(φ− xcyc + 1) = 0.

Using that φ + 1 = φ2, we obtain that R(xc, yc) = 0 if and only if yc = φ2/xc, thus taking

the parameter t := xc we have that

a =
t3 − φ2

t
and b =

φ4 − t3
t2

.

A simple computation shows that the above formulae describe a curve with a single

branch in the parameter’s space P := {(a, b), a, b > 0} when φ
2
3 < t < φ

4
3 . In summary, we

have proved the following corollary:

Corollary 19. The curve σ(a, b) = 2/5 for a, b > 0 is given by

Γ := {σ(a, b) = 2/5, a, b > 0} =

{
(a, b) =

(
t3 − φ2

t
,
φ4 − t3
t2

)
, t ∈ (φ

2
3 , φ

4
3 )

}
⊂ P.

It is easy to check that this curve cuts the axes at the points (0, σ∗) and (σ∗, 0) where

σ∗ = φ
5
3 ' 2.2300, and it splits the parameter space into two connected components. By

using Lemma 16 (ii) and (iii), it is easy to obtain that one of them corresponds to the set

{σ(a, b) < 2/5} and the other to {σ(a, b) > 2/5}, and that they have the geometry depicted

in Figure 1.
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Figure 1: The sets {σ(a, b) < 2/5} and {σ(a, b) > 2/5}, and the curve σ(a, b) = 2/5.

4.2 Forbidden periods and periods not appearing in Q+

Proposition 20. The map Fb,a do not have periodic orbits of prime periods 2 and 3.

Proof. Observe that the orbits of the dynamical system defined by the iterations of Fb,a are

also given by the planar first order system of difference equations given by

{
un+1un = a+ vn,

vn+1vn = b+ un+1.

If the above system has a periodic solution of prime period 2, then we have that un+1un

is constant, so it also must be a+ vn, and therefore vn and un are constant.

If there is a periodic solution of prime period 3 of the above system we have

un+2un+1un = c = un+2(a+ vn), (40)

where c is a constant; and also we have

vn+2vn+1vn = d = (b+ un+2)vn,

where d is a constant. Hence

un+2 =
d

vn
− b.
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Using equation (40) we have c = (a+ vn)
(
d
vn
− b
)

, so

b v2
n + (ab+ c− d) vn − ad = 0,

and therefore vn is constant.

Proposition 21. The map Fb,a do not have periodic orbits of prime periods 4, 6 and 10 in

Q+.

Observe, however, that there can exist periodic orbits of minimal period 4, 6 and 10 in

R2 \ Q+ for some values of a and b. For instance, if a = 1, b = 2, then the curves Ch with

h = 3; h = 4 +
√

13; and h ' 9.8309187775 gives rise to continua of initial conditions with

minimal period 4, 6 and 10 respectively. These curves are located in R2 \ Q+. Of course,

the period 10 appears when considering the map F1,1, but not as a prime period.

Proof of Proposition 21. We consider again the coordinates X, Y and T introduced in (9),

and the curves DL. Observe that, there exist periodic orbits with minimal period 2n in the

curve DL if and only if 2nH = V , or in other words, if and only if nH = −nH. Using that

V ∗ V = R := [−α : 0 : 1], we have

nH = V ⇐⇒ nH = −nH = nH ∗ (V ∗ V )⇐⇒ nH = nH ∗R.

The last of the above condition means that there exist a 2n periodic orbit if and only if R

belongs to the tangent line to DL in nH. In the following we will see that for periods 4, 6

and 10 this condition implies L < Lc, thus proving that these periods do not appear in Q+.

Period 4. Since 2H = (H ∗H) ∗ V = [0 : −1 : 1] =: Q, there exist a 4−periodic orbit if and

only if R belongs to the tangent line to Dh in Q. An straightforward computation allows

us to find the explicit expression of the tangent line to 2H: Y = m(L;α, β)X + n(L;α, β),

where

m(L;α, β) = −L+ α(β − 1)

α(β − 1)
and n(L;α, β) = −1.

This tangent line passes through R if and only if

− αm(L;α, β) + n(L;α, β) = 0, (41)

or equivalently, after some manipulations, if and only if L + (β − 1) (α− 1) = 0. That is,

when

L = L4 := − (β − 1) (α− 1) .

To see that L4 < Lc, we consider again the parameters p and q given by the coordinates

of the fixed point in Q+, given by (26), that is, we use the change
{
α =

p2

1 + q
, β =

q2

1 + p
, (42)
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obtaining that

L4 =

(
−q2 + p+ 1

) (
p2 − q − 1

)

(1 + p) (1 + q)
<

(1 + p+ q)3

(1 + p)(1 + q)
= Lc.

The last inequality can be obtained by subtraction of the numerators, for instance.

Period 6. A computation shows that

3H = [−L− α (β − 1) : Lβ + β (β − 1) (α− 1) : β − 1]

Proceeding as in the period 4 case, we compute the tangent line to DL at 3H, and we im-

pose condition (41), obtaining that there exists a continuum of periodic orbits characterized

by the energy level L if and only if either L = 0 < Lc or if L is a root of

P6(L) := L2 + (3αβ − 2α− 2β + 1)L+ (β − 1) (α− 1) (2αβ − α− β + 1) .

Using the change (42) and the translation L = L̃+Lc we obtain that P6(L) = 0 if and only

if L̃ is not a root of

P̃6(L̃) := (1 + q) (1 + p) L̃2 +
(
3p2q2 + 6p2q + 6pq2 + 4p2 + 13pq + 4q2 + 7p+ 7q + 3

)
L̃

+ (1 + q)2 (1 + p)2 (2pq + 3p+ 3q + 3) .

Observe that all the coefficients of P̃6(L̃) are positive when p and q are positive, so all its

real roots are negative. Therefore, all the real roots of P6 are less than Lc.

Period 10. A computation done with the aid of a computer algebra system gives 5H := [A :

B : C], where

A := − [(αβ − 1)L+ αβ (β − 1) (α− 1)]
[
L2 + α (β − 1) (β − 2)L− α (β − 1)3 (α− 1)

]
,

B := −β [L+ (β − 1) (α− 1)] [L+ α (β − 1)]
[
L2 + (−2α+ 1− 2β + 3αβ)L+

+ (β − 1) (α− 1) (2αβ − α− β + 1)] ,

C := [βL+ (β − 1) (β(α− 1) + 1)] [L+ (β − 1) (α− 1)] [(αβ − 1)L+ αβ (β − 1) (α− 1)] .

We compute the tangent line to DL at 5H and we impose condition (41), obtaining that

there exists a continuum of periodic orbits characterized by the energy level L if and only

if

P10,a(L;α, β)P10,b(L;α, β)P10,c(L;α, β) = 0,

where

P10,a(L;α, β) = (αβ − 1)L+ αβ (β − 1) (−1 + α) , P10,b(L,α, β) = (L+ α(β − 1))2 ;
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and P10,c(L;α, β) :=
∑5

i=0 pi(α, β)Li, being

p5(α, β) = αβ + 1,

p4(α, β) = 5α2β2 − 5α2β − 5αβ2 + 12αβ − 4α− 4β + 1,

p3(α, β) = 10α3β3 − 20α3β2 − 20α2β3 + 10α3β + 56α2β2 + 10αβ3 − 41α2β − 41αβ2

+6α2 + 35αβ + 6β2 − 6α− 6β + 1,

p2(α, β) = (β − 1) (α− 1)
(
10α3β3 − 20α3β2 − 20α2β3 + 10α3β + 55α2β2 + 10αβ3

−37α2β − 37αβ2 + 4α2 + 30αβ + 4β2 − 5α− 5β + 1
)
,

p1(α, β) = (β (α− 1)− 1)4 (5α3β3 − 10α3β2 − 10α2β3 + 5α3β + 25α2β2 + 5αβ3

−15α2β − 15αβ2 + α2 + 12αβ + β2 − 2α− 2β + 1
)
,

p0(α, β) = αβ (β − 1)5 (α− 1)5 .

It is easy to check, using the expression of 5H given above, that when αβ − 1 6= 0 the

value of L corresponding to the root of P10,a give 5H = V , thus characterizing orbits of

prime period 5, and so 10 is not a prime period for the orbits in this level set. If αβ−1 = 0,

then P10,a does not depends on L, and it is zero only if α = β = 1, which corresponds to

the well–known globally 10 periodic case a = b = 1.

Observe that, by using (42), the root of P10,b is

L = α(1− β) =
p2(1 + p− q2)

(p+ 1)(q + 1)
,

which is obviously less than Lc.

To prove that the real zeros of P10,c are lower than Lc, we proceed as in the period 6

case, by using the change (42) and the translation L = L̃+Lc, obtaining that P10,c(L) = 0

if and only if the degree 5 polynomial P̃10,c(L̃) obtained when considering the equation

P10,c(L̃ + Lc) = 0 with parameters p and q, vanishes. Once again it is easy to check that

this polynomial has positive coefficients when p and q are positive, so its real roots are all

negative, and therefore the roots of P10,c are all lower than Lc.

4.3 Possible periods. Proof of Theorem 2

To prove Theorem 2, we need the following auxiliary result which allow us to characterize,

constructively, which periods arise when the rotation number takes values in a given interval.

Lemma 22. ([5, Theorem 25 and Corollary 26]) Consider an open interval (c, d); denote

by p1 = 2, p2 = 3, p3, . . . , pn, . . . the set of all the prime numbers, ordered following the usual

order. Also consider the following natural numbers:

• Let pm+1 be the smallest prime number satisfying that pm+1 > max(3/(d− c), 2),
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• Given any prime number pn, 1 ≤ n ≤ m, let sn be the smallest natural number such

that psnn > 4/(d− c).

• Set p := ps1−1
1 ps2−1

2 · · · psm−1
m .

Then, for any r > p there exists an irreducible fraction q/r such that q/r ∈ (c, d).

Proof of Theorem 2. Statement (i) is a direct consequence of Theorem 1 and Lemma 22.

Statement (ii) is a direct consequence of Proposition 17, which implies that for each

number in (1/3, 1/2) there exists some a, b > 0 and some initial condition in Q+ with this

associated rotation number for Fb,a. In particular, for all the irreducible rational numbers

q/p ∈ (1/3, 1/2) there are positive values of a and b such that Fb,a has continuum of periodic

orbits of period p.

(iii) Setting c = 1/3 and d = 1/2, and using the notation introduced in Lemma 22, we

have that, m = 7; p1 = 2 (with s1 = 5); p2 = 3 (with s2 = 3); p3 = 5; p4 = 7; p5 = 11;

p6 = 13 and p7 = 17 (with si = 1 for i = 3, . . . , 7). From Lemma 22, for all p ∈ N, such

that p > p0 := 24 · 33 · 5 · 7 · 11 · 13 · 17 = 12 252 240 there exists an irreducible fraction

q/p ∈ (1/3, 1/2). Hence by Proposition 17 there exists some a, b > 0 such that there exists

a continuum of initial conditions with rotation number θb,a(h) = q/p, thus giving rise to

p–periodic orbits of Fb,a. Now, using a finite algorithm we can determine which irreducible

fractions q/p with p ≤ p0 are in (1/2, 1/3), resulting that there appear irreducible fractions

with all the denominators except 2, 3, 4, 6 and 10.

Finally, the periods 2, 3, 4, 6 and 10 do not appear as a consequence of Propositions 20

and 21.

Proof of Corollary 3. First observe that if a 6= b, then the recurrence (3)-(4) do not have

periodic solutions of odd period p 6= 1. Indeed, suppose that for u1 > 0,u2 > 0 the sequence

{un} is a periodic solution with period p = 2k + 1. Then, by using the relations in (6), we

have that

(u1, u2) = (u2k+2, u2k+3) = Fa (Fb,a)
k (u1, u2). (43)

But on the other hand, from (6) and (43) we have:

Fa(u1, u2) = (u2, u3) = (u2k+3, u2k+4) = Fb (Fa,b)
k (u2, u3)

= Fb (Fa,b)
k Fa(u1, u2) = (Fb,a)

k+1 (u1, u2)

= Fb

(
Fa (Fb,a)

k (u1, u2)
)

= Fb (u1, u2) .

Hence Fa(u1, u2) = Fb (u1, u2), which implies that a = b.

Finally, observe that any p–periodic orbit of Fb,a with initial conditions (u1, u2) will give

rise to a 2p–periodic solution of the recurrence (3). Now, both statements (i) and (ii) follow

as a straightforward application of Theorem 2.
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[7] A. Cima, A. Gasull, V. Mañosa. Integrability and non-integrability of periodic non-

autonomous Lyness recurrences. arXiv:1012.4925v2 [math.DS]

[8] A. Cima, S. Zafar. Dynamical degree of periodic non-autonomous Lyness recurrences.

In preparation.

[9] J.M. Cushing, S.M. Henson. Global dynamics of some periodically forced, monotone

difference equations, J. Difference Equations and Appl. 7 (2001), 859–872.

[10] J.M. Cushing, S.M. Henson. A Periodically forced Beverton-Holt equation, J. Difference

Equations and Appl. 8 (2002), 1119–1120.

[11] J. J. Duistermaat. “Discrete Integrable Systems: QRT Maps and Elliptic Surfaces”.

Springer Monographs in Mathematics. Springer, New York, 2010.

[12] S. Elaydi, R.J. Sacker. Global stability of periodic orbits of non-autonomous difference

equations and population biology. J. Differential Equations 208 (2005), 258-273.

[13] S. Elaydi, R.J. Sacker. Periodic difference equations, population biology and the

Cushing-Henson conjectures, Math. Biosci. 201 (2006), 195-207.

[14] J. Esch and T. D. Rogers. The screensaver map: dynamics on elliptic curves arising

from polygonal folding, Discrete Comput. Geom. 25 (2001), 477–502.

26
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