ANALYTIC INTEGRABILITY OF THE BIANCHI CLASS A COSMOLOGICAL MODELS WITH $0 \leq k<1$

ANTONI FERRAGUT ${ }^{1}$, JAUME LLIBRE ${ }^{2}$ AND CHARA PANTAZI ${ }^{3}$

Abstract

There are many works studying the integrability of the Bianchi class A cosmologies with $k=1$. Here we characterize the analytic integrability of the Bianchi class A cosmological models when $0 \leq k<1$.

1. Introduction

Bianchi models describe space-times which are foliated by homogeneous (and so we have three dimensional Lie algebras) hypersurfaces of constant time. Bianchi $[2,3]$ was the first to classify three dimensional Lie algebras which are nonisomorphic. There are nine types of models according to the dimension n of the algebra:
(a) $n=0$: type I;
(b) $n=1$: types II, III;
(c) $n=2$: types IV, V, VI, VII;
(d) $n=3$: types VIII, IX.

If we consider X_{1}, X_{2}, X_{3} an appropriate basis of the 3 -dimensional Lie Algebra, then the classification depends on a scalar $a \in \mathbb{R}$ and a vector $\left(n_{1}, n_{2}, n_{3}\right)$, with $n_{i} \in\{+1,-1,0\}$ such that

$$
\left[X_{1}, X_{2}\right]=n_{3} X_{3}, \quad\left[X_{2}, X_{3}\right]=n_{1} X_{1}-a X_{2}, \quad\left[X_{3}, X_{1}\right]=n_{2} X_{2}+a X_{1}
$$

where [,] is the Lie bracket. In particular for $a=0$ we obtain models of class A and for $a \neq 0$ we obtain models of class B. A good reference for the Bianchi models is Bogoyavlensky [4].

In a cosmological model Einstein's equations connect the geometry of the space-time with the properties of the matter. The matter occupying the space-time is determined by the stress energy tensor of the matter. In our study we follow [4] and we consider the hydrodynamical tensor of the matter. We will work with an equation of state of matter of the form $p=k \varepsilon$, where ε is the energy density of the matter, p is the pressure and $0 \leq k \leq 1$.

Following [4] the Einstein equations for the homogenous cosmologies of class A without motion of matter can be formalized as a Hamiltonian system in the phase space p_{i}, q_{i} for

[^0]$i=1,2,3$ with the Hamiltonian function
$$
H=\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}}}\left(T\left(p_{i} q_{i}\right)+\frac{1}{4} V_{G}\left(q_{i}\right)\right)
$$

Here T is the kinetic energy (not positive defined) and V_{G} is the potential. According to [4] (Section 4 of Chapter II) the kinetic and the potential energy are given, respectively, by

$$
\begin{aligned}
T\left(p_{i} q_{i}\right) & =2 \sum_{i<j}^{3} p_{i} p_{j} q_{i} q_{j}-\sum_{i=1}^{3} p_{i}^{2} q_{i}^{2} \\
V_{G}\left(q_{i}\right) & =2 \sum_{i<j}^{3} n_{i} n_{j} q_{i} q_{j}-\sum_{i=1}^{3} n_{i}^{2} q_{i}^{2}
\end{aligned}
$$

for $i, j \in\{1,2,3\}$.
Consider the time τ defined by $d \tau=\left(q_{1} q_{2} q_{3}\right)^{-k / 2} d t$, where t is the synchronous time. The Hamiltonian system in the new time τ is written as

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

or equivalently as

$$
\begin{aligned}
& \dot{q}_{1}=2 q_{1}\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}\left(-p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right), \\
& \dot{q}_{2}=2 q_{2}\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}\left(p_{1} q_{1}-p_{2} q_{2}+p_{3} q_{3}\right), \\
& \dot{q}_{3}=2 q_{3}\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}\left(p_{1} q_{1}+p_{2} q_{2}-p_{3} q_{3}\right), \\
& \dot{p}_{1}=-\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}\left(2 p_{1}\left(-p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right)+\frac{1}{2} n_{1}\left(-n_{1} q_{1}+n_{2} q_{2}+n_{3} q_{3}\right)\right)+\frac{1-k}{2 q_{1}} H, \\
& \dot{p}_{2}=-\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}\left(2 p_{2}\left(p_{1} q_{1}-p_{2} q_{2}+p_{3} q_{3}\right)+\frac{1}{2} n_{2}\left(n_{1} q_{1}-n_{2} q_{2}+n_{3} q_{3}\right)\right)+\frac{1-k}{2 q_{2}} H, \\
& \dot{p}_{3}=-\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}\left(2 p_{3}\left(p_{1} q_{1}+p_{2} q_{2}-p_{3} q_{3}\right)+\frac{1}{2} n_{3}\left(n_{1} q_{1}+n_{2} q_{2}-n_{3} q_{3}\right)\right)+\frac{1-k}{2 q_{2}} H .
\end{aligned}
$$

Note that the constants n_{1}, n_{2}, n_{3} determine the type of the model according to Table 1. After the change of coordinates $d s=\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}} d \tau, q_{i}=x_{i}, p_{i}=x_{i+3} /\left(2 x_{i}\right), i=1,2,3$, we obtain the quadratic homogeneous polynomial differential system

$$
\begin{align*}
\dot{x}_{1} & =x_{1}\left(-x_{4}+x_{5}+x_{6}\right), \\
\dot{x}_{2} & =x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =n_{1} x_{1}\left(n_{1} x_{1}-n_{2} x_{2}-n_{3} x_{3}\right)+\frac{k-1}{4} F, \tag{1}\\
\dot{x}_{5} & =n_{2} x_{2}\left(-n_{1} x_{1}+n_{2} x_{2}-n_{3} x_{3}\right)+\frac{k-1}{4} F, \\
\dot{x}_{6} & =n_{3} x_{3}\left(-n_{1} x_{1}-n_{2} x_{2}+n_{3} x_{3}\right)+\frac{k-1}{4} F,
\end{align*}
$$

Type	I	II	VI_{0}	VII_{0}	VIII	IX
a	0	0	0	0	0	0
n_{1}	0	1	1	1	1	1
n_{2}	0	0	-1	1	1	1
n_{3}	0	0	0	0	-1	1

Table 1. The classification of Bianchi class A cosmologies.
where

$$
\begin{align*}
F= & n_{1}^{2} x_{1}^{2}+n_{2}^{2} x_{2}^{2}+n_{3}^{2} x_{3}^{2}-2 n_{1} n_{2} x_{1} x_{2}-2 n_{1} n_{3} x_{1} x_{3}-2 n_{2} n_{3} x_{2} x_{3} \\
& +x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2 x_{4} x_{5}-2 x_{5} x_{6}-2 x_{4} x_{6} . \tag{2}
\end{align*}
$$

Note that system (1) is a homogeneous polynomial differential system of degree 2. The Hamiltonian H becomes after the changes of variables the first integral

$$
\begin{align*}
\mathcal{H}= & \left(x_{1} x_{2} x_{3}\right)^{\frac{k-1}{2}} F \\
= & \left(x_{1} x_{2} x_{3}\right)^{\frac{k-1}{2}}\left(n_{1}^{2} x_{1}^{2}+n_{2}^{2} x_{2}^{2}+n_{3}^{2} x_{3}^{2}-2 n_{1} n_{2} x_{1} x_{2}-2 n_{1} n_{3} x_{1} x_{3}\right. \tag{3}\\
& \left.-2 n_{2} n_{3} x_{2} x_{3}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2 x_{4} x_{5}-2 x_{5} x_{6}-2 x_{4} x_{6}\right)
\end{align*}
$$

of system (1).
Let U be an open and dense subset of \mathbb{R}^{6}. Then we recall that system (1) has a first integral $\mathcal{H}: U \rightarrow \mathbb{R}$ if \mathcal{H} is a non-constant \mathcal{C}^{1}-function such that

$$
\dot{x}_{1} \frac{\partial \mathcal{H}}{\partial x_{1}}+\cdots+\dot{x}_{6} \frac{\partial \mathcal{H}}{\partial x_{6}}=0 .
$$

Many authors have studied some models of Class A for the case $k=1$ considering different types of integrability, see for exemple [$5,6,7,8,9,11,12$]. In this work we study the analytic integrability of all Bianchi models of class A in the variables $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ for $0 \leq k<1$. The following result is well known, see for instance [10].
Proposition 1. Let F be an analytic function and let $F=\sum_{i} F_{i}$ be its decomposition into homogeneous polynomials of degree i. Then F is an analytic first integral of the homogeneous differential system (1) if and only if F_{i} is a homogeneous polynomial first integral of system (1) for all i.

A Hamiltonian system with n degrees of freedom is completely integrable if it admits n independent first integrals in involution, see for more details [1]. A differential system of n variables is completely integrable if it admits $n-1$ independent first integrals.

According to Proposition 1 the study of the analytic first integrals of the homogeneous system (1) is reduced to the study of its polynomial homogeneous first integrals. The main result of this paper is the characterization of the polynomial first integrals of the Bianchi models of class A. Section 2 provides three technical lemmas that we will use in Section 3 to prove the following theorem.

Theorem 2. For $0 \leq k<1$ the following statements hold.
(a) The Bianchi type I model is completely integrable.
(b) The Bianchi type II model has the polynomial first integral $K=x_{5}-x_{6}$. This model does not admit any additional polynomial first integral independent from \mathcal{H} and K.
(c) The Bianchi type VI_{0} and VII_{0} models have no polynomial first integrals.
(d) The Bianchi type VIII and IX models have no polynomial first integrals.

2. Some auxiliary lemmas

In order to prove Theorem 2 we shall use the following three lemmas.
Lemma 3 (see [9]). Let x_{k} be a one-dimensional variable, $k \in\{1, \ldots, n\}, n>1$ and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial. For $l \in\{1, \cdots, n\}$ and c_{0} a constant let $f_{l}=$ $\left.f\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{l}=c_{0}}$. Then there exists a polynomial $g=g\left(x_{1}, \ldots, x_{n}\right)$ such that $f=f_{l}+$ $\left(x_{l}-c_{0}\right) g$.

Lemma 4. Let $g=g\left(x_{4}, x_{5}, x_{6}\right)$ be a homogeneous polynomial solution of the homogeneous partial differential equation

$$
\begin{equation*}
\left(a_{1} x_{4}+a_{2} x_{5}+a_{3} x_{6}\right) g+\frac{k-1}{4} F_{123}\left(\frac{\partial g}{\partial x_{4}}+\frac{\partial g}{\partial x_{5}}+\frac{\partial g}{\partial x_{6}}\right)=0 \tag{4}
\end{equation*}
$$

where $F_{123}=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2\left(x_{4} x_{5}+x_{4} x_{6}+x_{5} x_{6}\right)$ and $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ are such that $\left(a_{1}-a_{2}\right)^{2}+\left(a_{1}-a_{3}\right)^{2} \neq 0$. Then $g \equiv 0$.

Proof. The general solution of equation (4) is

$$
\begin{aligned}
g\left(x_{4}, x_{5}, x_{6}\right)= & f\left(x_{4}-x_{5}, x_{4}-x_{6}\right) \\
& \left(-x_{4}-x_{5}-x_{6}+2 \sqrt{\Delta}\right)^{\Delta_{1}+\Delta_{2}}\left(x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}\right)^{\Delta_{1}-\Delta_{2}}
\end{aligned}
$$

where $\Delta_{1}=2\left(a_{1}+a_{2}+a_{3}\right) /(3(k-1)), \Delta_{2}=\left(\left(2 a_{1}-a_{2}-a_{3}\right) x_{4}+\left(-a_{1}+2 a_{2}-a_{3}\right) x_{5}+\right.$ $\left.\left(-a_{1}-a_{2}+2 a_{3}\right) x_{6}\right) /(3(k-1) \sqrt{\Delta}), \Delta=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-x_{4} x_{5}-x_{4} x_{6}-x_{5} x_{6}$ and f is an arbitrary function. We note that g is a polynomial if and only if $\Delta_{1} \in \mathbb{N}, \Delta_{2}=0$ and f is a polynomial. In particular, the relation $\Delta_{2}=0$ is equivalent to the linear system

$$
\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The solution of this system is $a_{1}=a_{2}=a_{3}$. This cannot happen by assumption. Therefore g is not a polynomial unless $g \equiv 0$.

Lemma 5. Let $g=g\left(x_{4}, x_{5}, x_{6}\right)$ and $h=h\left(x_{4}-x_{5}, x_{4}-x_{6}\right)$ be homogeneous polynomials of respective degrees $n-2$ and n such that

$$
\begin{equation*}
2\left(x_{4}-x_{5}+x_{6}\right) g+\frac{k-1}{4} F_{123}\left(\frac{\partial g}{\partial x_{4}}+\frac{\partial g}{\partial x_{5}}+\frac{\partial g}{\partial x_{6}}\right)+\frac{\partial h}{\partial x_{5}}=0 \tag{5}
\end{equation*}
$$

where $F_{123}=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2\left(x_{4} x_{5}+x_{4} x_{6}+x_{5} x_{6}\right)$. Then $h=h\left(x_{4}-x_{6}\right)$ and $g \equiv 0$.
Proof. Let $h=\sum_{i=0}^{n} a_{i}\left(x_{4}-x_{5}\right)^{i}\left(x_{4}-x_{6}\right)^{n-i}$ and $g=\sum_{i+j=0}^{n-2} b_{i j} x_{4}^{i} x_{5}^{j} x_{6}^{n-2-i-j}$. Suppose that $g \not \equiv 0$. Forcing that the solution of (5) be a polynomial, Mathematica (see [13]) shows that g is of the form

$$
g\left(x_{4}, x_{5}, x_{6}\right)=\frac{4}{1-k} \int \frac{h_{5}}{F_{123}} d x_{4}+f\left(x_{4}-x_{5}, x_{4}-x_{6}\right)
$$

where f is a homogeneous polynomial, $h_{5}=\frac{\partial h}{\partial x_{5}}$ and the integral is to be a polynomial.
Let $A_{1}=\sqrt{x_{5}}-\sqrt{x_{6}}$ and $A_{2}=\sqrt{x_{5}}+\sqrt{x_{6}}$. Under this notation $F_{123}=\left(x_{4}-A_{1}^{2}\right)\left(x_{4}-A_{2}^{2}\right)$. The fraction inside the above integral can be written as

$$
\frac{h_{5}}{F_{123}}=X_{0}+\frac{1}{A_{1}^{2}-A_{2}^{2}}\left(\frac{X_{1}}{x_{4}-A_{1}^{2}}-\frac{X_{2}}{x_{4}-A_{2}^{2}}\right)
$$

where $X_{0}=X_{0}\left(x_{4}, A_{1}, A_{2}\right), X_{1}=X_{1}\left(A_{1}, A_{2}\right)$ and $X_{2}=X_{2}\left(A_{1}, A_{2}\right)$ are homogeneous polynomials. The integrals of the fractions in the right hand side with respect to x_{4} are $X_{i} \log \left(x_{4}-A_{i}^{2}\right), i=1,2$; hence X_{1} and X_{2} must be identically zero. $X_{1}=0$ and $X_{2}=0$
have the same solutions a_{1}, \ldots, a_{n} because of symmetry. Indeed $X_{1}=0\left(\right.$ or $\left.X_{2}=0\right)$ reduces to $S_{n}=0$, where

$$
S_{n}=\sum_{i=1}^{n}\left(3 A_{1}-A_{2}\right)^{n-i}\left(A_{1}+A_{2}\right)^{n-i}\left(3 A_{1}+A_{2}\right)^{i-1}\left(A_{1}-A_{2}\right)^{i-1} i a_{i}
$$

We note that we have the recursive equality

$$
S_{n}=\left(3 A_{1}-A_{2}\right)\left(A_{1}+A_{2}\right) S_{n-1}+\left(3 A_{1}+A_{2}\right)^{n-1}\left(A_{1}-A_{2}\right)^{n-1} n a_{n}
$$

On $A_{1}=-A_{2}$ (or equivalently on $x_{5}=0$) we have $n 4^{n-1} A_{2}^{2 n-2} a_{n}=0$, and hence we have $a_{n}=0$. Induction arguments prove that $S_{n}=0$ implies $a_{1}=\cdots=a_{n}=0$. Therefore $h_{5}=0$, which means that equation (5) is a particular case of equation (4) and then by Lemma 4 we get $g \equiv 0$ and then we are finished.

3. Proof of Theorem 2

In this section we prove the four statements of Theorem 2.
3.1. Proof of statement (a) of Theorem 2. According to Table 1 the Bianchi cosmological model I is obtained for $n_{1}=n_{2}=n_{3}=0$. System (1) becomes

$$
\begin{align*}
\dot{x}_{1} & =x_{1}\left(-x_{4}+x_{5}+x_{6}\right), \\
\dot{x}_{2} & =x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =\frac{k-1}{4} F, \tag{6}\\
\dot{x}_{5} & =\frac{k-1}{4} F, \\
\dot{x}_{6} & =\frac{k-1}{4} F,
\end{align*}
$$

where $F=\left(x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2 x_{4} x_{5}-2 x_{5} x_{6}-2 x_{4} x_{6}\right)$. Straightforward computations show that system (6) has the five first integrals $x_{4}-x_{5}, x_{4}-x_{6}, \mathcal{H}$ defined in (3),

$$
\left(\frac{x_{1}}{x_{2}}\right)^{\frac{1-k}{2}}\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}-x_{5}}{\sqrt{\Delta}}}
$$

and

$$
\left(\frac{x_{2}}{x_{3}}\right)^{\frac{1-k}{2}}\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{5}-x_{6}}{\sqrt{\Delta}}}
$$

with $\Delta=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-x_{4} x_{5}-x_{5} x_{6}-x_{4} x_{6}$. Note that the five first integrals are independent. Statement (a) is proved.
3.2. Prove of statement (b) of Theorem 2. The Bianchi cosmological model II is obtained for $n_{1}=1$ and $n_{2}=n_{3}=0$. System (1) writes as

$$
\begin{align*}
\dot{x}_{1} & =x_{1}\left(-x_{4}+x_{5}+x_{6}\right), \\
\dot{x}_{2} & =x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =x_{1}^{2}+\frac{k-1}{4} F, \tag{7}\\
\dot{x}_{5} & =\frac{k-1}{4} F, \\
\dot{x}_{6} & =\frac{k-1}{4} F,
\end{align*}
$$

where $F=x_{1}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2 x_{4} x_{5}-2 x_{5} x_{6}-2 x_{4} x_{6}$.
Let $h=h\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ be a homogeneous polynomial first integral of (7). Using Lemma 3 we can write $h=h_{1}\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)+x_{1}^{j} g_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$, with $j \in \mathbb{N}$ and h_{1} and g_{1} homogeneous polynomials such that $x_{1} \nmid g_{1}$. On $x_{1}=0$ system (7) becomes

$$
\begin{align*}
& \dot{x}_{2}=x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
& \dot{x}_{3}=x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
& \dot{x}_{4}=\frac{k-1}{4} F_{1}, \tag{8}\\
& \dot{x}_{5}=\frac{k-1}{4} F_{1}, \\
& \dot{x}_{6}=\frac{k-1}{4} F_{1}
\end{align*}
$$

where $F_{1}=\left.F\right|_{x_{1}=0}$. System (8) admits the two polynomial first integrals $x_{4}-x_{5}$ and $x_{5}-x_{6}$ and the two non-polynomial first integrals

$$
x_{2}^{\frac{3}{2}(k-1)} F_{1}\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}-2 x_{5}+x_{6}}{\sqrt{\Delta}}}
$$

and

$$
x_{3}^{\frac{3}{2}(k-1)} F_{1}\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}+x_{5}-2 x_{6}}{\sqrt{\Delta}}}
$$

where $\Delta=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-x_{4} x_{5}-x_{4} x_{6}-x_{5} x_{6}$. As these four first integrals of system (8) are independent and h_{1} is a polynomial first integral of (8), we have $h_{1}=h_{1}\left(x_{4}-x_{5}, x_{5}-x_{6}\right)$.

The following lemma ends the proof of statement (b) of Theorem 2.
Lemma 6. For system (7) we have that $h_{1}=h_{1}\left(x_{5}-x_{6}\right)$ and $g_{1} \equiv 0$.
Proof. Suppose that $g_{1} \not \equiv 0$. As h is a first integral of (7), we have

$$
\begin{align*}
x_{1}^{j} & {\left[j\left(-x_{4}+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}}\right.} \\
& \left.+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}^{2} \frac{\partial g_{1}}{\partial x_{4}}+\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)\right]+x_{1}^{2} \frac{\partial h_{1}}{\partial x_{4}}=0 . \tag{9}
\end{align*}
$$

We distinguish three cases depending on the value of j. If $j=1$ then equation (9) becomes

$$
\begin{aligned}
\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}^{2} \frac{\partial g_{1}}{\partial x_{4}}+\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)+x_{1} \frac{\partial h_{1}}{\partial x_{4}}=0
\end{aligned}
$$

Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. Equation (9) on $x_{1}=0$ can be written as

$$
\begin{aligned}
& \left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}}+\frac{k-1}{4} F_{1}\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. We get

$$
\begin{aligned}
\left(\left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
\begin{aligned}
\left(\left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) \bar{g}_{2} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

where $F_{12}=\left.F_{1}\right|_{x_{2}=0}$. Now we write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We obtain

$$
\begin{aligned}
\left(\left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
\begin{aligned}
& \left(\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) \bar{g}_{3} \\
& \quad+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0
\end{aligned}
$$

where $F_{123}=\left.F_{12}\right|_{x_{3}=0}$. Applying Lemma 4 we get $\bar{g}_{3} \equiv 0$, which is a contradiction. Hence we have $g_{1} \equiv 0$ and therefore $\frac{\partial h_{1}}{\partial x_{4}} \equiv 0$. The lemma follows in this case.

If $j>2$ then $x_{1} \left\lvert\, \frac{\partial h_{1}}{\partial x_{4}}\right.$, and then $\frac{\partial h_{1}}{\partial x_{4}} \equiv 0$. Now we can proceed in a similar way as in the case $j=1$ to prove that $g_{1} \equiv 0$ by using Lemma 4 .

If $j=2$ then equation (9) becomes

$$
\begin{aligned}
2\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}^{2} \frac{\partial g_{1}}{\partial x_{4}}+\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)+\frac{\partial h_{1}}{\partial x_{4}}=0
\end{aligned}
$$

Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. Equation (9) on $x_{1}=0$ can be written as

$$
\begin{aligned}
& 2\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}}+\frac{k-1}{4} F_{1}\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)+\frac{\partial h_{1}}{\partial x_{4}}=0
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. We get

$$
\begin{aligned}
\left(2 \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)+\frac{\partial h_{1}}{\partial x_{4}}=0
\end{aligned}
$$

If $l>0$ then $\frac{\partial h_{1}}{\partial x_{4}} \equiv 0$. Similar arguments to those used above lead to the desired result after applying Lemma 4 . If $l=0$, let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
2\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)+\frac{\partial h_{1}}{\partial x_{4}}=0
$$

where $F_{12}=\left.F_{1}\right|_{x_{2}=0}$. Now we write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We obtain

$$
\begin{aligned}
\left(2 \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)+\frac{\partial h_{1}}{\partial x_{4}}=0 .
\end{aligned}
$$

If $m>0$ then $\frac{\partial h_{1}}{\partial x_{4}} \equiv 0$. Again the usual arguments lead to the desired result after applying Lemma 4. If $m=0$, let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
2\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)+\frac{\partial h_{1}}{\partial x_{4}}=0
$$

where $F_{123}=\left.F_{12}\right|_{x_{3}=0}$. Applying Lemma 5 swapping x_{4} and x_{5} we get $\bar{g}_{3} \equiv 0$, which is a contradiction. Hence we have $g_{1} \equiv 0$ and therefore $\frac{\partial h_{1}}{\partial x_{4}} \equiv 0$. The lemma follows also in this case.

After Lemma 6, $h=h\left(x_{5}-x_{6}\right)$. Hence statement (b) of Theorem 2 follows.
3.3. Proof of statement (c) of Theorem 2. According to Table 1, system (1) in cases VI_{0} and VII_{0} can be written as

$$
\begin{align*}
\dot{x}_{1} & =x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \\
\dot{x}_{2} & =x_{2}\left(x_{4}-x_{5}+x_{6}\right) \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right) \\
\dot{x}_{4} & =x_{1}\left(x_{1}-n_{2} x_{2}\right)+\frac{k-1}{4} F \tag{10}\\
\dot{x}_{5} & =n_{2} x_{2}\left(-x_{1}+n_{2} x_{2}\right)+\frac{k-1}{4} F \\
\dot{x}_{6} & =\frac{k-1}{4} F
\end{align*}
$$

where $F=\left(x_{1}-n_{2} x_{2}\right)^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2 x_{4} x_{5}-2 x_{5} x_{6}-2 x_{4} x_{6}$ and $n_{2}^{2}=1$. Suppose that system (10) has a homogeneous polynomial first integral $h\left(x_{1}, \ldots, x_{6}\right)$. From Lemma 3 we can write $h=h_{1}\left(x_{2}, \ldots, x_{6}\right)+x_{1}^{j} g_{1}\left(x_{1}, \ldots, x_{6}\right)$, with $j \in \mathbb{N}$ and h_{1} and g_{1} homogeneous polynomials such that $x_{1} \nmid g_{1}$. System (10) on $x_{1}=0$ is

$$
\begin{align*}
\dot{x}_{2} & =x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =\frac{k-1}{4} F_{1}, \tag{11}\\
\dot{x}_{5} & =x_{2}^{2}+\frac{k-1}{4} F_{1}, \\
\dot{x}_{6} & =\frac{k-1}{4} F_{1},
\end{align*}
$$

where $F_{1}=\left.F\right|_{x_{1}=0}$. We note that h_{1} is a first integral of system (11). From Lemma 3 we can write $h_{1}=h_{2}\left(x_{3}, \ldots, x_{6}\right)+x_{2}^{l} g_{2}\left(x_{2}, \ldots, x_{6}\right)$, with $l \in \mathbb{N}$ and h_{2} and g_{2} homogeneous polynomials such that $x_{2} \nmid g_{2}$. System (11) on $x_{2}=0$ writes

$$
\begin{align*}
& \dot{x}_{3}=x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
& \dot{x}_{4}=\frac{k-1}{4} F_{12}, \\
& \dot{x}_{5}=\frac{k-1}{4} F_{12}, \tag{12}\\
& \dot{x}_{6}=\frac{k-1}{4} F_{12},
\end{align*}
$$

where $F_{12}=\left.F_{1}\right|_{x_{2}=0}$. We note that h_{2} is a first integral of system (12). Straightforward computations show that system (12) has the three independent first integrals $x_{4}-x_{5}, x_{5}-x_{6}$ and

$$
x_{3}^{\frac{3}{2}(k-1)} F_{12}\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}+x_{5}-2 x_{6}}{\sqrt{\Delta}}}
$$

where $\Delta=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-x_{4} x_{5}-x_{4} x_{6}-x_{5} x_{6}$. Therefore $h_{2}=h_{2}\left(x_{4}-x_{5}, x_{4}-x_{6}\right)$.
Lemma 7. For system (11) we have that $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$ and $g_{2} \equiv 0$.
Proof. Suppose that $g_{2} \not \equiv 0$. As $h_{1}=h_{2}+x_{2}^{l} g_{2}$ is a first integral of system (11), we can write

$$
\begin{align*}
& x_{2}^{l}\left[l\left(x_{4}-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}\right. \tag{13}\\
& \left.\quad+x_{2}^{2} \frac{\partial g_{2}}{\partial x_{5}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)\right]+x_{2}^{2} \frac{\partial h_{2}}{\partial x_{5}}=0 .
\end{align*}
$$

We distinguish three cases depending on the value of l. If $l=1$ then equation (13) becomes

$$
\begin{aligned}
\left(x_{4}\right. & \left.-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)+x_{2} \frac{\partial h_{2}}{\partial x_{5}}+x_{2}^{2} \frac{\partial g_{2}}{\partial x_{5}}=0 .
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
\left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0 .
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. Then

$$
\begin{aligned}
\left(\left(x_{4}\right.\right. & \left.\left.-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we get

$$
\left(\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0
$$

where $F_{123}=\left.F_{12}\right|_{x_{3}=0}$. Applying Lemma 4 we obtain $\bar{g}_{3} \equiv 0$, which is a contradiction. Hence $g_{2} \equiv 0$. Back to equation (13) we have $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$. Then the lemma follows.

If $l>2$, then from equation (13) we have that $x_{2} \left\lvert\, \frac{\partial h_{2}}{\partial x_{5}}\right.$ and thus $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$. Therefore $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$. Now we can proceed in a similar way as in the case $l=1$ to obtain the equation

$$
\left(l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0
$$

Applying again Lemma 4 we arrive to contradiction and hence $g_{2} \equiv 0$.
If $l=2$, then equation (13) writes as

$$
\begin{aligned}
2\left(x_{4}\right. & \left.-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)+x_{2}^{2} \frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial h_{2}}{\partial x_{5}}=0
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
2\left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)+\frac{\partial h_{2}}{\partial x_{5}}=0 .
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. Then

$$
\begin{aligned}
& x_{3}^{m}\left[\left(2\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}\right. \\
& \left.\quad+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+p d g_{3} x_{6}\right)\right]+\frac{\partial h_{2}}{\partial x_{5}}=0 .
\end{aligned}
$$

We distinguish two cases depending on the value of m. If $m>0$ then $x_{3} \left\lvert\, \frac{\partial h_{2}}{\partial x_{5}}\right.$. Hence $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$ and $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$. Now let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain

$$
\left(2\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0
$$

Applying Lemma 4 we get a contradiction and hence $g_{2} \equiv 0$.

If $m=0$, let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain

$$
2\left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)+\frac{\partial h_{2}}{\partial x_{5}}=0 .
$$

Applying Lemma 5 we get $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$ and $\bar{g}_{3} \equiv 0$, hence the lemma follows.
All the subcases are finished and therefore the lemma is proved.
After Lemma 7 we have that $h=h_{2}\left(x_{4}-x_{6}\right)+x_{1}^{j} g_{1}\left(x_{1}, \ldots, x_{6}\right)$, with $j \in \mathbb{N}$ and $x_{1} \nmid g_{1}$. We recall that h is a first integral of system (10). Thus

$$
\begin{align*}
x_{1}^{j} & {\left[j\left(-x_{4}+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}\right.} \\
& +x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial g_{1}}{\partial x_{4}} \tag{14}\\
& \left.-n_{2} x_{2}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial g_{1}}{\partial x_{5}}+\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)\right]+x_{1}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial h_{2}}{\partial x_{4}}=0 .
\end{align*}
$$

Lemma 8. For system (10) we have that $h_{2} \equiv 0$ and $g_{1} \equiv 0$.
Proof. Suppose that $g_{1} \not \equiv 0$. We distinguish two cases depending on the value of j. If $j>1$ then from equation (14) we have that $x_{1} \left\lvert\, \frac{\partial h_{2}}{\partial x_{4}}\right.$, and hence $h_{2} \equiv 0$. Therefore equation (14) can be written as

$$
\begin{aligned}
j\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial g_{1}}{\partial x_{4}}-n_{2} x_{2}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial g_{1}}{\partial x_{5}} \\
& +\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. Equation (14) on $x_{1}=0$ becomes

$$
\begin{aligned}
j\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}} \\
& +x_{2}^{2} \frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{k-1}{4} F_{1}\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. We get

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+x_{2}^{2} \frac{\partial g_{2}}{\partial x_{5}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. Then, on $x_{2}=0$ we have

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Now write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We get

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. Then, on $x_{3}=0$ we have

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) \bar{g}_{3} \\
& +\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we obtain $\bar{g}_{3} \equiv 0$, a contradiction. Hence $g_{1} \equiv 0$ and the lemma follows in this case.

If $j=1$ then equation (14) becomes

$$
\begin{aligned}
\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial g_{1}}{\partial x_{4}} \\
& -n_{2} x_{2}\left(x_{1}-n_{2} x_{2}\right) \frac{\partial g_{1}}{\partial x_{5}}+\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)+\left(x_{1}-n_{2} x_{2}\right) \frac{\partial h_{2}}{\partial x_{4}}=0 .
\end{aligned}
$$

Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. On $x_{1}=0$ we have

$$
\begin{aligned}
\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}} \\
& +x_{2}^{2} \frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{k-1}{4} F_{1}\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)-n_{2} x_{2} \frac{\partial h_{2}}{\partial x_{4}}=0
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. We get

$$
\begin{align*}
x_{2}^{l} & {\left[\left(\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}\right.} \\
& \left.+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+x_{2}^{2} \frac{\partial g_{2}}{\partial x_{5}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)\right] \tag{15}\\
& -n_{2} x_{2} \frac{\partial h_{2}}{\partial x_{4}}=0 .
\end{align*}
$$

We distinguish three cases depending on the value of l. If $l>1$ then $x_{2} \left\lvert\, \frac{\partial h_{2}}{\partial x_{4}}\right.$. Hence $h_{2} \equiv 0$. Thus, from (15),

$$
\begin{aligned}
\left(\left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+x_{2}^{2} \frac{\partial g_{2}}{\partial x_{5}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Similar arguments to those used before lead to an equation of type (4) and hence applying Lemma 4 we get a contradiction. Therefore $g_{1} \equiv 0$ and the lemma follows.

If $l=0$ then we can use the same arguments to arrive from equation (15) to an equation of type (4), and hence applying Lemma 4 we get a contradiction. Therefore $g_{1} \equiv 0$ and $h_{2} \equiv 0$, so the lemma follows.

It only remains to consider the case $l=1$. Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. From equation (15) on $x_{2}=0$ we have

$$
2 x_{6} \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)-n_{2} \frac{\partial h_{2}}{\partial x_{4}}=0 .
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We get:

$$
\begin{aligned}
x_{3}^{m} & {\left[\left(2 x_{6}+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}\right.} \\
& \left.+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)\right]-n_{2} \frac{\partial h_{2}}{\partial x_{4}}=0 .
\end{aligned}
$$

If $m>0$ then $x_{3} \left\lvert\, \frac{\partial h_{2}}{\partial x_{4}}\right.$, and hence $h_{2} \equiv 0$. Therefore we obtain an equation of type (4) and hence by Lemma 4 we get $g_{1} \equiv 0$. If $m=0$, let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$, we have

$$
\begin{equation*}
2 x_{6} \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)-n_{2} \frac{\partial h_{2}}{\partial x_{4}}=0 . \tag{16}
\end{equation*}
$$

As $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$ is a homogeneous polynomial of degree n, we have $h_{2}=a_{0}\left(x_{4}-x_{6}\right)^{n}$. Thus $\frac{\partial h_{2}}{\partial x_{4}}=a_{0} n\left(x_{4}-x_{6}\right)^{n-1}$. On $x_{6}=0$ equation (16) writes

$$
\left.\frac{k-1}{4}\left(x_{4}-x_{5}\right)^{2}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)\right|_{x_{6}=0}-n_{2} a_{0} n x_{4}^{n-1}=0
$$

Therefore we must take $a_{0}=0$ and hence $h_{2} \equiv 0$. Now equation (16) is of type (4) and hence by Lemma 4 we get $g_{1} \equiv 0$ and the lemma follows.

After Lemma 8 statement (c) of Theorem 2 is proved, as it follows that $h \equiv 0$.
3.4. Proof of statement (d) of Theorem 2. According to Table 1, Bianchi cases VIII and IX correspond to $n_{1}=n_{2}=n_{3}^{2}=1$ and can be written into the form

$$
\begin{align*}
& \dot{x}_{1}=x_{1}\left(-x_{4}+x_{5}+x_{6}\right), \\
& \dot{x}_{2}=x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
& \dot{x}_{3}=x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
& \dot{x}_{4}=x_{1}\left(x_{1}-x_{2}-n_{3} x_{3}\right)+\frac{k-1}{4} F, \tag{17}\\
& \dot{x}_{5}=x_{2}\left(-x_{1}+x_{2}-n_{3} x_{3}\right)+\frac{k-1}{4} F, \\
& \dot{x}_{6}=n_{3} x_{3}\left(-x_{1}-x_{2}+n_{3} x_{3}\right)+\frac{k-1}{4} F,
\end{align*}
$$

where $F=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 n_{3} x_{1} x_{3}-2 n_{3} x_{2} x_{3}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2 x_{4} x_{5}-2 x_{5} x_{6}-2 x_{4} x_{6}$ and $n_{3}^{2}=1$. Let $h=h\left(x_{1}, \cdots, x_{6}\right)$ be a homogeneous polynomial first integral of degree n of system (17). Write $h=h_{1}\left(x_{2}, \cdots, x_{6}\right)+x_{1}^{j} g_{1}\left(x_{1}, \cdots, x_{6}\right)$, with $j \in \mathbb{N}, h_{1}$ and g_{1}
homogeneous polynomials and $x_{1} \nmid g_{1}$. System (17) on $x_{1}=0$ becomes

$$
\begin{align*}
& \dot{x}_{2}=x_{2}\left(x_{4}-x_{5}+x_{6}\right) \\
& \dot{x}_{3}=x_{3}\left(x_{4}+x_{5}-x_{6}\right) \\
& \dot{x}_{4}=\frac{k-1}{4} F_{1} \tag{18}\\
& \dot{x}_{5}=x_{2}\left(x_{2}-n_{3} x_{3}\right)+\frac{k-1}{4} F_{1} \\
& \dot{x}_{6}=-n_{3} x_{3}\left(x_{2}-n_{3} x_{3}\right)+\frac{k-1}{4} F_{1}
\end{align*}
$$

where $F_{1}=\left.F\right|_{x_{1}=0}$. System (18) admits $h_{1}=h_{1}\left(x_{2}, \cdots, x_{6}\right)$ as first integral. Write $h_{1}=h_{2}\left(x_{3}, \cdots, x_{6}\right)+x_{2}^{l} g_{2}\left(x_{2}, \cdots, x_{6}\right)$, with $l \in \mathbb{N}, h_{2}$ and g_{2} homogeneous polynomials and $x_{2} \nmid g_{2}$. System (18) on $x_{2}=0$ becomes

$$
\begin{align*}
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =\frac{k-1}{4} F_{12} \\
\dot{x}_{5} & =\frac{k-1}{4} F_{12} \tag{19}\\
\dot{x}_{6} & =x_{3}^{2}+\frac{k-1}{4} F_{12}
\end{align*}
$$

where $F_{12}=\left.F_{1}\right|_{x_{2}=0}$. We note that $h_{2}=h_{2}\left(x_{3}, \cdots, x_{6}\right)$ is a first integral of system (19). Write $h_{2}=h_{3}\left(x_{4}, x_{5}, x_{6}\right)+x_{3}^{m} g_{3}\left(x_{3}, x_{4}, x_{5}, x_{6}\right)$, with $m \in \mathbb{N}, h_{3}$ and g_{3} homogeneous polynomials and $x_{3} \nmid g_{3}$. System (19) on $x_{3}=0$ is

$$
\begin{align*}
\dot{x}_{4} & =\frac{k-1}{4} F_{123}, \\
\dot{x}_{5} & =\frac{k-1}{4} F_{123}, \tag{20}\\
\dot{x}_{6} & =\frac{k-1}{4} F_{123}
\end{align*}
$$

where $F_{123}=\left.F_{12}\right|_{x_{3}=0}$. Note that h_{3} is a polynomial first integral of system (20). Since system (20) admits the two independent first integrals $x_{4}-x_{5}$ and $x_{5}-x_{6}$, any polynomial first integral of (20) must be a polynomial in the variables $x_{4}-x_{5}$ and $x_{5}-x_{6}$. Therefore $h_{3}=h_{3}\left(x_{4}-x_{5}, x_{5}-x_{6}\right)$.

The next three lemmas end the proof of statement (d) of Theorem 2. The first one shows that $h_{2}=h_{2}\left(x_{4}-x_{5}\right)$.

Lemma 9. For system (19) we have that $g_{3} \equiv 0$ and $h_{3}=h_{3}\left(x_{4}-x_{5}\right)$.
Proof. Suppose that $g_{3} \not \equiv 0$. We recall that $h_{2}=h_{3}\left(x_{4}-x_{5}, x_{5}-x_{6}\right)+x_{3}^{m} g_{3}\left(x_{3}, x_{4}, x_{5}, x_{6}\right)$, where $m \in \mathbb{N}$ and $x_{3} \nmid g_{3}$. As h_{2} is a first integral of system (19), we have

$$
\begin{align*}
x_{3}^{m} & {\left[m\left(x_{4}+x_{5}-x_{6}\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}}\right.} \\
& \left.+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)\right]+x_{3}^{2} \frac{\partial h_{3}}{\partial x_{6}}=0 . \tag{21}
\end{align*}
$$

We distinguish three cases depending on the value of m.

If $m=1$ then

$$
\begin{aligned}
\left(x_{4}\right. & \left.+x_{5}-x_{6}\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}} \\
& +\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)+x_{3} \frac{\partial h_{3}}{\partial x_{6}}=0
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
\left(x_{4}+x_{5}-x_{6}\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
$$

Applying Lemma 4 we get $\bar{g}_{3} \equiv 0$ and hence $g_{3} \equiv 0$. Consequently $\frac{\partial h_{3}}{\partial x_{6}}=0$ and the lemma follows in this case.

If $m>2$ then from (21) we have $x_{3} \left\lvert\, \frac{\partial h_{3}}{\partial x_{6}}\right.$ and so $h_{3}=h_{3}\left(x_{4}-x_{5}\right)$. Now from equation (21) on $x_{3}=0$ we get an equation of type (4), hence applying Lemma 4 we get $g_{3} \equiv 0$ and the lemma follows in this case.

If $m=2$ then from (21) we have

$$
\begin{aligned}
2\left(x_{4}\right. & \left.+x_{5}-x_{6}\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}} \\
& +\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)+\frac{\partial h_{3}}{\partial x_{6}}=0
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain

$$
2\left(x_{4}+x_{5}-x_{6}\right) \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)+\frac{\partial h_{3}}{\partial x_{6}}=0 .
$$

Applying Lemma 5 swapping x_{5} and x_{6} we get $\frac{\partial h_{3}}{\partial x_{6}}=0$ and $\bar{g}_{3} \equiv 0$. Hence $h_{3}=h_{3}\left(x_{4}-x_{5}\right)$, $g_{3} \equiv 0$ and the lemma follows in this case.

The second lemma shows that $h_{1} \equiv 0$.
Lemma 10. For system (18) we have that $g_{2} \equiv 0$ and $h_{2} \equiv 0$.
Proof. Suppose that $g_{2} \not \equiv 0$. We recall that $h_{1}=h_{2}\left(x_{4}-x_{5}\right)+x_{2}^{l} g_{2}$, with $l \in \mathbb{N}$ and $x_{2} \nmid g_{2}$. As h_{1} is a first integral of system (18), we have

$$
\begin{aligned}
x_{2}^{l} & {\left[l\left(x_{4}-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+x_{2}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{5}}\right.} \\
& \left.-n_{3} x_{3}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{6}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)\right]+x_{2}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial h_{2}}{\partial x_{5}}=0
\end{aligned}
$$

We distinguish two cases depending on the value of l. If $l>1$ then $x_{2} \left\lvert\, \frac{\partial h_{2}}{\partial x_{5}}\right.$ and hence $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$, which means that $h_{2} \equiv 0$. Substituting in the equation above we have

$$
\begin{aligned}
& l\left(x_{4}-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}} \\
& \quad+x_{2}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{5}}-n_{3} x_{3}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{6}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

The usual arguments lead to equation (4), hence we obtain $g_{2} \equiv 0$ by Lemma 4 .
If $l=1$ then we have

$$
\begin{aligned}
\left(x_{4}\right. & \left.-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+x_{2}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{5}} \\
& -n_{3} x_{3}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{6}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)+\left(x_{2}-n_{3} x_{3}\right) \frac{\partial h_{2}}{\partial x_{5}}=0
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
\begin{align*}
\left(x_{4}\right. & \left.-x_{5}+x_{6}\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+x_{3}^{2} \frac{\partial \bar{g}_{2}}{\partial x_{6}} \\
& +\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)-n_{3} x_{3} \frac{\partial h_{2}}{\partial x_{5}}=0 . \tag{22}
\end{align*}
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. Then

$$
\begin{aligned}
& x_{3}^{m} {\left[\left(\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}\right.} \\
&\left.\quad+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)\right]-n_{3} x_{3} \frac{\partial h_{2}}{\partial x_{5}}=0 .
\end{aligned}
$$

Now we distinguish three cases depending on the value of m. If $m=0$ then we are in (22) again and the usual arguments lead to $g_{2} \equiv 0$ and $h_{2} \equiv 0$.

If $m>1$ then $x_{3} \left\lvert\, \frac{\partial h_{2}}{\partial x_{5}}\right.$ and hence $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$, which means that $h_{2} \equiv 0$. Then we have

$$
\begin{aligned}
& \left(\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}} \\
& \quad+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0
\end{aligned}
$$

The usual arguments finish the proof in this case.
Finally if $m=1$ then we have

$$
2 x_{4} g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)-n_{3} \frac{\partial h_{2}}{\partial x_{5}}=0
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
2 x_{4} \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)-n_{3} \frac{\partial h_{2}}{\partial x_{5}}=0 .
$$

As $h_{2}=h_{2}\left(x_{4}-x_{5}\right)$ is a homogeneous polynomial of degree n, we have $h_{2}=a_{0}\left(x_{4}-x_{5}\right)^{n}$.
Hence

$$
2 x_{4} \bar{g}_{3}+\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)+n_{3} a_{0} n\left(x_{4}-x_{5}\right)^{n-1}=0
$$

On $x_{4}=0$ we have

$$
\left.\frac{k-1}{4}\left(x_{5}-x_{6}\right)^{2}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)\right|_{x_{4}=0}+n_{3} a_{0} n\left(-x_{5}\right)^{n-1}=0
$$

which means that $a_{0}=0$. Therefore $h_{2} \equiv 0$. The equation is now of type (4) and leads to $g_{2} \equiv 0$ by Lemma 4 .

All the subcases are considered and the proof of the lemma is finished.

The last lemma shows that $g_{1} \equiv 0$ and therefore that $h \equiv 0$.
Lemma 11. For system (17) we have that $g_{1} \equiv 0$.
Proof. Suppose that $g_{1} \not \equiv 0$. We recall that $h=x_{1}^{j} g_{1}$, with $j \in \mathbb{N}$ and $x_{1} \nmid g_{1}$, is a first integral of system (17). Then

$$
\begin{aligned}
j\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}}+x_{1}\left(x_{1}-x_{2}-n_{3} x_{3}\right) \frac{\partial g_{1}}{\partial x_{4}} \\
& +x_{2}\left(-x_{1}+x_{2}-n_{3} x_{3}\right) \frac{\partial g_{1}}{\partial x_{5}}+n_{3} x_{3}\left(-x_{1}-x_{2}+n_{3} x_{3}\right) \frac{\partial g_{1}}{\partial x_{6}} \\
& +\frac{k-1}{4} F\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. On $x_{1}=0$ we have

$$
\begin{aligned}
j\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}} \\
& +x_{2}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial \bar{g}_{1}}{\partial x_{5}}+n_{3} x_{3}\left(-x_{2}+n_{3} x_{3}\right) \frac{\partial \bar{g}_{1}}{\partial x_{6}}+\frac{k-1}{4} F_{1}\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. We get

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+x_{2}\left(x_{2}-n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{5}} \\
& +n_{3} x_{3}\left(-x_{2}+n_{3} x_{3}\right) \frac{\partial g_{2}}{\partial x_{6}}+\frac{k-1}{4} F_{1}\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}} \\
& +x_{3}^{2} \frac{\partial \bar{g}_{2}}{\partial x_{6}}+\frac{k-1}{4} F_{12}\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We get

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+x_{3}^{2} \frac{\partial g_{3}}{\partial x_{6}}+\frac{k-1}{4} F_{12}\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
\begin{aligned}
\left(j \left(-x_{4}\right.\right. & \left.\left.+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) \bar{g}_{3} \\
& +\frac{k-1}{4} F_{123}\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

We can apply Lemma 4. Hence the lemma follows.
After Lemma 11, we get $h \equiv 0$. Thus the proof of statement (d) of Theorem 2 is finished.

References

[1] R. Abraham and J.E. Marsden, Foundations of Mechanics. Second Edition, The BenjaminCummings Publishing Company, 1978.
[2] L. Bianchi, Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti (On the spaces of three dimensions that admit a continuous group of movements), Mem. Mat. Fis. Soc. Ital. Sci. 11 (1898), 267-352.
[3] L. BiAnchi, Lezioni sulla teoria dei gruppi continui finiti di trasformazioni (Lectures on the theory of finite continuous transformation grups), Spoerri, Pisa (1918), 550-557.
[4] O.I. Bogoyavlensky, Qualitative Theory of Dynamical systems in Astrophysics and Gas Dynamics, Springer-Verlag, 1985.
[5] R. Cushman and J. Sniatycki, Local integrability of the Mixmaster model, Reports on Math. Phys. 36 (1995), 75-89.
[6] A. Ferragut, J. Llibre and C. Pantazi, Analytic integrability of Bianchi Class A cosmological models with $k=1$, J. Geom. Phys. 62 (2012), 381-386.
[7] A. Latifi, M. Musette and R. Conte, The Bianchi IX cosmological model is not integrable, Phys. Lect. A 194 (1994), 83-92.
[8] J. Llibre and C. Valls, Formal and analytical integrability of Bianchi IX system, J. Mat. Phys. 47 (2006), 022704-15 pp.
[9] J. Llibre and C. Valls, The Bianchi VIII model is neither global analytic nor Darboux integrable, J. Mat. Phys. 51 (2010), 092702-13 pp.
[10] J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems, Nonlinearity 15 (2002), 1269-1280.
[11] A.J. Maciejewski, J. Strelcyn and M. SzydŁowski, Nonintegrability of Bianchi VIII Hamiltonian systems, J. Math. Phys. 42 (2001), 1728-13 pp.
[12] J.J. Morales-Ruiz and J.P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Meth. and Appl. of Anal. 8 (2001) 97-112.
[13] Wolfram Research, Inc., Mathematica, V. 8.0, Champaign, IL, 2010.
${ }^{1}$ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, ETSEIB, Av. Diagonal, 647, 08028, Barcelona, Catalonia, Spain

E-mail address: Antoni.Ferragut@upc.edu
2 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat
${ }^{3}$ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, EPSEB, Av. Doctor Marañón, 44-50, 08028 Barcelona, Catalonia, Spain

E-mail address: chara.pantazi@upc.edu

[^0]: 2010 Mathematics Subject Classification. 34A05, 34A34, 34C14.
 Key words and phrases. homogeneous systems, polynomial first integral, analytic first integral, Bianchi cosmological models.

 All the authors are partially supported by the MICINN/FEDER grant MTM2008-03437. A.F. is additionally supported by grants Juan de la Cierva, 2009SGR410 and MTM2009-14163-C02-02. J.L. is additionally partially supported by an AGAUR grant number 2009 SGR410 and by ICREA Academia. C.P. is additionally partially supported by the MICINN/FEDER grant number MTM2009-06973 and by the AGAUR grant number 2009SGR859.

