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ON THE MAXIMUM NUMBER OF LIMIT CYCLES OF
DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL
SYSTEMS WITH A STRAIGHT LINE OF SEPARATION

JAUME LLIBRE!, MARCO ANTONIO TEIXEIRA? AND JOAN TORREGROSA!

ABSTRACT. In this paper we study the maximum number of limit cycles for pla-
nar discontinuous piecewise linear differential systems defined in two half—planes
separated by a straight line. Here we only consider non-sliding limit cycles. For
that systems, the interior of any limit cycle only contains a unique singular
point or a unique sliding segment. Moreover, the linear differential systems
that we consider in every half-plane can have either a focus (F), or a node (N),
or a saddle (S), these equilibrium points can be real or virtual. Then, we can
consider six kinds of planar discontinuous piecewise linear differential systems:
FF, FN, FS, NN, NS, SS. We analyze for each of these types of discontinuous
differential systems the maximum number of known limit cycles.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The study of piecewise linear differential systems goes back to Andronov and
coworkers [2], and today still are studied by many researchers. Thus, these last
years a big interest from the mathematical community takes place trying to un-
derstand their dynamical richness, because such systems are widely used to model
many real processes and different modern devices, see for more details [6] and the
references therein. More recently, these systems become also relevant as idealized
models of cell activity, see [4, 20, 21].

The case of continuous piecewise linear differential systems, when they have only
two half-planes separated by a straight line is the simplest possible configuration
of piecewise linear differential systems. In 1990 Lum and Chua [17] conjectured
that a continuous piecewise linear vector field in the plane with two zones has
at most one limit cycle. In 1998 this conjecture was proved by Freire, Ponce,
Rodrigo and Torres in [9]. We note that even in this apparent simple case, only
after a hard analysis it was possible to establish the existence of at most one limit
cycle, see [9]. The reason for these difficulties in the continuous piecewise linear
differential systems is double. First, even we can easily compute their solutions in
every half-plane, in general the time that each orbit requires to pass from one half-
plane to the other is not known explicitly and consequently the matching of the
corresponding solutions is a complicate problem. Second, in general the number
of parameters to consider in order to take into account all possible configurations
is not small.

The purpose of this paper is to study the problem of Lum and Chua for the
class of discontinuous piecewise linear vector field in the plane with two zones.
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Limit cycles of discontinuous piecewise linear differential systems defined on
two half-planes separated by a straight line have been studied recently in [3,
10, 11, 12, 13, 14], among other papers. The linear differential systems that we
consider in every half-plane can be in the full plane either a focus (F), or a node
(N), or a saddle (S), of course all these equilibrium points are hyperbolic, i.e. with
eigenvalues having their real part different from zero. We note that there are three
classes of hyperbolic linear nodes: nodes with different eigenvalues, nodes with
equal eigenvalues whose linear part does not diagonalize, and nodes with equal
eigenvalues whose linear diagonalize. Clearly this last class of linear nodes have all
the straight lines through the node invariant and consequently the corresponding
piecewise linear differential systems cannot have periodic orbits.

We say that the equilibrium point of a given linear differential system defined
in a half-plane having in the full plane a focus, a node or a saddle is real when this
equilibrium point belongs to the closure of the half-plane where we have defined
the corresponding linear differential system, and it is called virtual otherwise.

In short we distinguish six classes or types of planar discontinuous piecewise
linear differential systems: FF, FN, FS, NN, NS, SS. Inside these classes we only
consider limit cycles surrounding a unique equilibrium point or a unique sliding
segment. For a definition of sliding segment see for instance [19]. Moreover, it is
worth saying that we do not consider the so called sliding limit cycles, i.e. limit
cycles containing a sliding segment, see [10] for more details on these kind of limit
cycles.

In this paper and in what follows the discontinuous piecewise linear differential
systems, when they have only two half—planes separated by a straight line and are
of one of the above six classes will be denoted simply by discontinuous systems.

Han and Zhang provided discontinuous systems of the types FF, FN and NN
with two limit cycles, and they conjectured that the maximum number of limit
cycles for this class of discontinuous systems is exactly two, see [11]. However,
by considering a special family of discontinuous systems sharing the equilibrium
position, Huan and Yang in [12] provided strong numerical evidence about the
existence of three limit cycles in the FF case. The example in [12] represents up
to the best of our knowledge the first discontinuous system with 3 limit cycles
surrounding a unique equilibrium. Later on Llibre and Ponce in [14] provided a
proof of the existence of such 3 limit cycles. Also recently Artés, Llibre, Medrado
and Teixeira in [3] show that the type SS can exhibit 2 limit cycles.

In summary, the maximum number of limit cycles of discontinuous systems up
to now are given in Table 1(a). In that table the symbol — indicates that those
cases appear repeated in the table, because for instance the case NF is the same
that the case FN, which already appears with a 2 in the table.

In this paper we will prove that in the cases F'S and NS there are discontinuous
systems having 2 limit cycles. These two limit cycles bifurcates from a homoclinic
connection. So, the maximum number of limit cycles of discontinuous systems up
to now are given in Table 1(b). Thus our main results are the following three
theorems.



LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS 3

[ [F[NIS| [ [FIN]S]
Fl312]7] [F[3]2]2
N -l2f2] [N|-|2]2
sil-|-12] [s]|-| |2

(a) (b)
TABLE 1. The maximum number of known limit cycles of discon-
tinuous piecewise linear differential systems with a straight line of
separation: (a) before this paper and (b) from this paper.

Theorem 1 (FS case). For 0 < § < ¢ < 1 the following planar discontinuous
piecewise linear differential system given by

1—90 11(5 —
T = log(M)x+y,

T 14(3e 4+ 5) .
. =6, (15=3¢) W)
G =)L

if £ > 0, and by

3 3
t = -(I4+e)z+y——,
2 10
(2)
;= m—§a—@<+g
vy = 2 LT

if © <0, is of type FS and has 2 limit cycles.

Theorem 2 (NS case, here the linear part of the node does not diagonalize). For
—1 <€ € € 0 < 0 sufficiently small the following planar discontinuous piecewise
linear differential system given by

i = —(V3+log (2= V3) (1+4))z +y,

o= —3x+(\/§—log(2—\/§) (1+5))y, ®)

if x > 1, and by
T = exr+vy,
. 4
y = x+ ey, (4)
if v < 1, is of type NS and has 2 limit cycles.

Theorem 3 (NS case, here the linear part of the node diagonalize but the eigen-
values are not equal). For suitable values of € and ¢ satisfying 0 < § < e < 1 the
following planar discontinuous piecewise linear differential system given by

T = _I+y7

)
jo= —2y—4, )

if £ > 0, and by
Tt = (e—lr+2y+e—0—1, (6)
y = 4o+ (e+1)y—20+4,

if v <0, is of type NS and has 2 limit cycles.
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Theorems 1, 2 and 3 are proved in sections 2, 3 and 4, respectively. In section 5
we illustrate the above results computing numerically these limit cycles. More-
over, we show how the parameter ¢ is much more small than . In all cases the
computations have been very accurate in order to distinguish both limit cycles.
When the corresponding system has a node, Theorem 3, to find the values of
when e decreases is much more difficult. Because the speed of the solutions of the
vector field in this side is very high and these solutions remain a very short time
in this side.

2. PROOF OF THEOREM 1

Since 0 < 0 < € < 1 clearly system (1) has a stable focus at the origin of
coordinates because its linear part has eigenvalues

11(5 — 3¢) .
(1—9)log (m) +1,

for more details see for instance Theorem 2.15 of [7]. On the other hand system
(2) has a saddle at the equilibrium point
9e +125  3(67¢ +75)
5(9s2 — 25)° 5(922 — 25)
with eigenvalues (3¢ £ 5)/2, the separatrices of this saddle live on the invariant
straight lines y = x +14/(5—3¢) and y = —4x —11/(5+ 3¢). On the first straight

line live the two unstable separatrices and in the second one the two stable ones.
Again for more details see Theorem 2.15 of [7]. See Figure 1.

Ve
N7/
)
/N

z=0
FI1GURE 1. The saddle-loop ..

Since the differential systems (1) and (2) are linear we can explicitely compute
their solutions. We denote by (x4 (,vo), y+(t, o)) the solution of system (1) such
that (x+(07y0)7y+(07y0)) = ( ) Y ) and b ( —(t7y0)7y—(t7y0)) the solution of
system (2) such that (z_(0,y0),y-(0,%0)) = (0,9). Then we have

o — (B3 3 i (g — (B3 = .
x = — in =0 s
+{0 Yo 70 + 422 Yo y Y+, Yo 70 & 422 Yo )

0
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and
6%1%(354—5) 1 (3e5):
. S 125) e~ 303
z_(t,y0) 5 (952 = 25) < (9e 4+ 125) e 2
— (32 +5) ((32 = B)yo + 14) e~ + (32 — 5) (32 + 5)yo + 11) )
6%t(3.€+5) .
_(t = — (= 3(67e + 75) e~ 2(3=FD)
Yy (7y0) 5(952—25)< ( €+ )6

14 (32 4 5) (32 — B)yo + 14) €75 + (32 — 5) (32 + 5)yo + 11) )

Looking at the solutions (xy(t,yo),y+(t,%0)) it is clear that all the orbits of
system (1) starting at the point (0,y9) with yo > 0 intersect by first time the
discontinuous straight line x = 0 after a time equal to 7. On the other hand the
unstable separatrix of the saddle that intersects the discontinuous straight line
x = 0 does it at the point (0,14/(5 — 3¢)), and the stable one does it at the point
(0,—11/(5+ 3¢)).

In what follows we assume that 6 = 0, until we do not say the contrary. Then
an easy computation shows that

14 11
m— ) == .
Y+ "5 — 3¢ 5+ 3¢

Therefore the saddle has a loop 7. surrounding the sliding segment S, with end-
points (0,0) and (0,3/10), for all ¢ € (—=5/3,5/3), see Figure 1.

Here we follow the Filippov criteria, see [8], proved by regularization in [16, 18]
and by singular perturbation theory in [15].

We claim the following two results:

(i) For e = 0 all the orbits in the interior of the loop 7. (with the exception of
the sliding segment S) have as w-limit the loop and as a-limit the sliding
segment S. For a definition of a— and w-limit see for instance [7].

(ii) For € > 0 sufficiently small one stable limit cycle bifurcates from the loop
ve, and the loop persists.

Now we prove the claim. Let yo € (0,14/(5—3¢)). Then equation x_(—t,yo) =0
provides the time ¢ > 0 which needs the orbit (z_(¢,yo),y—(t, o)) starting at the
point (0, yo) when the time is zero for reaching in backward time the straight line
z =0. From x_(—t,y9) = 0 we get that

(9 + 125)e3t (D) — (42¢ + 70)e™ + 33¢ — 55
o= (—1+ &) (922 — 25) '
Substituting this yo in y_(—t,y0) — y+ (7, yo) we obtain

e3H(=35+9) (9¢ 4+ 125) <1163€t(36 —5) + 14(3¢ + 5) — 153G (5¢ + 1))
14 (=1 + &) (3¢ — 5)(3¢ + 5)2 '

In particular for € = 0 we have that

15

— >0
14 (1 + e5t/2) ’

y—(—t,90) — y+(m,9%0) =

and the claim (i) is proved, see Figure 2.
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z=0

F1GURE 2. The saddle-loop 7. is a global attractor in its interior
with exception of the sliding segment S.

We have proved that the loop 7. exists for ¢ € (—=5/3,5/3). Therefore inside
the region bounded by the loop we can define a Poincaré map P.. Moreover, this
Poincaré map is analytic, because it is a composition of two analytic Poincaré
maps, one from x = 0 to itself following the orbits of > 0, and the other
from x = 0 to itself following the orbits of < 0. Recall that the Poincaré
map associated to a linear differential system is analytic because such differential
system is analytic, see for more details [7].

From (i) if ¢ = 0 this Poincaré map B is defined in the interior I of the segment

with endpoints (0,0) and (0,14/5). From the proof of (i) we have that Py(y) >y
forall y € I.

Our discontinuous system (1)—(2) can be regularized as in the papers [16] or [18],
in such a way that it can be obtained as a limit of smooth differential systems,
and consequently the Poincaré map P. can also be obtained as limit of smooth
Poincaré maps of smooth differential systems. Now we recall a result that can be
found in the book of Andronov et al. [1] on the stability of a loop for smooth
planar differential systems.

Theorem 4. Consider a two—dimensional differential system
x=f(x,n), xeR’ peR, (7)

with smooth f, having at p = po a saddle equilibrium point xo with eigenvalues
A1 < 0 < Ay and this saddle has a loop v. Assume that X = Ay + Ao # 0, then the
loop ~v in its interior part is unstable if X > 0, and stable if A < 0.

Since the Poincaré map of our discontinuous systems is limit of smooth Poincaré
maps of smooth differential systems Theorem 4 also works for our discontinuous
systems having the loop ~.. Therefore, since the trace A\; + Ay of our saddle is 3¢,
Theorem 4 implies that for € > 0 our loop 7. is locally unstable, but for € = 0
it was stable as we have proved in (i) because all the orbits of the interior of the
loop (with the exception of the sliding segment S) tend in forward time to the
loop when € = 0. This forces the existence of a stable limit cycle ['y for € > 0 and
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sufficiently small which borns from the loop when ¢ = 0, and of course the loop
remains as we have proved. This completes the proof of (ii).

Until here we have assumed that 6 = 0. Now if we take 0 < § < € the unstable
separatrix coming from the saddle until the point (0, 14/(5—3¢)) does not connect
with the stable one at the point (0,—11/(5 + 3¢)), because

-6
(7 14/(5 — 3¢)) = — 11 (55—336) ___u

5 43¢ \ 42 + 70 53¢

In fact, this inequality shows that is the stable separatrix of the previous loop that
now goes in backward time towards what was the interior of the region bounded by
the loop before that it breaks, see Figure 3. Since inside the loop this qualitative
behavior persists if 0 < § < &, this implies the existence of a second unstable
limit cycle I', which appears when the loop breaks at § = 0, and such that it
contains in the region that it limits the limit cycle I';. This completes the proof
of Theorem 1.

FIGURE 3. Creating the second limit cycle.

A numerical approximation of the limit cycles which born from the loop it is
shown in the Appendix.

3. PROOF OF THEOREM 2

We need the following auxiliary result.

Lemma 5. Let W(z) = w be the principal part of the Lambert function which is
defined implicitly by the equation z = we™ (for more details see [5]). Then, the
function

log(2 — V/3)

W ( (2_\/3)1/(\/§—coth t—4csch t) log(2—\/§) >

f(t) = —v/3 — cotht + cscht + <0,

v/3—coth t+csch t

fort > 0.
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Proof. For t > 0 we have

t__ ot 9 9 _ et —t
V3 — cotht + cscht = \/,_et €t+t t:\/§+tc%+i
et —et et —e- et — e~
1—e¢t e'(1—é)
> \/§+e_€t—\f 71
e'(1—e) e
3 =3 - >0
\/7+(6t—1)(6t+1) V3 et +1

Therefore

(2 _ \/g)l/(\/g*COtht+CSCht) lOg(2 _ \/g) -0
z= .
V/3 — cotht + cscht
Since W (z) = w is equivalent to z = we", we have that z < 0 if and only if

w < 0. So W(z) < 0. Then,

log(2 — v/3)
W < (27\/§)1/(\/§—coth t+csch t) 1Og(27\/§) >

g(t) = >0,

v/3—coth t+csch t

for t > 0.

Tedious computations show that for ¢ > 0 we have that g(t) € (1.3,1 + /3),
and that —v/3 — cotht +cscht € (=1 — /3, —/3). So f(t) <0 whent >0. O

Proof of Theorem 2. Since —1 < ¢ < § < 0 clearly system (3) has a virtual
unstable node at the origin of coordinates because its linear part has the eigenvalue
—(1+ 6)log (2 — v3) > 0 with multiplicity 2, and the real normal Jordan form
of its linear part does not diagonalize, for more details see Theorem 2.15 of [7].
On the other hand system (4) has a real saddle at the origin of coordinates with
eigenvalues € + 1, the separatrices of this saddle live on the invariant straight lines
y = x and y = —x. On the first straight line live the two unstable separatrices
and in the second one the two stable ones. Again for more details see Theorem
2.15 of [7].

Since the differential systems (3) and (4) are linear we can explicitely compute
their solutions. We denote by (x4 (t,v0), y+(t,yo)) the solution of system (3) such
that (x+(07y0)7y+(07y0)) = ( ' Y ) and b ( —(t7y0)7y—(t7y0)) the solution of
system (4) such that (z_(0,y0),y-(0,%0)) = (1,9). Then we have

(2-v3) " (14 (v V3)E).,
(2=v3) " (yo+ (VByo—3) 1) |

0

Ty (t, yo)

y+(t7 yo)

and
x_(t,y0) = €*(cosht + ygsinht),

y_(t,y0) = € (yocosht + sinht).

It is clear that the unstable separatrix of the saddle that intersects the discon-
tinuous straight line x = 1 does it at the point (1,1), and the stable one does it
at the point (1,—1). Moreover the discontinuous system (3)—(4) has an sliding
segment S with endpoints (1, —¢) and (1, v/3 + log(2 — v/3)(1 +4)).
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In what follows we assume that § = 0, until we do not say the contrary. Then
an easy computation shows that

ry(1,1)=1, and y.(1,1)=—1.

Therefore the saddle has a loop ., i.e. qualitatively we have again the Figure 1.
We claim the following two results:

(i) For e = 0 all the orbits in the interior of the loop 7. (with the exception of
the sliding segment S) have as a—limit the loop and its w-limit is contained
in the closure of the sliding segment S.

(ii) For ¢ < 0 sufficiently small one unstable limit cycle bifurcates from the
loop 7., and the loop persists.

Now we prove the claim. We start proving (i), so we assume that ¢ = 0. Let
Yo € (V3 +1og(2 —v/3),1). Then the equation z_(—t,y) = 1 provides the time
t > 0 which needs the orbit (x_(¢,vo), y—(t,y0)) starting at the point (1,7,) when
the time is zero for reaching in backward time the straight line x = 1. From
x_(—t,y0) = 1 we get that

yo = (cosht — 1) csch t. (8)

Now we consider the equation z(s,y9) = 1, it provides the time s > 0 which
needs the orbit (. (¢, y0),y+ (¢, o)) starting at the point (1,y,) when the time is
zero for reaching in forward time the discontinuous straight line x = 1. From
x4 (s,y0) = 1 we obtain that

B 1 - 1 . (2_\/3)1/(\/57310) log (2_\/5)
VB log (2-V3) V3 — o

Substituting in y_(—t,yo0) — v+ (s, yo), first s given by (9) and after yo given by
(8) we obtain, by Lemma 5, that y_(—¢,y0(t)) —y+(s(yo(t)), wo(t)) = f(t) <0. So
we have qualitatively the situation of the Figure 4.

S

9)

y—(—t, %) . Y+ (8, %0)

r=1

FIGURE 4. Showing that the y_(—t,vo(t)) — y+(s(vo(t)),yo(t)) =
f(t) <0, for t > 0.
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We have proved that the loop . exists for all . Therefore in its inner neighbor-
hood we can define a Poincaré map P.. Using similar arguments to the proof of
Theorem 1 for € = 0 the domain of definition of this Poincaré map F, is contained
in the interior I of the segment with endpoints (1,+/3 + log(2 — v/3)) and (1,1).
Since f(t) < 0 we have that Py(y) > y for all y € I where Py is defined. This
completes the proof of (i).

Again using the arguments of the proof of Theorem 1 we know that Theorem 4
also works for our discontinuous systems (3)—(4) having the loop 7.. Therefore,
since the trace of our saddle is 2, Theorem 4 implies that for € < 0 our loop 7.
is locally stable, but for ¢ = 0 it was unstable, in fact all the orbits of the interior
of the region bounded by the loop have their w-limit contained in the closure of
the sliding segment S. This forces the existence of an unstable limit cycle I, for
e < 0 and sufficiently small which borns from the loop when £ = 0, and of course
the loop remains as we have proved. This completes the proof of (ii).

Until here we have assumed that 6 = 0. Now if we take ¢ < § < 0 the unstable
separatrix coming from the saddle until the point (1,1) does not connect with
the stable separatrix at the point (1, —1). We claim that this unstable separatrix
intersects the straight line x = 1 nearby the point (1,—1), but as close as this
point as we want taking ¢ closer to zero. This shows that the unstable separatrix
of the previous loop now goes in forward time towards that was the interior of the
region bounded by the loop before this breaks, see Figure 5. Since inside the region
bounded by the loop the qualitative behavior of the orbits persists if ¢ < § < 0,
this implies the existence of a second stable limit cycle I'y which appears when
the loop breaks at 6 = 0, and such that it contains in the region that it limits the
limit cycle I',. This completes the proof of Theorem 2, modulo the last claim that
we shall prove now.

FIGURE 5. Creating the second limit cycle.

Let 7 > 0 be the time in order that the unstable manifold of the saddle starting
at time zero at the point (1, 1) reaches by first time the straight line x = 1. This
7 must satisfy

ro(r1) = (2- \/5)7(6“) (1-v3)r+1) =1
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Solving this equation with respect to 7 we obtain
L (1+v3)(641)
43 W<%(2—\/§)( ) (1+\/§)(5+1)1og(2—\/§))
T = — :
2 (5+1)log (2 — V/3)

Then
log (2 — \/3) ((1 + \/3) log (2 — \/§) — Qw)

_ 2
yi(r,1)=—-1+ 2w+ 1) d+ 0(6%),
where (15v3)
1 3(1+v8

w=w (5 (2= v (14 3) g (2 v3) ).
Since ¢ <€ § < 0 and

log (2—+v3) ((1++3)log (2 —+v3)—2

08 (2= v3) (1+V3)log 2=v3) —2w) o \6ime

2w(w + 1)

we get that y, (7,1) 2 —1. This proves the claim. O

A numerical computation of the initial point (1,yo) and the period of both limit
cycles can be found in the Appendix.

4. PROOF OF THEOREM 3

Since the arguments of the proof of Theorem 3 are essentially the same than
the arguments used in the proof of Theorem 2 we only will present an sketch of
the proof of Theorem 3.

Proof of Theorem 3. Since 0 < § < ¢ < 1 clearly system (5) has a virtual stable
node at the point (—2, —2) with eigenvalues —2 and —1. On the other hand system
(6) has a real saddle at the point (—(34+c—10)/(3+¢),20/(3+¢)) with eigenvalues
—3+¢cand 3 +e.

The unstable separatrix of the saddle that intersects the discontinuous straight
line x = 0 does it at the point (0,2), and the stable one does it at the point
(0,0) = (0, —(3+ = — 36)/(3+2)).

In what follows we assume that § = 0, until we do not say the contrary. Then
the saddle has a loop . for all € sufficiently small, i.e. qualitatively we have again
the Figure 1. We have the following two results:

(i) For € = 0 all the orbits in the interior of the loop 7. (with the exception of
the sliding segment S) have as w-limit the loop and its a—limit is contained
in the closure of the sliding segment S, see Figure 2.

(ii) For ¢ > 0 sufficiently small one stable limit cycle I'y bifurcates from the
loop 7., and the loop persists.

Until here we have assumed that § = 0. Now if we take 0 < § < ¢ the stable
node remains stable, and the unstable separatrix coming from the saddle until the
point (0,2) does not connect with the stable at the point (0,). We claim this
unstable separatrix intersect the straight line x = 0 a little under the point (0, yo),
but as close as this point as we want taking 0 closer to zero. This shows that the
stable separatrix of the previous loop now goes in backward time towards that was
the interior of the region bounded by the loop before this breaks, see Figure 3.
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Since inside the region bounded by the loop the qualitative behavior of the orbits
persists if 0 < § < ¢, the existence of a second (unstable) limit cycle I', which
appears when the loop breaks at 6 = 0, and such that it contains in the region
that it limits the limit cycle I';. This completes the main details of the proof of
Theorem 3. 0

5. APPENDIX. NUMERICAL COMPUTATIONS

Using the analytical expressions of the solutions of the discontinuous systems
of Theorems 1, 2 and 3 we can compute numerically the limit cycles which born
close to the loop. In Tables 2, 3 and 4 it can be seen how the parameter ¢ is
much more small than €. In each case, the computation of the flying times and
the crossing points with the discontinuous line has been very accurate in order to
distinguish both limit cycles. Because they appear very close to the homoclinic
connection. When the corresponding system has a node to find the values of ¢§
when € decreases is much more difficult. Because the speed of the solutions of the
vector field in this side is very high and these solutions remain a very short time
in this side. It can be also seen how the period increase when the parameters tend
to zero.

In Table 2 we provide the initial condition (0,yg) of the limit cycles provided
by Theorem 1, its period 7" and the value of the initial condition (0,14/(5 — 3¢))
of the homoclinic orbit of the loop for some values of € and 4.

G0 [ e [ w3 [T |
(10*1, 10*3) 2.65075990890486 | 2.978723404255319 | 4.285823815839
(10_1, 10_3) 2.97639485675640 | 2.978723404255319 | 6.410765616404
(10*2, 10*“) 2.81690140519045 | 2.816901408450704 | 11.65332423071
(10_2, 10_11) 2.81690140824725 | 2.816901408450704 | 12.76966772882

TABLE 2. Limit cycles bifurcating from the loop for systems (1)—(2).

In a similar way we can compute the limit cycles which born from the loop in
Theorems 2 and 3. In Tables 3 and 4 we provide the initial condition (1,y,) and
(0,yo), respectively, of these limit cycles and its period T" for some values of € and

J.

‘ (57 5) H Yo ‘ T ‘
(—10_1, —1079) 1 — 1.25407938437 - 10~* | 9.7966878121166
(—10

—1071,-1079) 1 — 7.84031364774 - 1077 | 14.410868148689
-1072,—-1071%) || 1 — 1.95383023905 - 10~% | 18.565748707201
-1072,—-10719) || 1 — 2.23289363663 - 10710 | 22.824475971018
(—1072,—-1071%) | 1 — 8.08738858408 - 107% | 88.528376162285
(—1072,—=1071%) | 1 — 8.24684104247 - 1012 | 95.348406795279

TABLE 3. Limit cycles bifurcating from the loop for systems (3)—(4).
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[ 9 ] Yo | T |
(1071,10712) 2 — 5.53150104696 - 107° | 7.62811921689722
(1071,1071%) | 2 — 1.10946851355 - 1071 | 9.77010139695853

(5-1072,10722) || 2 — 5.19255044848 - 10718 | 14.5568485263891

(5-1072,107%2) || 2 — 1.64587542565 - 10~2! | 17.2879359348751
(1072,10791) || 2 — 2.88523068140 - 10~ | 70.0147745392481
(1072,107%) | 2 — 1.08334618077 - 10~% | 71.8825740291712

TABLE 4. Limit cycles bifurcating from the loop for systems (5)—(6).
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