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MAXIMIZING ENTROPY OF CYCLES ON TREES

LLUÍS ALSEDÀ, DAVID JUHER, DEBORAH KING AND FRANCESC MAÑOSAS

Abstract. In this paper we give a partial characterization of the periodic
tree patterns of maximum entropy. More precisely, we prove that each periodic
pattern with maximal entropy is irreducible and simplicial. Moreover, it is also
maximodal in the sense that for every monotone representative of the pattern
every periodic point is a “turning point”.

1. Introduction

A pattern is a classical and well studied object in the theory of one-dimensional
combinatorial dynamics. Given a topological space X and a continuous map
f : X −→ X which is known to exhibit a finite invariant set P , the pattern of P is
a combinatorial object that encodes information about both the relative positions
of the points of P inside the space X and the way these positions are permuted
under the action of f

∣∣
P
.

When X is an interval, the pattern of P can be identified with a permutation
π in a natural way: set P = {p1, p2, . . . , pn} with p1 < p2 < ... < pn and define
π : {1, 2, . . . , n} −→ {1, 2, . . . , n} as π(i) = j if and only if f(pi) = pj . If P is a
periodic orbit then π is a cyclic permutation and the pattern is called cyclic or
periodic. The notion of pattern for maps of the interval has its roots in the well
known Sharkovskii’s Theorem [21, 23], but it was formalized and developed by
Misiurewicz and Nitecki [19] in the early 1990s building on a previous work by
Baldwin [9].

On the other hand, the topological entropy of a continuous map f : X −→ X of
a compact metric space is a non-negative real number that measures the dynamical
complexity of f . This well known topological invariant was first introduced in 1965
[1]. This notion can also be used to define the topological entropy of a pattern π,
which is the infimum of the topological entropies of all self-maps of X having an
invariant set with pattern π.

Although computing the entropy of a map of the interval is difficult in general,
the computation of the entropy of a pattern π can be easily done by using some
algebraic tools. Indeed, it turns out that in this case the entropy of π is equal to
the entropy of a particularly simple map fπ : [1, n] −→ [1, n] which satisfies:

(1) fπ(i) = π(i), for i ∈ {1, . . . , n},
(2) fπ is monotone on each interval Ii = {x ∈ [1, n] : i ≤ x ≤ i + 1} for each

i ∈ {1, . . . , n− 1}.
The map fπ is essentially unique and it is known in the literature as the monotone
representative of π or the “connect-the-dots” map. Its entropy is minimum in the
set of all maps exhibiting an invariant set with pattern π and it is equal (see [11])
to the logarithm of the spectral radius of the so-called Markov matrix (mi,j)

n−1
i,j=1
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2 LLUÍS ALSEDÀ, DAVID JUHER, DEBORAH KING AND FRANCESC MAÑOSAS

of π, whose entries are given by

mi,j =

{
1 if fπ(Ii) ⊃ Ij

0 otherwise,

for i, j ∈ {1, . . . , n− 1}.
Besides the classical case of maps of the interval, recently there has been a

growing interest in extending the notion of pattern to more general one-dimensional
spaces such as graphs (see [6], where the notion of pattern is termed action, and
[2]) or trees (see [3]).

In this paper we are interested in patterns of maps defined on trees. In [3], the
authors introduce a notion of pattern of a finite invariant set of a continuous map
from a tree into itself (from now on such a map will be called a tree map). Next
we informally explain this notion. In Section 2 we will give the precise version of
this concept.

A model will be a triplet (T, P, f) such that f : T −→ T is a tree map and P is
a finite invariant subset of T . Two points x, y of P will be called consecutive if the
interior of the unique interval in T whose endpoints are x and y contains no points
of P . Any maximal subset of P consisting only of pairwise consecutive points will
be called a discrete component.

A pattern is an object which can be identified with the conjugacy class of all
models with a fixed distribution of discrete components and images of points in the
distinguished finite invariant set P . For instance, in Figure 1 we can see two models
which represent the same cyclic pattern. Observe that two points pi, pj of P are
consecutive in T if and only if the corresponding points p′i, p

′
j of P ′ are consecutive

in T ′. However, note that the trees T and T ′ need not be homeomorphic.
While for a pattern of the interval it is trivial to construct a monotone model,

this is not the case for tree maps. However, Theorem A of [3] states that for any
tree pattern π there exists a monotone representative (T, P, f) satisfying properties
very similar to those of the “connect-the-dots” interval maps. In particular, the
entropy of π equals the entropy of its monotone representative f , which can be
easily computed as the logarithm of the spectral radius of a certain non-negative
matrix (the path transition matrix defined later).

Given n ∈ N, the set of all n-periodic patterns is finite. Hence, the set of entropies
of all the n-periodic patterns has a maximum.

p′2
p′3

p′5

p′4

p′6p3 p6

p2 p5

p1 p4

p′1

(T, P ) (T ′, P ′)

Figure 1. Set P = {pi}6i=1 and P ′ = {p′i}6i=1. If f : T −→ T and
f ′ : T ′ −→ T ′ are tree maps such that f(pi) = pi+1 and f ′(p′i) =
p′p+1 for 1 ≤ i ≤ 5, f(p6) = p1 and f ′(p′6) = p′1, then the models
(T, P, f) and (T ′, P ′, f ′) represent the same cyclic pattern π.



MAXIMIZING ENTROPY OF CYCLES ON TREES 3

Once we have depicted the idea of tree pattern and established that for each tree
pattern one can compute its topological entropy, we are ready to explain the aim of
this paper. It comes from one of the natural questions arising in this setting: given
any n ∈ N, can we identify the tree patterns with maximum entropy in the set of
all patterns (and/or cyclic patterns) of cardinality n? Answering this question is a
formidable challenge that at this moment remains unsolved even when one restricts
to the interval case.

For interval patterns, the answer to the above question is known for any n ∈ N in
the case of n-permutations, and for n 6= 4k+2 in the case of n-cycles. For n = 4k+1
Misiurewicz and Nitecki, in [19], constructed a family of entropy-maximal n-periodic
orbits. Geller and Tolosa [12] extended this definition to a family of periodic orbits
of period n = 4k + 3 and proved that this family in fact has maximum entropy
among all n-permutations. In [13] it was shown that this family is unique. So, the
characterization of the entropy-maximal n-cycles and n-permutations is complete
for n odd. For the case n even the situation is more complicated, since the entropy-
maximal n-permutations are not cyclic. All entropy-maximal n-permutations for n
even were described by King [15, 16] and independently by Geller and Zhang [14].
Finally, two families of entropy-maximal n-periodic orbits for n = 4k have been
recently described in [17], and they have been shown to be unique up to a reversal
of orientation. The characterization of the entropy-maximal interval patterns is
still unknown in the case n = 4k+ 2. However, a very recent paper [4] studies this
case from a computational point of view and proposes a family of (4k+2)-periodic
orbits which the authors conjecture are entropy-maximal.

As far as we know, there is no literature about this problem in the setting of tree
patterns. In this paper we give a partial characterization of the entropy-maximal
n-periodic tree patterns for any n ∈ N. We start by restricting our study to the
setting of simplicial patterns. A pattern is said to be simplicial if all its discrete
components have cardinality 2. First we show that, for each n, the maximum
entropy is attained in the class of simplicial n-periodic patterns and that these
patterns have to be irreducible. This means that the periodic orbit cannot be
partitioned according to what we call a block structure. Equivalently, the Markov
matrix of its monotone representative is irreducible in the usual algebraic sense.
Then we show that any simplicial periodic pattern with maximum entropy has to
be maximodal in the sense that for every monotone representative (T, P, f) of the
pattern and for every x ∈ P there exists a small neighbourhood U of x such that
Cl(f(U)) is an interval and f(x) is an endpoint of Cl(f(U)). Finally, for each
n-periodic pattern which is not simplicial we construct an n-periodic simplicial
pattern with strictly more entropy, showing that in fact every periodic pattern
with maximum entropy has to be simplicial. Putting all these results together we
get the main result of this paper, which states that, for any n ∈ N, each n-periodic
pattern with maximum entropy has to be simplicial, irreducible and maximodal.
In Section 2 we give the precise definitions of these notions.

This paper is dedicated to the memory of our friend Pere Mumbrú, deceased on
July 28, 2005. Some of the underlying ideas of the manuscript were born when he
started to work on this problem together with Llúıs Alsedà and Francesc Mañosas.

2. Definitions and statement of the main results

A tree is a compact uniquely arcwise connected space which is a point or a union
of a finite number of intervals (by an interval we mean any space homeomorphic
to [0, 1]). Any continuous map f : T −→ T from a tree T into itself will be called a
tree map. A set X ⊂ T will be called f -invariant if f(X) ⊂ X . For each x ∈ T , we
define the valence of x, denoted by ValT (x) or simply Val(x), to be the number of
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connected components of T \ {x}. A point of valence different from 2 will be called
a vertex of T and the set of vertices of T will be denoted by V(T ). Each point of
valence 1 will be called an endpoint of T. The set of such points will be denoted by
En(T ). The points in V(T ) \ En(T ) have valence greater than or equal to 3. They
will be called the branching points of T and the set of such points will be denoted
by Br(T ). Also, the closure of a connected component of T \ V(T ) will be called
an edge of T .

Given any subset X of a topological space, we will denote by Int(X) and Cl(X)
the interior and the closure of X , respectively. For a finite set P we will denote its
cardinality by |P |.

A triplet (T, P, f) will be called a model if f : T −→ T is a tree map and P is a
finite f -invariant set such that En(T ) ⊂ P . In particular, if P is a periodic orbit of
f and |P | = n then (T, P, f) will be called an n-periodic model. Given X ⊂ T we
will define the convex hull of X , denoted by 〈X〉T or simply by 〈X〉, as the smallest
closed connected subset of T containing X . We will write 〈x, y〉 to denote 〈{x, y}〉
and (x, y) to denote 〈{x, y}〉 \ {x, y}.

Let T be a tree and let P ⊂ T be a finite subset of T . The pair (T, P ) will
be called a pointed tree. A set Q ⊂ P is said to be a discrete component of
(T, P ) if either |Q| > 1 and there is a connected component C of T \ P such that
Q = Cl(C) ∩ P , or |Q| = 1 and Q = P . We say that two pointed trees (T, P )
and (T ′, P ′) are equivalent if there exists a bijection φ : P −→ P ′ which preserves
discrete components. The equivalence class of a pointed tree (T, P ) will be denoted
by [T, P ].

Let (T, P ) and (T ′, P ′) be equivalent pointed trees, and let θ : P −→ P and
θ′ : P ′ −→ P ′ be maps. We will say that θ and θ′ are equivalent if θ′ = ϕ ◦ θ ◦ ϕ−1

for a bijection ϕ : P −→ P ′ which preserves discrete components. The equivalence
class of θ by this relation will be denoted by [θ]. If [T, P ] is an equivalence class
of pointed trees and [θ] is an equivalence class of maps then the pair ([T, P ], [θ])
will be called a pattern. We say that a model (T, P, f) exhibits a pattern (T ,Θ) if
T = [T, P ] and Θ = [f

∣∣
P
]. This pattern will be denoted by [T, P, f ]. Alternatively,

we will say that the model (T, P, f) is a representative of the pattern (T ,Θ).
The topological entropy [1] is a well known quantitative measure of the dynamical

complexity of a model. It is an important topological invariant which is defined
for continuous maps on compact metric spaces. The topological entropy of a map
f : T −→ T will be denoted by h(f). Given a pattern P , the topological entropy of
P is defined to be

h(P) := inf{h(f) : (T, P, f) is a model exhibiting P}.
The simplest models exhibiting a given pattern are the monotone ones, according

to the following definition. Let S and T be trees and let f : T −→ S be a map. Given
a, b ∈ T we say that f

∣∣
〈a,b〉 ismonotone if either f(〈a, b〉) is a point or it is an interval

and, given two homeomorphisms φ : [0, 1] −→ 〈a, b〉 and ϕ : g(〈a, b〉) −→ [0, 1], then
ϕ ◦ f ◦ φ : [0, 1] −→ [0, 1] is monotone (as a real function). Let (T, P, f) be a model.
A pair {a, b} ⊂ P will be called a basic path of (T, P ) if 〈a, b〉 ∩P = {a, b}. We will
say that f is P -monotone if f(〈a, b〉) = 〈f(a), f(b)〉 and f

∣∣
〈a,b〉 is monotone for any

basic path {a, b}. The model (T, P, f) will be called monotone.

Theorem 2.1 (Theorem A of [3]). Let P be a pattern. Then the following state-
ments hold.

(a) There exists a monotone model (T, P, f) exhibiting the pattern P.
(b) The topological entropy of f is the minimum within the class of models which

exhibit P.
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Remark 2.2. From the proof of Theorem A of [3] it follows that if (T, P, f) is a
monotone model then the set P ∪ V(T ) is f -invariant. It easily follows that the
map f , which is P -monotone, is also (P ∪V(T ))-monotone.

The monotone models from Theorem 2.1 are essentially unique in the following
sense. Let (T, P, f) be a monotone model and let S be a non-empty union of
edges disjoint from P . We will say that S is an invariant forest of (T, P, f) if either
f i(S)∩P = ∅ for every i ≥ 0 or there exists n > 0 such that f i(S)∩P = ∅ for every
i = 0, 1, . . . , n − 1 and fn(S) degenerates to a point of P . Then, we will say that
(T, P, f) is a canonical model of the pattern [T, P, f ] if it has no invariant forests.
From [3, Theorem B] it follows that every pattern has a canonical model. Moreover,
given two canonical models (T, P, f) and (T ′, P ′, f ′) of the same pattern there exists
a homeomorphism ϕ : T −→ T ′ such that ϕ(P ) = P ′, and f ′◦ϕ

∣∣
P
= ϕ◦f

∣∣
P
. Hence,

a canonical model of a pattern is essentially unique.
The topological entropy of a pattern P can be easily computed as the logarithm

of the spectral radius of a certain non-negative matrix called a path transition
matrix, which depends only on the combinatorial data of P . This notion will be
introduced (and frequently used) in Section 7.

To establish the main result of this paper we need to introduce some definitions
on periodic patterns.

The first notion we need has to do with the spatial distribution of the points
of the invariant set. A pattern ([T, P ], [θ]) will be called simplicial if each discrete
component of (T, P ) has two points. Observe that, in this case, for each pointed
tree (S,Q) ∈ [T, P ] we have that V(S) ⊂ Q and, for each discrete component π of
(S,Q), 〈π〉S is an interval. Hence, if (S,Q) and (S′, Q′) belong to [T, P ] then S and
S′ are homeomorphic. It follows that if a pattern is simplicial then it has essentially
a unique monotone representative. Conversely, given a monotone model (T, P, f)
such that V(T ) ⊂ P , the pattern [T, P, f ] is simplicial. We will also say that the
model (T, P, f) is simplicial. In particular, if (T, P, f) is a monotone model then,
by Remark 2.2, (T, P ∪V(T ), f) is monotone and simplicial.

The Markov graph and the Markov matrix associated to a simplicial model
(T,Q, f) are standard combinatorial objects which codify the dynamical behaviour
of f . In particular, the topological entropy of f can be computed by means of
the Markov matrix. Let us recall the definitions. An interval of T will be called
Q-basic if it is the closure of a connected component of T \ Q. Observe that two
different Q-basic intervals have pairwise disjoint interiors. Given K,L ⊂ T , we will
say that K f -covers L if f(K) ⊃ L. Consider a labelling I1, I2, . . . In of all Q-basic
intervals. The Markov graph of (T,Q, f) associated to this labelling is a combina-
torial directed graph whose vertices are the Q-basic intervals and there is an arrow
from Ii to Ij if and only if Ii f -covers Ij . On the other hand, the Markov matrix
of (T,Q, f) associated to this labelling is an n × n matrix (mi,j)

n
i,j=1 such that

mi,j = 1 if and only if Ii f -covers Ij , and mi,j = 0 otherwise. Given two different
labellings of the set of Q-basic intervals and their associated Markov matrices M
and N , there exists a permutation matrix P such that M = PTNP (where PT

denotes the transpose of P ), and the corresponding Markov graphs are isomorphic.
The spectral radius of the Markov matrix M of a simplicial model (T, P, f) is a

very useful algebraic notion which has powerful implications for the dynamics of f .
We shall denote it by σ(M). Recall that, by definition, it is the maximum of the
moduli of the eigenvalues of M . In a similar way to [5, Theorem 4.4.5] it follows
that h(f) = max{0, log(σ(M))}.

We recall [22] that an n×n matrix is called reducible if there exists a permutation
matrix P such that

(1) PTMP =

(
M11 0
M21 M22

)
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whereM11 andM22 are square matrices of sizes i×i and j×j (i, j ≥ 1) respectively
and 0 stands for the i× j matrix whose entries are all 0. If there does not exist such
P then the matrixM is called irreducible. In this spirit, a simplicial model (T,Q, f)
will be called reducible if there exists a particular labelling of the set of Q-basic
intervals such that the associated Markov matrix of (T,Q, f) reads as the right
hand side of (1). The corresponding simplicial pattern [T,Q, f ] will be also called
reducible. Observe that, in this case, the Markov matrix of (T,Q, f) associated to
any labelling of the set of Q-basic intervals is reducible. If a simplicial model (or a
simplicial pattern) is not reducible then we will call it irreducible.

Finally we introduce a notion of maximodality for simplicial patterns. We borrow
this terminology from the usual and well known notion for interval maps (see for
instance [5]): the modality of a P -monotone interval map f is the number of points
of P at which f has a local extremum, and the map f is called maximodal if its
modality is |P |.

The extension to trees of the notion of maximodality is based on extending to
this setting the notion of local extremum. Indeed, if (T, P, f) is a monotone model
and x ∈ T then we say that x is a local extremum of (T, P, f) if there exists a small
neighbourhood U of x such that Cl(f(U)) is an interval and f(x) is an endpoint
of Cl(f(U)). Then, a simplicial model (T, P, f) will be called maximodal when
every point from P is a local extremum. Taking these comments into account we
formalize the notion of maximodality in the following way.

Let (T, P, f) be a simplicial model. A triplet a, x, b of pairwise different points
from P will be called an ordered triplet with midpoint x, denoted by [a;x; b] (or
[b;x; a]), if and only if x ∈ 〈a, b〉. Observe that a, x, b can fail being an ordered
triplet with midpoint x whenever 〈{a, x, b}〉T is a tree with 3 endpoints or when
〈{a, x, b}〉T is an interval but x /∈ 〈a, b〉. An ordered triplet [a;x; b] will be called a
basic triplet if 〈a, b〉∩P = {a, x, b}. We say that a basic triplet [a;x; b] is monotone
if and only if f

∣∣
〈a,b〉 is monotone. Finally, a simplicial model (T, P, f) (and the

corresponding pattern [T, P, f ]) will be called maximodal if it has no monotone
basic triplets.

The set of tree patterns of a fixed period is finite and hence the set of entropies
of all n-periodic tree patterns is finite for every n ∈ N. Any n-periodic pattern
whose entropy is maximal in the set of entropies of all n-periodic patterns will be
called maximal.

Now we are ready to state the main result of this paper.

Theorem A. The maximal periodic patterns are simplicial, irreducible and maxi-
modal.

This paper is organized as follows. In the next section we define the notion of
a combinatorial oriented generalized graph and we recall and prove some algebraic
properties of the spectral radius of their transition matrices. In Section 4 we show
that there exist simplicial patterns with maximum entropy. In Section 5 we prove
that a simplicial n-periodic pattern which is reducible cannot attain the maximum
entropy in the set of all n-periodic patterns. Analogously, in Section 6 we show that
a simplicial irreducible n-periodic pattern with monotone triplets cannot attain the
maximum entropy. Finally, in Section 7 we show that any maximal periodic pattern
is simplicial and prove Theorem A.

3. A technical lemma

In this section we define the notion of a combinatorial oriented generalized graph
and we prove a lemma which states some useful algebraic properties of the spectral
radius of transition matrices of combinatorial oriented generalized graphs.
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A combinatorial oriented generalized graph is a pair G = (V, U) where V =
{v1, v2, . . . , vn} is a finite set, U ⊂ V × V × N, and for every i, j ∈ {1, 2, . . . , n}
there exists ti,j ≥ 0 such that {k ∈ N : (vi, vj , k) ∈ U} = {1, 2, . . . , ti,j}. The
elements of V are called the vertices of G and each element (vi, vj , k) in U is called
a (labelled) arrow of G. When the graph has a unique arrow from vi to vj (i.e.
ti,j = 1) we will omit the label for simplicity.

The notions of path and loop of a combinatorial oriented generalized graph are
defined in the standard way by using labelled arrows instead of arrows. Also the
length of a path is defined as the number of arrows in the path.

Observe that a Markov graph is, in particular, a combinatorial oriented gener-
alized graph such that ti,j ≤ 1 for every i, j.

The transition matrix of a combinatorial oriented generalized graph is defined
as the matrix T = (ti,j). Clearly T is an n× n non-negative integer matrix.

Given two matrices A = (ai,j) and B = (bi,j), we will write A ≥ B if and only
if ai,j ≥ bi,j for each pair i, j. Also we will denote by aki,j the entry i, j of Ak (that

is, Ak = (aki,j)).

Lemma 3.1. Let M = (mi,j)
n
i,j=1 be an n× n non-negative integer matrix. Then,

the following statements hold.

(a) Assume that M is the transition matrix of a combinatorial oriented gener-
alized graph G. Then, for every k ≥ 1, mk

i,j is the number of paths from
vertex i to vertex j of length k in G.

(b) The matrix M is irreducible if and only if for every i, j there exists a k =
k(i, j) ≥ 1 such that mk

i,j > 0.

(c) Assume that M is irreducible. Then,

σ(M) = lim sup
k→∞

k

√
mk

i,i

for every i ∈ {1, 2, . . . , n}.
(d) Assume that A 6= M is a matrix such that A ≥ M . Then, σ(A) ≥ σ(M).

Moreover, if one of the two matrices is irreducible then the inequality is
strict.

Remark 3.2. Statements (a) and (b) of the above lemma imply that the transition
matrix of a combinatorial oriented generalized graph G is irreducible if and only
if G is transitive. This means that for each pair of vertices i, j there exists a path
from i to j in G.
Proof of Lemma 3.1. The proof of Statement (a) follows directly from the defini-
tions and the proof of (b) follows from [24, Page 6].

Now we prove (d). From [20] it follows that σ(M) is equal to the limit as k
goes to infinity of the k-th root of the sum of all entries of Mk. So, it follows by
induction that σ(A) ≥ σ(M) whenever A ≥ M . On the other hand, if A 6= M
and A is irreducible, then we get σ(A) > σ(M) from [22, Lemma 5.3.3]. Finally, if
A ≥M and M is irreducible, it follows from (b) that A is irreducible. Thus, again,
σ(A) > σ(M) when A 6=M .

Finally, we prove (c). From [5, Lemma 4.4.2] it follows that

(2) σ(M) = lim sup
k→∞

k

√
| tr(Mk)|,

where tr(·) denotes the trace function. Consequently, there exists a strictly increas-
ing sequence {kl}∞l=1 such that

(3) σ(M) = lim
l→∞

kl

√
| tr(Mkl)|.
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On the other hand, there exists p ∈ {1, 2, . . . , n} and a partial sequence of {kl},
denoted also by {kl} for simplicity, such that mkl

p,p = max{mkl
1,1,m

kl
2,2, . . . ,m

kl
n,n} for

every l ≥ 1. For every kl we have

1
n | tr(Mkl)| ≤ mkl

p,p ≤ | tr(Mkl)|.

Consequently, from (3) we get, σ(M) = liml→∞
kl

√
mkl

p,p.

Observe also that, by (a) and (b), for any i ∈ {1, 2, . . . , n}, there exist paths α
and β in G from i to p and from p to i, respectively. We denote by s = s(i, p) the
sum of the lengths of these paths (clearly, we can take s = 0 when i = p). Then,
any loop of length k in G from p to p gives a loop of length k + s in G from i to i.
Thus, mk

p,p ≤ mk+s
i,i for every k ≥ 1.

Since
kl

√
mkl

p,p =

((
mkl

p,p

) 1
kl+s

)kl+s
kl

, it follows that

σ(M) = lim
l→∞

((
mkl

p,p

) 1
kl+s

)kl+s
kl

= lim
l→∞

(
mkl

p,p

) 1
kl+s ≤ lim sup

l→∞

(
mkl+s

i,i

) 1
kl+s

≤ lim sup
k→∞

k

√
mk

i,i ≤ lim sup
k→∞

k

√
| tr(Mk)| = σ(M).

This ends the proof of the lemma. �

4. On the existence of maximal simplicial patterns

In this section we show (Corollary 4.2) that for each n there exist simplicial
maximal n-periodic patterns. To do it, given a periodic pattern we define a proce-
dure to construct another periodic pattern of the same period without decreasing
the entropy which is “simpler” in the sense that it has less vertices not contained
in the invariant set. The new pattern will be called a collapse. After performing
this operation finitely many times we will obtain an n-periodic simplicial monotone
model without decreasing the entropy. So, starting the process with a maximal
n-periodic pattern we get a maximal simplicial pattern.

Now let us define the notion of a collapse. Given a pattern P we define the
number of free vertices of P as the cardinality of Br(T ) \ P where (T, P, f) is a
canonical model of P (recall that En(T ) ⊂ P ). Observe that, since two different
canonical models of the same pattern are conjugated by a homeomorphism (and,
hence, essentially unique) the number of free vertices of a pattern is well defined.
The number of free vertices of P will be denoted by ν(P).

Let P be a periodic pattern such that ν(P) > 0 and let (T, P, f) be a canonical
model of P . Clearly, there exists a pair (v, x) such that v ∈ Br(T ) \ P , x ∈ P
and 〈x, v〉 ∩ (P ∪ V(T )) = {x, v}. Let T ′ be the tree obtained from T by collapsing
the interval 〈x, v〉 to one point and let κ be the standard projection from T to T ′.

Observe that κ
∣∣
P

is bijective. Then, clearly P ′ =
(
[T ′, κ(P )], [κ ◦ f ◦ κ−1

∣∣
κ(P )

]
)
is

a periodic pattern of the same period as P such that ν(P ′) < ν(P). The pattern
P ′ will be called a collapse of P .

The fact that canonical models of the same pattern are conjugated imply that
the collapses of a pattern are independent of the chosen canonical representative.
They only depend on the original pattern and the collapsing pair x, v.

The next result states the properties of collapses that we need.

Proposition 4.1. Let P be a periodic pattern such that ν(P) > 0 and let P ′ be a
collapse of P. Then h(P) ≤ h(P ′).
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From the iterative use of Proposition 4.1 we see that given any periodic pattern
P there exists a simplicial periodic pattern P ′ of the same period such that h(P ′) ≥
h(P). Thus, starting with a maximal pattern P , we obtain the following

Corollary 4.2. For each n there exist simplicial maximal n-periodic patterns.

Now we prove the proposition.

Proof of Proposition 4.1. Let (T, P, f) be a canonical model of P and let v ∈ Br(T )\
P and x ∈ P such that 〈x, v〉 ∩ (P ∪ V(T )) = {x, v}. By Remark 2.2 it follows that
f is Q-monotone, where Q = P ∪V(T ).

Let Cv be the largest connected subset of T such that Cv ∩ (P ∪ V(T )) = {v}.
Clearly, Cl(Cv) is a star with v as a branching point and Cl(Cv) ⊃ 〈x, v〉.

Let g : T −→ T be aQ-monotone map such that g
∣∣
T\Cv

= f
∣∣
T\Cv

and g(〈v, x〉) =
f(x). In particular, f

∣∣
P

= g
∣∣
P

and hence the patterns P = [T, P, f ] and [T, P, g]
coincide. Therefore, h(g) ≥ h(f) = h(P) because f is P -monotone (Theorem 2.1).

Now, let T ′ be the tree obtained from T by collapsing the edge 〈v, x〉 to a point
and let κ be the standard projection from T to T ′. Set P ′ = κ(P ) which has the
same cardinality as P since κ

∣∣
P

is bijective. Moreover, κ(Q) = P ′ ∪ V(T ′) and

|Br(T ′) \ P ′| = |Br(T ) \ P | − 1 = ν(P)− 1.
Next we define a tree map f ′ : T ′ −→ T ′ as follows. For each t ∈ T ′, we set

f ′(t) := κ ◦ g ◦ κ−1(t). Note that κ−1(t) is a single point except when t = κ(x) and
κ−1(t) = 〈v, x〉. But since g(〈v, x〉) degenerates to f(x), it follows that the map f ′

is well defined and continuous on T ′. Moreover, f ′∣∣
P ′ = κ ◦ f ◦ κ−1

∣∣
P ′ . So clearly

[T ′, P ′, f ′] =
(
[T ′, κ(P )], [κ ◦ f ◦ κ−1

∣∣
κ(P )

]
)
is a collapse of P .

We will show that (T ′, P ′, f ′) is a monotone model of [T ′, P ′, f ′] and h(f ′) =
h(g). Hence, h([T ′, P ′, f ′]) = h(f ′) = h(g) ≥ h(P).

To see that f ′ is P ′-monotone take any basic path {a′, b′} of (T ′, P ′). We have to
see that f ′ maps monotonically 〈a′, b′〉T ′ onto 〈f ′(a′), f ′(b′)〉T ′ . Since κ sends P bi-
jectively to P ′ there exist unique points a, b ∈ P such that κ(a) = a′ and κ(b) = b′.
Moreover, from the definition of κ it follows that, for every u,w ∈ T, κ sends 〈u,w〉T
monotonically onto 〈κ(u), κ(w)〉T ′ and, conversely, κ−1 sends 〈κ(u), κ(w)〉T ′ mono-
tonically onto 〈u,w〉T . Therefore, κ−1 sends 〈a′, b′〉T ′ monotonically onto 〈a, b〉T
and |〈a, b〉T ∩ P | = |〈a′, b′〉T ′ ∩ P ′| = 2. Hence, {a, b} is a basic path of (T, P ).

To prove the monotonicity of f ′ = κ ◦ g ◦ κ−1, we only have to see that g
maps monotonically 〈a, b〉T onto 〈g(a), g(b)〉T . Since g

∣∣
T\Cv

= f
∣∣
T\Cv

and f is

P -monotone, the statement holds trivially when 〈a, b〉 ∩ Cv = ∅.
Assume now that 〈a, b〉 ∩ Cv 6= ∅. Since v /∈ P and Cv is a star that has v

as a branching point, v ∈ 〈a, b〉T . Hence, κ(v) = κ(x) ∈ 〈a′, b′〉T ′ . Thus, κ(x) ∈
{a′, b′} and hence, x ∈ {a, b}. Assume for definiteness that x = b. Since f is P -
monotone we have f(v) ∈ 〈f(a), f(x)〉. By definition (and the P -monotonicity of f)
g maps monotonically 〈a, v〉 onto 〈g(a), g(v)〉 = 〈f(a), f(x)〉 and g(〈v, x〉) = f(x).
Summarizing, g is monotone on 〈a, x〉, which proves the claim.

Next we will show that h(f ′) = h(g). Let I1, I2, . . . , Ik be a labelling of the set
of all Q-basic intervals of (T,Q, g) such that Ik = 〈v, x〉T . Let M = (mi,j)

k
i,j=1 be

the associated Markov matrix. Since g(Ik) reduces to a point, mk,j = 0 for j =
1, 2, . . . , k. Hence, h(g) = max{0, log(σ(M))} = max{0, log(σ(N))}, where N =

(mi,j)
k−1
i,j=1. Set Ii = 〈ai, bi〉T and define Ji = 〈κ(ai), κ(bi)〉T ′ for j = 1, 2, . . . , k− 1.

From the definitions of g and f ′ we have that Ii g-covers Ij if and only if Ji f
′-covers

Jj for every j = 1, 2, . . . , k−1. In other words, the Markov matrix of (T ′, κ(Q), f ′) =
(T ′, P ′ ∪ V(T ′), f ′) is N . Since f ′ is P ′-monotone, it is also P ′ ∪ V(T ′)-monotone
by Remark 2.2. Consequently, h(f ′) = max{0, log(σ(N))} = h(g). This ends the
proof of the proposition. �
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In Section 7 we will need the following slight improvement of Proposition 4.1.

Lemma 4.3. In the situation of Proposition 4.1 we have ν(P ′) > 0 whenever
ν(P) > 1.

Proof. We use the notation of Proposition 4.1 and its proof. Assume that |Br(T ) \
P | = ν(P) > 1. If (T ′, P ′, f ′) is already a canonical model, then

ν([T ′, P ′, f ′]) = |Br(T ′) \ P ′| = |Br(T ) \ P | − 1 > 0,

and the proposition holds. Otherwise, let (T̃ , P̃ , f̃) be the canonical model of
[T ′, P ′, f ′] obtained from (T ′, P ′, f ′) by collapsing every connected component of

an invariant forest of (T ′, P ′, f ′) to a point. We have to prove that Br(T̃ ) \ P̃ 6= ∅.
By assumption there exists w ∈ Br(T ′)\P ′. Denote by κ̃ the standard projection

from T ′ to T̃ . Clearly, ValT̃ (κ̃(w)) ≥ ValT ′(w) ≥ 3 and hence, κ̃(w) ∈ Br(T̃ ).
Assume now that κ̃(w) = κ̃(p) with p ∈ P ′. Since w /∈ P ′ it follows that w 6= p
and hence κ̃ is not one-to-one in {w, p}. Therefore, w and p belong to the same
connected component of an invariant forest; a contradiction since every invariant
forest of (T ′, P ′, f ′) is disjoint from P ′ by definition. Consequently, κ̃(w) /∈ κ̃(P ′) =
P̃ . �

5. The maximal simplicial patterns are irreducible

In this Section we prove (Corollary 5.4) that a simplicial n-periodic pattern
which is reducible cannot attain the maximum entropy in the set of all n-periodic
patterns. To do it, first we show (Proposition 5.1) that the reducible patterns
have a very particular structure (what we call a block structure). Then we find
(Proposition 5.2) a strict upper bound for the entropy of any n-periodic model
having a block structure. This bound is log(

⌊
n
2

⌋
− 1). Finally (Theorem 5.3) we

construct an n-periodic interval model whose entropy is larger than or equal to
log(

⌊
n
2

⌋
). This result has interest in itself since, in particular, it proves that the

maximum entropy of all n-cycles in the interval is larger than or equal to log(
⌊
n
2

⌋
)

thus giving a lower bound for this maximum entropy.
Let (T, P, f) be a simplicial model. We will say that (T, P, f) and its correspond-

ing pattern [T, P, f ] have a p-block structure (or simply a block structure) if p ≥ 2
and there exists a partition P = P1∪P2∪· · ·∪Pp such that |P1| = |P2| = · · · = |Pp|,
〈Pi〉 ∩ 〈Pj〉 = ∅ for i 6= j, and f(Pi) = Pi+1 for 1 ≤ i < p and f(Pp) = P1. Observe
that |Pi| = |P |/p > 1 for 1 ≤ i ≤ p and T \ (∪p

i=1〈Pi〉) is a finite union of pairwise
disjoint open intervals because V(T ) ⊂ P . Moreover, f(〈Pi〉) = 〈Pi+1〉 for 1 ≤ i < p
and f(〈Pp〉) = 〈P1〉 since a simplicial model (T, P, f) is monotone by assumption.

In the literature one can find several kinds of block structures and related notions
for periodic orbits. In the interval case, Sharkovskii’s square root construction (see
[21, 23] or [5]) is an earlier example of a block structure. The notion of extension,
which first appeared in [10], gives rise to some particular cases of block structures
for interval periodic orbits. The notion of division, introduced in [18] for interval
periodic orbits and generalized in [7] and [8] to several kinds of trees, is a special
case of block structure which has been used in a number of papers to study the
topological entropy of tree maps.

The next result tells us that each reducible model has a block structure. In fact,
the proof of Proposition 5.2 will tell us that the converse is also true, so that the
periodic simplicial models having a block structure are precisely the reducible ones.

Proposition 5.1. Let (T, P, f) be a periodic simplicial model. If (T, P, f) is re-
ducible then it has a block structure.
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Proof. Since (T, P, f) is reducible, there exists a particular labelling I1, I2, . . . , In of
the set of P -basic intervals such that the associated Markov matrix M of (T, P, f)
reads (

M11 0
M21 M22

)
,

whereM11 andM22 are square matrices of sizes k×k and l×l (k, l ≥ 1) respectively
and 0 stands for the k × l matrix whose entries are all 0. In particular, the set
X := ∪k

i=1Ii is f -invariant.
Note that En(Ii) ⊂ P for 1 ≤ i ≤ n and that ∪k

i=1 En(Ii) is f -invariant. There-
fore, since P is a periodic orbit, ∪k

i=1 En(Ii) = P . Note that X 6= T because k < n.
Since X ⊃ P ⊃ En(T ), it follows that X is not connected. Since f maps any
connected component of X onto a connected component of X and P is a periodic
orbit of f , it easily follows that f acts as a cyclic permutation of the set of con-
nected components of X . So, there exists a divisor p ≥ 2 of |P | and a labelling
X1, X2 . . . , Xp of the set of connected components of X such that f(Xi) = Xi+1

for 1 ≤ i < p and f(Xp) = X1. We set Pi = Xi ∩ P and note that Xi = 〈Pi〉 for
1 ≤ i ≤ p because each Xi is a union of P -basic intervals. Moreover, f(Pi) = Pi+1

for 1 ≤ i < p and f(Pp) = P1. Therefore, (T, P, f) has a p-block structure. �

Now we aim at obtaining an upper bound for the topological entropy of a model
(T, P, f) with a block structure, in terms of the period of P . In what follows ⌊·⌋
will denote the integer part function.

Proposition 5.2. Let (T, P, f) be an n-periodic simplicial model with a block struc-
ture. Then, n ≥ 4 and h(f) ≤ log(

⌊
n
2

⌋
− 1).

Proof. Let p ≥ 2 and let P1∪P2∪. . .∪Pp be a partition of P such that 〈Pi〉∩〈Pj〉 = ∅
for i 6= j, f(Pi) = Pi+1 for 1 ≤ i < p and f(Pp) = P1. Then n = pq, where
|Pi| = q ≥ 2 for 1 ≤ i ≤ p. Hence, n ≥ 4.

Since each 〈Pi〉 is a tree with all its vertices contained in Pi, it follows that
the number of P -basic intervals contained in 〈Pi〉 is q − 1, for each 1 ≤ i ≤ p.
Therefore, since the total number of P -basic intervals is n−1, the number of P -basic
intervals whose interior does not intersect ∪p

i=1〈Pi〉 is n− 1− p(q− 1) = p− 1. Let
I1, I2, . . . , In−1 be a labelling of the P -basic intervals such that, I(i−1)(q−1)+j ⊂ 〈Pi〉
for every 1 ≤ i ≤ p and 1 ≤ j ≤ q − 1, and Ip(q−1)+1, Ip(q−1)+2, . . . , In−1 ⊂
T \ (∪p

i=1〈Pi〉).
Let M be the Markov matrix of (T, P, f) associated to this labelling. From

Lemma 3.1(a) it follows that the i, j entry of Mp is the number of paths of length
p in the Markov graph starting at Ii and ending at Ij . Therefore,

Mp =

(
A 0
B C

)
,

where A and C are square matrices of sizes p(q− 1)× p(q− 1) and (p− 1)× (p− 1)
respectively, 0 stands for the p(q − 1)× (p− 1) matrix whose entries are all 0, and
A has the form 



A1 0 . . . 0

0 A2

...
...

. . . 0
0 . . . 0 Ap



,

where each Ai is a matrix of size (q−1)×(q−1) and 0 stands for the (q−1)×(q−1)
matrix whose entries are all 0. Moreover, for each i, every entry of Ai is bounded
above by (q− 1)p−1 and every entry of C is bounded above by (p− 1)p−1. To prove

this consider an entry of Ai. It is an entry m
(p)
l,k of Mp with (i − 1)(q − 1) + 1 ≤
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l, k ≤ i(q − 1) (i.e. Il and Ik are P -basic intervals contained in 〈Pi〉). Hence,

m
(p)
l,k is the number of paths of length p in the Markov graph starting at Il and

ending at Ik. Such paths are of the form Il −→ Ji+1 −→ · · · −→ Jp −→ J1 −→
· · · −→ Ji−1 −→ Ik, where Jj ⊂ 〈Pj〉 for j ∈ {1, 2, . . . , p} \ {i}. Since there are
at most q − 1 choices for every Jk it follows that there are at most (q − 1)p−1

loops of this form and hence, m
(p)
l,k ≤ (q − 1)p−1. The same argument can be

used to show that every entry of the matrix C is upper bounded by (p − 1)p−1.
Consequently, since the spectral radius of a matrix is bounded above by any norm,
σ(Ai) ≤ ||Ai||∞ ≤ (q − 1)p for 1 ≤ i ≤ p and σ(C) ≤ ||C||∞ ≤ (p− 1)p.

Since h(f) = max{0, log(σ(M))} and σ(Mp) = σ(M)p, we have that h(f) =
max{0, 1p log(σ(Mp))}. Now observe that σ(Mp) is the maximum of the spectral

radius of the matrices A1, A2, . . . , Ap, C. Taking into account the above estimates
of σ(Ai) and σ(C) we get h(f) ≤ max{0, log(q − 1), log(p − 1)}. Therefore, since
n = pq with p, q ≥ 2, it follows that p, q ≤ n/2 and hence,

h(f) ≤ log
(
n
2 − 1

)
.

So, if n is even the proposition holds. If n is odd, then n ≥ 9 and p, q ≤ n/3. Thus,
h(f) ≤ log

(
n
3 − 1

)
. The inequality n ≥ 9 implies 2n < 3(n− 1) which is equivalent

to n
3 <

n−1
2 =

⌊
n
2

⌋
. This ends the proof of the proposition. �

Next we will show that, for each n ≥ 4, there exists an n-periodic interval model
whose entropy is larger than or equal to log(

⌊
n
2

⌋
). This construction is based on

the well known notion of a horseshoe. If f : I −→ I is a continuous interval map
and s ≥ 2, then an s-horseshoe for f is an interval J ⊂ I and a partition D of J
into s subintervals such that the closure of each element of D f -covers J . It is well
known (see for instance [5, Proposition 4.3.2]) that if f has an s-horseshoe then
h(f) ≥ log(s).

As we have already said, this result has interest in itself since, in particular,
it proves in a constructive way that the maximum entropy of all n-cycles in the
interval is larger than or equal to log(

⌊
n
2

⌋
).

Theorem 5.3. Let n ∈ N be such that n ≥ 4. Then, there exists a monotone
n-periodic interval model ([1, n], {1, 2, . . . , n}, f) such that f has an

⌊
n
2

⌋
-horseshoe

and, hence, h(f) ≥ log(
⌊
n
2

⌋
).

Corollary 5.4. The maximal periodic simplicial patterns are irreducible.

Proof. Let P be a reducible n-periodic simplicial pattern. By Proposition 5.1 it
has a block structure. In particular, n = pq for some p, q ≥ 2. Hence, n ≥ 4.

By Proposition 5.2 and Theorem 5.3 we get that P is not maximal. �
Notice that the proof of the above corollary works in the same manner restricted

to maximal interval patterns. So we also get

Corollary 5.5. The maximal periodic interval patterns are irreducible.

The rest of this section is devoted to prove Theorem 5.3. To this end we will
introduce some notation concerning permutations and we will prove a simple, but
useful, technical lemma.

A permutation of order n will be written as a bijective map from the set Zn :=
{1, 2, . . . , n} to itself. Given a permutation θ, as usual, we denote by θk the k-th
iterate of θ. Observe that θ is cyclic if and only if θk(i) 6= i for every i ∈ Zn and
1 ≤ k < n.

In a similar way, a one-to-one map ϕ : A −→ Zn, where A is a proper non-empty
subset of Zn, will be called a partial permutation of order n. For such a map we
also denote by ϕk the k-th iterate of ϕ. Observe that, given k ≥ 2 and i ∈ A, ϕk(i)
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will not be defined whenever ϕl(i) /∈ A for some l < k (and l ≤ |A|). We will say
that the partial permutation ϕ is periodic if there exists i ∈ A and 1 ≤ k < n such
that ϕk(i) = i, otherwise ϕ is non-periodic.

Lemma 5.6. Let ϕ : A −→ Zn be a non-periodic partial permutation of order n.
Then, there exists a cyclic permutation θ : Zn −→ Zn such that θ

∣∣
A
= ϕ.

Proof. Since A 6= Zn, ϕ(A) 6= Zn. Let x1, x2, . . . , xl be an enumeration of the ele-
ments of Zn \ϕ(A). Clearly, for every xi there exists a sequence xi0 = xi, x

i
1, . . . , x

i
ji

in Zn with ji ≥ 0 such that xip ∈ A and xip+1 = ϕ(xip) for p = 0, 1, . . . , ji − 1; and

xiji /∈ A. Hence, A =
⋃l

i=1{xi0, xi1, . . . , xiji−1} and Zn \A = {x1j1 , x2j2 , . . . , xljl}.
Now we define θ(w) = ϕ(w) for every w ∈ A, θ(xiji ) = xi+1

0 for i = 1, 2, . . . , l− 1

and θ(xljl ) = x10. This defines θ on the whole Zn in such a way that it is one-to-one
and non-periodic. So, θ is a cyclic permutation of order n. �

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Set k =
⌊
n
2

⌋
. We claim that there exists a non-periodic

partial permutation ϕ : A −→ Zn, where A = {l, l+1, . . . , l+ k} ⊂ Zn for a certain
l ∈ Zn that will be defined later, such that

(4) 〈ϕ(i), ϕ(i + 1)〉 ⊃ [l, l+ k] for i = l, l+ 1, . . . , l + k − 1.

Assume that the claim holds and let us prove the theorem. By Lemma 5.6,
we know that there exists a cyclic permutation θ : Zn −→ Zn of order n such that
θ
∣∣
A

= ϕ. Now we define f : [1, n] −→ [1, n] as the unique continuous map such

that f(i) = θ(i) for every i ∈ Zn and f is affine on each interval of the form
[i, i + 1] for i = 1, 2, . . . , n − 1. This completely specifies the n-periodic model
([1, n], {1, 2, . . . , n}, f). Clearly, for i ∈ A \ {l+ k},

f([i, i+ 1]) = 〈ϕ(i), ϕ(i + 1)〉 ⊃ [l, l + k].

Hence, the model ([1, n], {1, 2, . . . , n}, f) has a k-horseshoe and, by [5, Proposi-
tion 4.3.2]), h(f) ≥ log(k).

Now we will prove the claim. To this end we set u =
⌊
n−1
4

⌋
(that is, n = 4u+ r

with r ∈ {1, 2, 3, 4}). Observe that u ≥ 0 because n ≥ 4.
We define A = {x0, x1, . . . , xk} by setting l = u + 1 and xi = l + i = u + 1 + i

for i = 0, 1, . . . , k. Observe that xk = l+ k =
⌊
n−1
4

⌋
+1+

⌊
n
2

⌋
< n for every n ≥ 4.

Hence, A is a proper non-empty subset of Zn. We also set

Ae = {xi ∈ A : i is even},
Ao = {xi ∈ A : i is odd},
L = {i ∈ Zn : i ≤ x0} = {1, 2, . . . , x0},
R = {i ∈ Zn : i ≥ xk} = {xk, xk + 1, . . . , n}.

Observe that, since k ≥ 2, L ∩R = ∅. Also, Ae ∩ Ao = ∅ by definition.
We define ϕ on Ao by

ϕ(x2i−1) = i for i = 1, 2, . . . , |Ao|
and we define ϕ on Ae by

ϕ(x2i) =

{
xk + i when k is even

n− i when k is odd
for i = 0, 1, . . . , |Ae| − 1.

Clearly, ϕ(Ao) = {1, 2, . . . , |Ao|} and

ϕ(Ae) =

{
{xk, xk + 1, . . . , xk + |Ae| − 1} when k is even,

{n− |Ae|+ 1, n− |Ae|+ 2, . . . , n} when k is odd.
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We will prove that

(5) |R| ≥ |Ae| and |L| ≥ |Ao|.
This clearly implies

(6) ϕ(Ae) ⊂ R and ϕ(Ao) ⊂ L

and, hence, ϕ(A) ⊂ Zn and ϕ is one-to-one because L ∩ R = ∅. So, ϕ is a partial
permutation. Moreover, for i ∈ A \ {l + k}, 〈ϕ(i), ϕ(i + 1)〉 ⊃ [x0, xk] = [l, l + k].
Hence, (4) holds.

To prove (5), a simple computation shows that

k =
⌊
4u+r

2

⌋
= 2u+

⌊
r
2

⌋
= 2u+ (r − 1)− s, with

s =

{
0 when n− 4u ∈ {1, 2},
1 when n− 4u ∈ {3, 4}.

Observe that k is odd if and only if
⌊
r
2

⌋
= 1; which is equivalent to n− 4u ∈ {2, 3}

and k = 2u+ 1. Otherwise, n− 4u ∈ {1, 4} and k = 2(u+ s). We have

|L| = u+ 1, and

|R| = n− (xk − 1) = n− (u+ k) = 4u+ r − (3u+ (r − 1)− s) = u+ 1 + s.

On the other hand, when k is odd (that is, when n− 4u ∈ {2, 3}),

|Ao| = |Ae| =
k + 1

2
=

2u+ 2

2
= u+ 1.

and, when k is even (n− 4u ∈ {1, 4}),

|Ao| = |Ae| − 1 =
k

2
= u+ s.

Therefore, since s ∈ {0, 1}, we have

|Ao| ≤ u+ 1 = |L| and |Ae| ≤ u+ 1 + s = |R|
and (5) holds.

Now, to end the proof of the theorem, we have to show that ϕ is non-periodic.
From (6) it follows that the only possible periodic points of ϕ have to be contained
in {x0, xk}.

When k is even x0, xk ∈ Ae. Hence, ϕ(x0) = xk and ϕ(xk) = xk + k
2 . Since

k ≥ 2, ϕ(x0) 6= x0 and ϕ2(x0) = ϕ(xk) > xk. Hence, ϕ
2(x0) = ϕ(xk) /∈ A. So, ϕ is

non-periodic.
When k is odd, ϕ(x0) = n /∈ A. On the other hand, xk ∈ Ao and, hence,

ϕ(xk) ∈ ϕ(Ao) ⊂ L. So, either ϕ(xk) /∈ A or ϕ(xk) = x0. In any case, ϕ is
non-periodic as above. �

6. The maximal simplicial patterns are maximodal

In this Section we prove that an n-periodic irreducible simplicial pattern P which
has monotone triplets cannot attain the maximum entropy in the set of all n-
periodic patterns (Corollary 6.2). This basically follows from the following theorem.

Theorem 6.1. Let P be an n-periodic irreducible simplicial pattern. If P has
monotone triplets, then there exists an n-periodic simplicial pattern Q such that
h(Q) > h(P).

Then from Corollary 5.4 and Theorem 6.1 we immediately get:

Corollary 6.2. The maximal periodic simplicial patterns are irreducible and max-
imodal.
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Figure 2. On the left picture, a model (T, P, f) and the trees Ta,
Tb and Tx as defined in the proof of Theorem 6.1. On the right
picture, the model (S,Q, g) as constructed in the proof of Theo-
rem 6.1.

Proof of Theorem 6.1. If h(P) = 0 the result follows trivially since, for every n ≥ 3,
there exist patterns with positive topological entropy (for instance in the interval;
for n ≥ 4 this follows also from Theorem 5.3). So, in what follows we assume that
h(P) > 0.

Let (T, P, f) be a monotone model of P and let [a;x; b] be a monotone triplet of
(T, P, f). We define Ta (respectively, Tb) as the connected component of T \ (a, b)
which contains a (respectively b). We also define Tx as the connected component of
T \ {x} which does not contain a neither b (see the left part of Figure 2). Observe
that Ta, Tb and Tx are trees (maybe reduced to one point). Clearly, by construction,
Ta ∪ Tb ∪ Tx = T \ ((a, x) ∪ (x, b)).

We start by claiming that there exists a P -basic interval which f -covers either
〈a, x〉 or 〈x, b〉, but not both intervals. To prove the claim, let x−1 (respectively
b−1) denote the only point in f−1(x) ∩ P (respectively f−1(b) ∩ P ). Since x 6= b,
x−1 6= b−1. Take a linear ordering ≺ in 〈x−1, b−1〉 such that x−1 ≺ b−1. Let
y1, y2, . . . , yr denote all points in P ∩ 〈x−1, b−1〉, labelled in such a way that x−1 =
y1 ≺ y2 ≺ · · · ≺ yr = b−1. Note that f(y1) = x ∈ Tx, f(yr) = b ∈ Tb and each f(yi)
belongs either to Tx or Ta or Tb. It follows that there exists a P -basic interval I of
the form 〈yi, yi+1〉 for some 1 ≤ i < r such that f(yi) ∈ Tx and f(yi+1) /∈ Tx. Then
I f -covers 〈a, x〉 when f(yi+1) ∈ Ta and 〈x, b〉 when f(yi+1) ∈ Tb. So the claim is
proved.

Without loss of generality, from now on, we assume that the basic interval I
f -covers 〈x, b〉 and does not f -cover 〈a, x〉.

Next we are going to construct a new model (S,Q, g) in the following way: we
remove the interval (a, x) from T and attach Ta at some point v in the interval (x, b)
by gluing together a and v (see Figure 2 for an example). More precisely, there exists
a map φ : T −→ S such that φ

∣∣
Tx∪Tb∪〈x,b〉 and φ

∣∣
Ta∪〈a,x〉 are homeomorphisms, and

φ(a) = v ∈ (x, b). Observe that φ
∣∣
Ta∪Tb∪Tx

is bijective. Then we set Q = φ(P )

and g
∣∣
Sa∪Sb∪Sx

= φ ◦ f ◦ φ−1
∣∣
Sa∪Sb∪Sx

, where Sα = φ(Tα) for every α ∈ {a, x, b}.
Since P ⊂ Ta ∪ Tb ∪ Tx, Q is a periodic orbit of g of period n. Next we extend g to
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the whole S in such a way that it is continuous and (S,Q, g) is a monotone model.
Clearly, since (T, P, f) is simplicial, (S,Q, g) is simplicial.

Let Q be the pattern [S,Q, g]. To end the proof of the theorem we have to show
that h(Q) > h(P).

Since (S,Q, g) is n-periodic and simplicial, it has n−1 Q-basic intervals. Observe
that if 〈y, z〉 is a P -basic interval then 〈φ(y), φ(z)〉 is a Q-basic interval if and only
if 〈y, z〉 6= 〈x, b〉. Moreover, if 〈y, z〉 is a Q-basic interval then 〈φ−1(y), φ−1(z)〉 is a
P -basic interval if and only if 〈y, z〉 6= 〈φ(a), φ(b)〉.

Now consider a labelling {Ii}n−1
i=1 of the set of P -basic intervals of (T, P, f) such

that In−2 = 〈a, x〉 and In−1 = 〈x, b〉, and let M = (mi,j)
n−1
i,j=1 be the associated

Markov matrix. Since P is irreducible, M is irreducible. For every P -basic interval
Ii = 〈y, z〉 of (T, P, f) set φ(Ii) := 〈φ(y), φ(z)〉. Consider a labelling {Ji}n−1

i=1 of
the set of Q-basic intervals of (S,Q, g) such that Ji = φ(Ii) for 1 ≤ i ≤ n− 2 and
Jn−1 = 〈φ(a), φ(b)〉. Let R = (ri,j)

n−1
i,j=1 be the associated Markov matrix. The

matrix R can be obtained from the matrix M in the following way:

(1) mi,j = ri,j for 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− 3.
(2) For any 1 ≤ i ≤ n − 3, the ordered pair (mi,n−2,mi,n−1) changes to the pair

(ri,n−2, ri,n−1) according to the following rules: (0, 0) → (0, 0), (0, 1) → (1, 1),
(1, 0) → (1, 0) and (1, 1) → (0, 1).

(3) rn−1,j = mn−1,j +mn−2,j for each 1 ≤ j ≤ n− 3. Observe that, since [a;x; b]
is monotone, mn−1,j and mn−2,j cannot simultaneously be equal to 1.

(4) The 2× 2 submatrix

(
mn−2,n−2 mn−2,n−1

mn−1,n−2 mn−1,n−1

)
changes to

(
rn−2,n−2 rn−2,n−1

rn−1,n−2 rn−1,n−1

)

according to the following rules:

(
0 0
0 0

)
→

(
0 0
0 0

)
,

(
0 0
1 0

)
→

(
0 0
1 0

)
,

(
0 0
0 1

)
→

(
0 0
1 1

)
,

(
0 0
1 1

)
→

(
0 0
0 1

)
,

(
1 0
0 0

)
→

(
1 0
1 0

)
,

(
0 1
0 0

)
→

(
1 1
1 1

)
and

(
1 1
0 0

)
→

(
0 1
0 1

)
.

No other configurations are possible for this 2× 2 submatrix of M .

The above Statements (1–4) follow almost directly from the definition of the model
(S,Q, g) and the labelling of the P -basic and Q-basic intervals. As an example let us
prove Statement (3). We have to show that if Ij is f -covered either by In−2 = 〈a, x〉
or by In−1 = 〈x, b〉 for some 1 ≤ j ≤ n − 3, then Jn−1 = 〈φ(a), φ(b)〉 g-covers Jj .
Assume that Ij ⊂ 〈f(a), f(x)〉 (the proof is analogous if Ij is f -covered by 〈x, b〉).
Since 1 ≤ j ≤ n − 3, Ij is contained in Ta, Tb or Tx. Then, from the definition of
(S,Q, g) it follows that Jj = φ(Ij) is contained respectively in Sa, Sb or Sx, and
Jj ⊂ 〈φ(f(a)), φ(f(x))〉 = 〈g(φ(a)), g(φ(x))〉. Now observe that, since [a;x; b] is a
monotone triplet then [f(a); f(x); f(b)] is an ordered triplet in T . Note also that, if
[x1;x2;x3] is any ordered triplet in T , then [φ(x1);φ(x2);φ(x3)] is not an ordered
triplet in S if and only if x1 ∈ Ta, x2 = x and x3 ∈ Tb. Since f(x) 6= x, it follows that
[φ(f(a));φ(f(x));φ(f(b))], which can be rewritten as [g(φ(a)); g(φ(x)); g(φ(b))], is
an ordered triplet in S. So, 〈g(φ(a)), g(φ(b))〉 ⊃ 〈g(φ(a)), g(φ(x))〉 ⊃ Jj , which
proves (3).

Let L be the matrix of the linear transformation of Rn−1 given by

(x1, x2, . . . , xn−1) −→ (x1, x2, . . . , xn−2, xn−1 + xn−2).
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We have

h(Q) = h(g) = max{0, log(σ(R))} = max{0, log(σ(L−1RL))} and

h(P) = h(f) = max{0, log(σ(M))}.
Since h(P) > 0 it follows that 0 < h(P) = log(σ(M)). So, to end the proof of the
theorem it is enough to show that σ(L−1RL) > σ(M).

Observe that L coincides with the (n − 1) × (n − 1) identity matrix except for
the element placed at row n− 1, column n− 2, which is 1. Moreover, all entries of
L−1 coincide with those of L except the element placed at row n− 1, column n− 2,
which is −1. We also note that, given any (n− 1)× (n− 1) matrix X :

• The product XL gives a matrix whose (n− 2)-th column is the sum of the
(n − 2)-th and (n − 1)-th columns of X (the rest of columns of X remain
intact).

• The product L−1X gives a matrix whose (n−1)-th row is the (n−1)-th row
of X minus the (n− 2)-th row of X (the rest of rows of X remain intact).

Collecting the two statements above together with Statements (1–4) it is straight-
forward to check that L−1RL is a non-negative matrix whose entries coincide with
those of M except when the last two elements of a row of M are 0 and 1, in
which case the corresponding elements of L−1RL are respectively 2 and 1. In other
words, if L−1RL = (si,j)

n−1
i,j=1, then si,j 6= mi,j if and only if j = n − 2, mi,j = 0

and mi,j+1 = 1, and in this case si,j = 2 and si,j+1 = 1. Hence, L−1RL ≥M .
Recovering the claim at the beginning of the proof, recall that there exists a

P -basic interval Ii which f -covers In−1 and does not f -cover In−2. In terms of the
matrix M this amounts to mi,n−2 = 0 and mi,n−1 = 1. Therefore, from above,
si,n−2 = 2 > mi,n−2 and, hence, L−1RL 6=M .

On the other hand, M is irreducible by hypothesis. Thus, σ(L−1RL) > σ(M)
by Lemma 3.1(d). �

7. The maximal patterns are simplicial. Proof of Theorem A

Theorem A follows directly from Corollary 6.2 and the following theorem which
is the main result of this section.

Theorem 7.1. Any maximal periodic pattern is simplicial.

As it has been said in Section 2, to prove the above theorem we need to introduce
some new tools. In particular the notion of path transition matrix.

Notation and tools. Let P = [T, P, f ] be a pattern where (T, P, f) is a monotone
model of P . Let {π1, π2, . . . , πk} be the set of basic paths of the pointed tree (T, P ).
We will say that the basic path πi f -covers the basic path πj whenever πj ⊂ 〈f(πi)〉.
The fact that πi f -covers πj will be denoted by πi −→ πj .

The P-path graph is the combinatorial oriented graph whose vertices are in one-
to-one correspondence with the basic paths of (T, P ), and there is an oriented edge
(or arrow) from the vertex i to the vertex j if and only if πi f -covers πj .

The k × k matrix MP (P) = (mij) defined by

mij =

{
1 if πi f -covers πj ,

0 otherwise

(i.e. the transition matrix of the P-path graph) will be called the path transition
matrix of P .

It can be seen that the definitions of P-path graph and MP (P) are independent
of the particular choice of the model (T, P, f). Thus, they are well-defined pattern
invariants.
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A crucial fact about the path transition matrix of a pattern P is the following
(see [3])

(7) h(P) = max{0, logσ(MP (P))}.
Remark 7.2. In view of Theorem 5.3 and the fact that every 3-periodic inter-
val model has positive topological entropy (see for instance [5, Theorem 4.4.20])
it follows that if P is a maximal n-periodic pattern with n ≥ 3 then, by (7),
σ(MP (P)) > 1 and h(P) = log σ(MP (P)).

There is also a converse of the operation just described (i.e. going from the P-
path graph to the path transition matrix). Indeed, letM = (mij) be a k×k matrix
whose entries are non-negative integers. To M we can associate the combinatorial
oriented generalized graph whose vertices are 1, 2, . . . , k and there are mij labelled
arrows from the vertex i to the vertex j. Such a graph will be called the M -induced
graph. Clearly, M is the transition matrix of the M -induced graph. In particular,
the P-path graph is the MP (P)-induced graph.

Now we are ready to start the

Proof of Theorem 7.1. The strategy of the proof of Theorem 7.1 is as follows.
Assume that P is a maximal periodic pattern which is not simplicial (i.e. ν(P) > 0).
By the iterative use of Proposition 4.1 and Lemma 4.3 we may assume that P has
a unique free vertex. In the rest of this section we will prove that any maximal
periodic pattern P with a unique free vertex admits a (special) collapse P ′ such
that h(P ′) > h(P), contradicting the maximality of P . To this end we fix the
notation for the rest of this section as follows.

Set P = [T, P, f ] where (T, P, f) is a canonical monotone n-periodic model and
assume that Br(T ) \ P = {v}. Notice that with these assumptions, n ≥ 3.

By Remark 2.2 it follows that f(v) ∈ P ∪ {v} and f is (P ∪ {v})-monotone.
Let Cv = {p1, p2, . . . , pk} ⊂ P denote the discrete component of (T, P ) such

that v ∈ 〈Cv〉. Observe that v has valence k and that 〈Cv〉 is a star that has v as
branching point. Since v ∈ Br(T ) it follows that k ≥ 3. Note also that |P | > k
since otherwise P has a unique discrete component Cv = P and f is a permutation
over P. In such case h(P) = 0, contradicting Remark 7.2.

For i ∈ {1, 2, . . . , k} we will denote by Ci the connected component of T \
Int(〈Cv〉) such that pi ∈ Ci. Observe that P ⊂ C1 ∪ C2 ∪ . . . Ck.

The basic path {pi, pj} with i, j ∈ {1, 2, . . . , k} will be denoted by pi,j (or pj,i)
and be called an interior basic path of the P-path graph. Every other basic path
will be called an exterior basic path of the P-path graph. The set of exterior basic
paths will be denoted by E . Observe that every exterior basic path is contained in
〈Ci〉 for some i.

We will separate the proof of Theorem 7.1 into two cases according to the fact
that v is fixed by f or not.

Case f(v) 6= v.

Since f(v) ∈ P ∪ {v} it follows that f(v) ∈ P .
We claim that the valence of f(v) is k. To prove the claim assume that the

valence of f(v) is smaller than k. Then, since f is P ∪ {v}−monotone, the valence
of f(v) is k − 1 and there exists i ∈ {1, 2, . . . , k} such that f(〈v, pi〉) = f(pi).

We consider the pattern P ′ obtained by collapsing the edge 〈v, pi〉 to the point
{pi}. Clearly this pattern is simplicial. Moreover, since f

∣∣
〈v,pi〉 is constant, the

entropy of P ′ coincides with the entropy of P in a similar way to the proof of
Proposition 4.1. Hence, P ′ is maximal by assumption. On the other hand, the fact
that f(v) has valence k−1 implies that in the pattern P ′, [pl; pi; pm] with i /∈ {l,m}
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Figure 3. The two subcases of the proof of Theorem 7.1 in the
case f(v) 6= v. On the left the situation of Subcase 1 and on the
right the situation of Subcase 2.

is a monotone ordered triplet and hence, P ′ is not maximodal. This contradicts
Corollary 6.2 and ends the proof of the claim.

Let s ∈ {1, 2, . . . , k} be such that f(v) ∈ Cs. Since the valence of f(v) is k
(and, hence, f is a local homeomorphism at v) it follows that we are in one of the
following two cases (see Figure 3):

Subcase 1. f(pi) ∈ Cs for all i ∈ {1, . . . , k}.
Observe that if f(Ci) ⊂ Cs for every i ∈ {1, . . . , k} then P cannot be a periodic
orbit. Hence, f(Ci) 6⊂ Cs for some i ∈ {1, . . . , k} and, since f(pi) ∈ Cs, some
exterior basic path must f−cover some interior basic path pr,s.

Subcase 2. There exists a unique l ∈ {1, . . . , k} such that f(pl) /∈ Cs.

Let r ∈ {1, . . . , k} \ {s} be such that f(pl) ∈ Cr.

In both subcases, since k ≥ 3, we may assume by relabelling the points pi if
necessary that 1 /∈ {r, s}.

We consider the pattern obtained from P by collapsing the edge 〈v, p1〉 to a
point (see the definition of a collapse from Section 4). In this way we obtain a
pattern P ′ =

(
[T ′, P ′], [κ ◦ f ◦ κ−1

∣∣
P ′ ]
)
(where κ is the standard projection from

T to the tree T ′ obtained by collapsing the edge 〈v, p1〉 of T and P ′ = κ(P )).
Clearly P is simplicial and from Proposition 4.1 it follows that h(P ′) ≥ h(P).
Consequently, P ′ is maximal. Since P ′ is simplicial, the path-transition matrix
of P ′, MP (P ′), coincides with the Markov matrix of P ′. Therefore, MP (P ′) is
irreducible by Corollary 6.2.

We have to show that h(P) < h(P ′). To do this we will compare the spectral
radius of MP (P) and MP (P ′) (Remark 7.2). Unfortunately these matrices cannot
be compared directly and we need the help of an auxiliary intermediate matrix
M obtained from MP (P) as follows. The fact that f is P ∪ {v}−monotone and
f(v) has valence k implies that 〈f(v), f(pi)〉 ∩ 〈f(v), f(p1)〉 = {f(v)} for every
i ∈ {2, 3, . . . , k}. Therefore, the matrix MP (P) has a zero in the entries lying in a
row corresponding to every interior basic path pi,j with 1 < i < j and in a column
corresponding to every basic path contained in 〈f(v), f(p1)〉. The matrix M has
the same size as MP (P) and coincides with MP (P) except for the entries lying in
a row corresponding to every interior basic path pi,j with 1 < i < j and column
corresponding to every basic path contained in 〈f(v), f(p1)〉, where we replace the
zero in MP (P) by a 2 in M . Observe that all basic paths contained in 〈f(v), f(p1)〉
are exterior.

We will prove that

(8) h(P) < log σ(M) = h(P ′).
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This contradicts the maximality of P and ends the proof of the theorem in the case
f(v) 6= v.

The above inequalities will be proved by using Lemma 3.1. To this end we need
to extend the notions of interior and exterior basic path, defined for the P-path
graph, to the P ′-path graph and to the M -induced graph.

Let f ′ be a map from T ′ to itself such that P ′ = [T ′, P ′, f ′] and (T ′, P ′, f ′) is
a monotone model. Set p′i = κ(pi) for i = 1, 2, . . . , k. The basic path {p′1, p′j} of

(T ′, P ′) with j ∈ {2, 3, . . . , k} will be denoted by p′1,j and be called an interior

basic path of the P ′-path graph (observe that {p′i, p′j} with i, j ∈ {2, 3, . . . , k} is not
a basic path of P ′). Every other basic path of the P ′-path graph will be called an
exterior basic path. The set of exterior basic paths of the P ′-path graph will be
denoted by E ′.

By the construction of the matrix M there is a one-to-one correspondence be-
tween the rows of MP (P) and the rows of M . Thus, we can identify the basic path
which determines a given row of the matrix MP (P) with the corresponding row
index of the matrix M and, hence, with the vertices of the M -induced graph. In
the rest of this section we will use this notation for the vertices of the M -induced
graph (i.e. if a node i of the M -induced graph is identified with the basic path
πm of the P-path graph, in what follows it will be denoted by πm). In this setting
the interior and exterior basic paths of the P-path graph and the M -induced graph
coincide. Moreover, the P-path graph is a subgraph of the M -induced graph.

Observe that in the collapsing of the edge 〈v, p1〉 to obtain T ′ from T we did not
modify any exterior basic path of the P-path graph. Hence, the exterior basic paths
of the P ′-path graph are in one-to-one correspondence with those of the P-path
graph which, in turn, are identified with the exterior basic paths of the M -induced
graph. So, if E ∈ E we will denote by E′ the corresponding element of E ′, and
conversely. Also, the coverings between the elements of E in the P-path graph and
the M -induced graph and the coverings between the elements of E ′ in the P ′-path
graph are in one-to-one correspondence because when constructing the pattern P ′

and the matrix M we only have modified the interior basic paths and the coverings
of interior basic paths, respectively.

The next lemma describes all f -coverings between interior paths of the P-path,
the P ′-path and the M -induced graphs. It follows directly from the definitions.

Lemma 7.3. With the previous notation the P-path, the P ′-path and the M -
induced graphs have exactly the following covers between interior basic paths.

Subcase 1. No interior basic path covers another interior basic path in the the P-
path, the P ′-path and the M -induced graphs.

Subcase 2. In the cases
l 6= 1 we have f(p1) ∈ Cs and the P-path and the M -induced graphs

contain the arrows pi,l −→ pr,s for all i 6= l. The P ′-path graph
contains the arrows p′1,l −→ p′1,r and p′1,l −→ p′1,s.

l = 1 the P-path graph contains the arrows pi,1 −→ pr,s for all i 6= 1;
the M -induced graph contains the arrows pi,1 −→ pr,s for all i 6= 1

and pi,j
1−−→ pr,s and pi,j

2−−→ pr,s for all 1 < i < j ≤ k and the

P ′-path graph contains the arrows p′i,1 −→ p′r,1 and p′i,1 −→ p′s,1
for all i 6= 1.

The proof of (8) will be split into two lemmas. Before stating and proving them

we will recall the notion of a concatenation of paths. Let α = α0
l0−−→ α1

l1−−→

· · · ln−2−−−→ αn−1
ln−1−−−→ αn and β = β0

r0−−→ β1
r1−−→ · · · rm−2−−−→ βm−1

rm−1−−−→ βm be two

paths in an oriented generalized graph. If αn = β0 then we can concatenate α and
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β to get the path α0
l0−−→ α1

l1−−→ · · · ln−2−−−→ αn−1
ln−1−−−→ αn

r0−−→ β1
r1−−→ · · · rm−2−−−→

βm−1
rm−1−−−→ βm. Such a path will be denoted by αβ and be called the concatenation

of α and β.

Lemma 7.4. With the above notations h(P) < log σ(M).

Proof. From Remark 7.2 it follows that h(P) = log σ(MP (P)). So, we have to
show that σ(MP (P)) < σ(M). As previously stated, to compare the entries of
these matrices we will use the interpretation in terms of loops of the corresponding
graphs given by Lemma 3.1(a).

The proof of the lemma will be achieved through a series of 3 claims which follow.

Claim 1. Any pair of exterior basic paths of the P-path graph (and, hence, of
the M -induced graph) can be joined by a path in the M -induced graph. To prove

the claim take E, Ẽ ∈ E and let E′, Ẽ′ ∈ E ′ denote the corresponding exterior
basic paths in the P ′-path graph (recall that the elements of E are in one-to-one
correspondence with those of E ′). Since MP (P ′) is irreducible, it follows from

Lemma 3.1(a,b) that there exists a path from E′ to Ẽ′ in the P ′-path graph.
Among these paths, let us take one with a minimal length. If such a path does
not contain interior basic paths, a corresponding path also exists in the M -induced
graph (recall that the coverings between the elements of E ′ in the P ′-path graph and
the coverings between the elements of E in the M -induced graph are in one-to-one
correspondence). This ends the proof of the claim in this case.

Assume now that the above minimal path contains interior basic paths. Such
a path can be written as a concatenation of paths γ′1γ

′
2 · · · γ′m such that each γ′j

begins and ends with an external basic path (γ′1 begins with E′ and γ′m ends with

Ẽ′), contains interior basic paths and all interior basic paths contained in each γ′j
are consecutive.

We will show that for each γ′j = E′j
1 −→ E′j

2 −→ · · · −→ E′j
nj

there exists a

path γj from Ej
1 to Ej

nj
in the M -induced graph, where Ej

1 (respectively Ej
nj
) is

the external basic path of the M -induced graph that corresponds to E′j
1 (respec-

tively E′j
nj
). In particular, γ1 begins with E and γm ends with Ẽ. Thus, we can

concatenate the paths γj to get a path γ1γ2 · · · γm from E to Ẽ and the claim
follows.

Now we will show that for each path γ′j = E′j
1 −→ E′j

2 −→ · · · −→ E′j
nj

with the

above properties there exists a path γj from Ej
1 to Ej

nj
in the M -induced graph.

According to Lemma 7.3 and in view of the minimality of the length of the path
γ′1γ

′
2 · · · γ′m, each path γ′j must be of one of the following forms with i ∈ {2, 3, . . . , k}:
• E′

1 −→ · · · −→ E′
m1

−→ p′1,i −→ Ẽ′
1 −→ · · · −→ Ẽ′

m2
, or

• E′
1 −→ · · · −→ E′

m1
−→ p′1,l −→ p′1,r −→ Ẽ′

1 −→ · · · −→ Ẽ′
m2

(only for l 6= 1), or

• E′
1 −→ · · · −→ E′

m1
−→ p′1,l −→ p′1,s −→ Ẽ′

1 −→ · · · −→ Ẽ′
m2

(only for l 6= 1), or

• E′
1 −→ · · · −→ E′

m1
−→ p′1,i −→ p′1,r −→ Ẽ′

1 −→ · · · −→ Ẽ′
m2

(only for l = 1), or

• E′
1 −→ · · · −→ E′

m1
−→ p′1,i −→ p′1,s −→ Ẽ′

1 −→ · · · −→ Ẽ′
m2

(only for l = 1),

where all basic paths forming the paths E′
1 −→ · · · −→ E′

m1
and Ẽ′

1 −→ · · ·
−→ Ẽ′

m2
are exterior basic paths.
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When Ẽ′
1 ⊂ κ(〈f(v), f(p1)〉) it follows that p′1,i −→ Ẽ′

1 for every i ∈ {2, 3, . . . , k}.
Hence, by the minimality of the path, we are in the first case of the above list. In
that case, if E′

m1
does not f ′-cover another interior path it follows that E1 −→ · · ·

−→ Em1 −→ p1,i −→ Ẽ1 −→ · · · −→ Ẽm2 is a path in the M -induced graph from

E1 to Ẽm2 . If E
′
m1

also f ′-covers p′1,z then the M -induced graph contains the path

E1 −→ · · · −→ Em1 −→ pl,z −→ Ẽ1 −→ · · · −→ Ẽm2 from E1 to Ẽm2 .

When Ẽ′
1 ⊂ κ(〈f(v), f(pr)〉), Ẽ′

1 ⊂ κ(〈f(v), f(ps)〉) or Ẽ′
1 ⊂ κ(〈f(v), f(pi)〉), an

analysis similar to the one above shows that, in all the cases, the M -induced graph

contains a path from E1 to Ẽm2 . This ends the proof of the claim. �

Now we start the process of comparing paths in the P-path and the M -induced
graphs.

We will say that a basic path π of the M -induced graph is admissible if there
exists a path in the M -induced graph beginning at some exterior basic path and
ending at π. Let ∆ be the set of all admissible basic paths. By the claim, E ⊂ ∆.

Claim 2. The set ∆ is transitive in the following sense: any two elements of ∆
can be joined by a path in the M -induced graph using only elements of ∆. Now we

prove this claim. Notice that it holds for any two exterior basic paths E, Ẽ since,
in the previous claim, we have proved that there is a path in the M -induced graph

joining E and Ẽ (the interior basic paths contained in this path all belong to ∆ by
definition).

Let pi,j ∈ ∆ with i, j ∈ {1, 2, . . . , k}, i 6= j be an interior basic path and let
E ∈ E . We will prove that there exists a path from E to pi,j and a path from pi,j
to E, both containing only elements from ∆.

Since E ⊂ ∆, there exists a path γ from some exterior basic path Ẽ to pi,j
and a path α from E to Ẽ, both paths containing only elements from ∆. The
concatenation αγ gives a path beginning at E and ending at pi,j containing only
elements from ∆.

To prove that there is a path from pi,j to E containing only elements from ∆, we

note that there is at least one arrow from pi,j to some exterior basic path Ê in the
M -induced graph. Indeed, since at most one element from f({p1, p2, . . . , pk}) does
not belong to Cs, either f(pi) or f(pj) belong to Cs. Assume for definiteness that
f(pj) ∈ Cs. Then, 〈f(v), f(pj)〉 ⊂ 〈Cs〉 and all basic paths contained in 〈f(v), f(pj)〉
are exterior basic paths of the P-path graph. On the other hand, f(〈pi,j〉) =
〈f(pi), f(pj)〉 ⊃ 〈f(v), f(pj)〉. Hence, there is an arrow from pi,j to some exterior

basic path Ê ⊂ 〈f(v), f(pj)〉 in the P-path graph. Since the vertices of the P-path
graph and the M -induced graph are identified and the P-path graph is a subgraph

of the M -induced graph, there is an arrow from pi,j to Ê in the M -induced graph.

Concatenating the path pi,j −→ Ê with a path from Ê to E, we obtain a path
beginning at pi,j and ending at E, containing only elements from ∆.

To end the proof of the claim take interior paths π, π̃ ∈ ∆ and let E ∈ E . From
the part already proven, there exist paths γ1 from π to E and γ2 from E to π̃,
containing only elements from ∆. The path γ1γ2 joins π with π̃ and contains only
elements from ∆. This ends the proof of Claim 2. �

Claim 3. The path pr,s belongs to ∆. In Subcase 1, pr,s was defined as an interior
basic path covered by some exterior basic path. So, pr,s ∈ ∆ by definition.

Now we consider Subcase 2 when l 6= 1. We recall that since MP (P ′) is irre-
ducible, the P ′-path graph contains a path from some exterior basic path E′ to
p′1,l, by Lemma 3.1(a,b). Then, the M -induced graph contains a path from E to

pi,l for some i ∈ {1, 2, . . . , k}. By Lemma 7.3 it follows that pi,l −→ pr,s and hence,
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by concatenating the two loops, we obtain a loop in the M -induced graph from E
to pr,s. Thus, again, pr,s ∈ ∆ by definition.

A similar argument works in Subcase 2 when l = 1, and the claim holds. �

Now let Y denote the set of basic paths of the M -induced graph that do not
belong to ∆. Clearly Y is disjoint from E and so, it only contains interior basic
paths. The columns of the matrix M corresponding to the elements of Y are
identically zero. To see it notice that, by definition, there are no coverings from
any element of ∆ to any element of Y . Also, there are no coverings from any
element of Y to any element of Y . Indeed, all elements of Y are interior basic paths
and, by Lemma 7.3, the only interior basic path covered by another interior basic
path is pr,s which belongs to ∆.

Let M̃P (P) and M̃ be the matrices obtained respectively from MP (P) and M
by deleting the rows and the columns corresponding to the elements of Y . Clearly

σ(M̃P (P)) = σ(MP (P)) and σ(M̃) = σ(M). On the other hand, the matrix M̃
is irreducible because we have proved that the set ∆ is transitive (i.e. any two
elements of ∆ can be joined by a path in the M -induced graph using only elements

of ∆ — see Lemma 3.1(a,b)). Observe also that M̃ ≥ M̃P (P) by the definition

of M . Since pr,s /∈ Y it follows that both matrices M̃ and M̃P (P), have a row
corresponding to pr,s. Moreover, since 1 /∈ {r, s}, from the definition of the matrix

M it follows that the entries of the row of M̃ corresponding to pr,s are strictly

greater than the corresponding entries of M̃P (P). So, by Lemma 3.1(d),

σ(MP (P)) = σ(M̃P (P)) < σ(M̃) = σ(M).

�
Lemma 7.5. With the above notations h(P ′) = log σ(M).

Proof. Since P ′ is maximal we get h(P ′) = log σ(MP (P ′)) from Remark 7.2. Thus,

we have to prove that σ(MP (P ′)) = σ(M). To do this we will use the matrix M̃ from

the proof of the previous lemma. Hence we have to prove that σ(MP (P ′)) = σ(M̃)

because σ(M̃) = σ(M).
Fix an external basic path E′ ∈ E ′ and the corresponding external path E ∈ E .

The set Y defined in the proof of the previous lemma is disjoint from E . Thus,

the M̃ -induced graph has a vertex associated to E. Since MP (P ′) and M̃ are
irreducible, by Lemma 3.1(c) it is enough to show that, for every k ∈ N, the number
of loops of length k in the P ′-path graph starting and ending at E′ coincides with
the number of loops of length k in the M̃ -induced graph starting and ending at E.

Let A′ be the set of loops of length k starting and ending at E′ in the P ′-path
graph and let Ã be the set of loops of length k starting and ending at E in the M -
induced graph. In A′ we introduce the equivalence relation ∼′ as follows. Given two
loops from A′ we say that they are ∼′-equivalent if they have the same elements of

E ′ in the same position. Analogously, two loops from Ã are said to be ∼-equivalent
if they have the same elements of E in the same position.

We claim that, given two exterior basic paths E′
1, E

′
2 ∈ E ′ and m ≥ 2, the

number of paths of the P ′-path graph of the form E′
1 −→ π′

1 −→ π′
2 −→ · · ·

−→ π′
m−1 −→ E′

2, where π
′
1, π

′
2, . . . , π

′
m−1 are interior basic paths coincides with

the number of paths of the M -induced graph of the form E1 −→ π1 −→ π2 −→ · · ·
−→ πm−1 −→ E2, where π1, π2, . . . , πm−1 are interior basic paths.

Clearly, if the claim holds, there is a bijection Ψ: A′/∼′−→ Ã/∼ and for every
[A] ∈ A′/∼′ it follows that [A] and Ψ([A]) have the same number of elements. Thus

the cardinality of A′ and Ã coincides and, hence, the lemma follows.
The rest of the proof is devoted to prove the claim.
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First we prove the claim in Subcase 1. By Lemma 7.3, all paths of the P ′-
path graph verifying the assumptions of the claim are of length 2 and of the
form E′

1 −→ p′1,i −→ E′
2 with i ∈ {2, 3, . . . , k}. From the definition of the model

(T ′, P ′, f ′) it follows that E2 ⊂ 〈f(v), f(p1)〉 ∪ 〈f(v), f(pi)〉.
If p′1,i is the unique basic interior path f ′-covered by E′

1 then there is a unique i

such that E′
1 −→ p′1,i −→ E′

2 is a path from E′
1 to E′

2 in the P ′-path graph, and the
only path from E1 to E2 in the P-path graph and hence in the M -induced graph
is E1 −→ p1,i −→ E2 (recall that the matrices MP (P) and M only differ in rows
corresponding to paths pi,j with 1 < i < j). By the definition of the sets ∆ and
Y from the proof of the previous lemma it follows that E1, p1,i, E2 /∈ Y . Hence

E1 −→ p1,i −→ E2 is the only path from E1 to E2 in the M̃ -induced graph. Thus,
the claim follows in this case.

Assume now that E′
1 f

′-covers p′1,i and p
′
1,j with 1 < i < j. In this case we clearly

have the arrow E1 −→ pi,j in the M -induced graph. When E2 ⊂ 〈f(v), f(pi)〉, as
in the previous case, there is a unique i such that E′

1 −→ p′1,i −→ E′
2 is a path

from E′
1 to E′

2 in the P ′-path graph. Moreover, by the definition of the matrix M ,
the entries of MP (P) and M corresponding to the row associated to the basic path
pi,j and to the column associated to E2 coincide. The fact that E2 ⊂ 〈f(v), f(pi)〉
implies that pi,j f -covers E2 and, hence, there is a unique arrow from pi,j to E2 in
the M -induced graph. Consequently, as above, E1 −→ pi,j −→ E2 is the only path

from E1 to E2 in the M̃ -induced graph and the claim follows as in the previous
case. Assume now that E2 ⊂ 〈f(v), f(p1)〉. In this case there are two paths from
E′

1 to E′
2 in the P ′-path graph: E′

1 −→ p′1,i −→ E′
2 and E′

1 −→ p′1,j −→ E′
2. On the

other hand, again by the definition of the matrix M , the entry of M corresponding
to the row associated to the basic path pi,j and to the column associated to E2 is
2, meaning that there are two labelled arrows from pi,j to E2 in the M -induced

graph. Consequently, there are two paths from E1 to E2 in the M̃ -induced graph:

E1 −→ pi,j
1−−→ E2 and E1 −→ pi,j

2−−→ E2. This ends the proof of the claim in

Subcase 1.
Now we consider Subcase 2 with l /∈ {1, r, s}. In this situation, again by

Lemma 7.3, all paths of the P ′-path graph verifying the assumptions of the claim
are of length 2 or 3. When m = 2 and there is a path E′

1 −→ p′1,i −→ E′
2 with

i ∈ {2, 3, . . . , k} from E′
1 to E′

2 in the P ′-path graph the claim holds by the same
arguments as in Subcase 1.

Assume now that there is a path from E′
1 to E′

2 in the P ′-path graph of length
3. By Lemma 7.3 this path must be E′

1 −→ p′1,l −→ p′1,i −→ E′
2 with i ∈ {r, s}. If

p′1,l is the unique basic interior path f ′-covered by E′
1 then, by the definition of M

and Y , we have the following path in the M̃ -induced graph E1 −→ p1,l −→ pr,s.
When E2 ⊂ 〈f(v), f(pi)〉, E′

1 −→ p′1,l −→ p′1,i −→ E′
2 is the only path of length

3 from E′
1 to E′

2 in the P ′-path graph. On the other hand, by using similar
arguments to those, there is a unique arrow from pr,s to E2 in the M -induced
graph. Consequently, E1 −→ p1,l −→ pr,s −→ E2 is the only path from E1

to E2 in the M̃ -induced graph and the claim follows. Assume now that E2 ⊂
〈f(v), f(p1)〉. In this case there are two paths from E′

1 to E′
2 in the P ′-path graph:

E′
1 −→ p′1,l −→ p′1,r −→ E′

2 and E′
1 −→ p′1,l −→ p′1,s −→ E′

2. Again, by the def-
initions of the matrices M and Y , there are also two paths from E1 to E2 in the

M̃ -induced graph: E1 −→ p1,l −→ pr,s
1−−→ E2 and E1 −→ p1,l −→ pr,s

2−−→ E2.

Thus the claim follows in Subcase 2, with l /∈ {1, r, s}; the loops from E′
1 to E′

2 in
the P ′-path graph having length 3, and p′1,l being the unique basic interior path

f ′-covered by E′
1.



MAXIMIZING ENTROPY OF CYCLES ON TREES 25

Now we consider the case when E′
1 f

′-covers p′1,l and p
′
1,j with 1 < l, j and l 6= j.

In this case we clearly have the path E1 −→ pi,j −→ pr,s in the M̃ -induced graph
and the claim follows by using the same arguments as in the previous case.

Now we assume that we are in Subcase 2 with l ∈ {r, s} (since 1 /∈ {r, s} we
automatically have l 6= 1). We only study the case l = r. The other case follows in
a similar way.

By Lemma 7.3, in this case we have paths of the P ′-path graph verifying the
assumptions of the claim of arbitrary length m ≥ 2. All these paths are of the form
either

(i’)
(
E′

1 −→ p′1,r
) (
p′1,r −→ p′1,r

)m−2 (
p′1,r −→ E′

2

)
=

E′
1 −→ p′1,r −→ p′1,r −→ · · · −→ p′1,r −→ E′

2, or

(ii’)
(
E′

1 −→ p′1,r
) (
p′1,r −→ p′1,r

)m−3 (
p′1,r −→ p′1,s

) (
p′1,s −→ E′

2

)
=

E′
1 −→ p′1,r −→ p′1,r −→ · · · −→ p′1,r −→ p′1,s −→ E′

2.

From Lemma 7.3 and the definition of Y it follows that the M̃ -induced graph has
the path

(i) (E1 −→ p1,r −→ pr,s) (pr,s −→ pr,s)
m−3

when E′
1 only f ′-covers p′1,r, and

(ii) (E1 −→ pr,j −→ pr,s) (pr,s −→ pr,s)
m−3

when E′
1 f

′-covers p′1,r and p′1,j with
1 < r, j and r 6= j.

Now, from the definitions ofM and Y as before, if E2 ⊂ 〈f(v), f(pr)〉∪〈f(v), f(ps)〉
it follows that either (i’) or (ii’) is the unique path of length m from E′

1 to E′
2 in

the P ′-path graph, and concatenating the paths (i) or (ii) with (pr,s −→ E2) we

obtain a unique path of length m from E1 to E2 in the M̃ -induced graph and the
claim holds. When E2 ⊂ 〈f(v), f(p1)〉 then both paths of length m, (i’) and (ii’),
occur in the P ′-path graph and concatenating the paths (i) or (ii) with the labelled

arrows
(
pr,s

1−−→ E2

)
and

(
pr,s

2−−→ E2

)
we also obtain two paths from E1 to E2

in the M̃ -induced graph. So, the claim holds also in this case.
Finally we consider Subcase 2 with l = 1. Again from Lemma 7.3 we have paths

of the P ′-path graph verifying the assumptions of the claim of arbitrary length
m ≥ 2. These paths are of the form E′

1 −→ p′1,i −→ p′1,l2 −→ p′1,l3 −→ · · ·
−→ p′1,lm−1

−→ E′
2, where i ∈ {2, 3, . . . , k}, lj ∈ {r, s} for j = 2, 3, . . . ,m − 1 and

E2 ⊂ 〈f(v), f(pr)〉 ∪ 〈f(v), f(ps)〉 ∪ 〈f(v), f(p1)〉. Moreover, lm−1 = r (respectively
lm−1 = s) if E2 ⊂ 〈f(v), f(pr)〉 (respectively E2 ⊂ 〈f(v), f(ps)〉).

If p′1,i is the only path f ′-covered by E′
1, there are 2m−2 (respectively 2m−3)

paths of length m from E′
1 to E′

2 in the P ′-path graph when E2 ⊂ 〈f(v), f(p1)〉 (re-
spectively E2 ⊂ 〈f(v), f(pr)〉∪〈f(v), f(ps)〉). Moreover, by the definitions ofM and
Y (and Lemma 7.3), we have the following paths of length m from E1 to E2 in the

M̃ -induced graph E1 −→ p1,i −→ pr,s
s3−−→ pr,s

s4−−→ . . .
sm−1−−−→ pr,s

sm−−→ E2, where

sj ∈ {1, 2} for j = 3, 4, . . . ,m− 1 and sm ∈ {1, 2} (respectively sm = 1) when E2 ⊂
〈f(v), f(p1)〉 (respectively E2 ⊂ 〈f(v), f(pr)〉 ∪ 〈f(v), f(ps)〉). Consequently, there

are 2m−2 (respectively 2m−3) paths of length m from E1 to E2 in the M̃ -induced
graph when E2 ⊂ 〈f(v), f(p1)〉 (respectively E2 ⊂ 〈f(v), f(pr)〉∪〈f(v), f(ps)〉) and
the claim holds.

The case when E′
1 f

′-covers p′1,i and p
′
1,j with 1 < i < j follows from a similar

analysis. �

From Lemmas 7.4 and 7.5 it follows that inequality (8) is true and, hence, The-
orem 7.1 is true in the case f(v) 6= v.

Case f(v) = v.
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Since f is P ∪ {v}-monotone it is locally injective at v. This means that f
induces a permutation τ : {1, 2, . . . , k} −→ {1, 2, . . . , k} defined by: f(pi) ∈ Cτ(i)

for i = 1, 2, . . . , k. We denote by Bi the set of all basic paths contained in the path
〈pτ(i), f(pi)〉. Observe that from the definition of τ , pτ(i), f(pi) ∈ Cτ(i). Hence,
either f(pi) = pτ(i) and Bi = ∅ or all elements of Bi are exterior basic paths
contained in Cτ(i).

Set

N := {i ∈ {1, 2, . . . , k} : Bi 6= ∅} = {i ∈ {1, 2, . . . , k} : f(pi) 6= pτ(i)}.
Observe that N 6= ∅. Otherwise, f(pi) = pτ(i) ∈ {p1, p2, . . . , pk} for every

pi ∈ {p1, p2, . . . , pk}. So, since |P | > k, {p1, p2, . . . , pk} is a proper f - invariant
subset of P ; a contradiction.

We claim that either there exists j ∈ N such that τ(j) 6= j (that is, f(pj) 6=
pτ(j) 6= pj) or τ = Id, where Id denotes the identity function, and N = {1, 2, . . . , k}
(that is, pi 6= f(pi) ∈ Ci for i = 1, 2, . . . , k). To prove the claim observe that
either there is j ∈ N such that τ(j) 6= j or τ

∣∣
N

= Id
∣∣
N
. We have to show that

τ
∣∣
N

= Id
∣∣
N

implies N = {1, 2, . . . , k}. Assume that τ
∣∣
N

= Id
∣∣
N
. Since τ is a

permutation and τ(N) = N it follows that τ({1, 2, . . . , k} \N) ⊂ {1, 2, . . . , k} \N.
Set Ñ := {pi : i ∈ {1, 2, . . . , k} \N}. Since Ñ ⊂ {p1, p2, . . . , pk} ⊂ P and |P | > k,

Ñ is a proper subset of P . Combining these results we have f(pi) = pτ(i) ∈ Ñ

for every pi ∈ Ñ . Consequently, Ñ is f - invariant; a contradiction. This ends the
proof of the claim.

Assume that τ = Id and N = {1, 2, . . . , k}. This implies that p2 6= f(p2) ∈ C2.
Consequently, since C2 cannot be f -invariant, there exists an exterior basic path in
C2 f -covering some interior basic path of the form p2,j with 2 6= j.

From the claim and the above observation, by relabelling the points pi if nec-
essary, we may assume that either τ(1) 6= 1 ∈ N or τ = Id and there exist
w1, w2 ∈ {2, 3, . . . , k}, w1 6= w2 such that some exterior basic path in Cw1 f -covers
the interior basic path pw1,w2 .

We consider the pattern obtained from P by collapsing the edge 〈v, p1〉 to a
point. In this way we obtain a pattern P ′ =

(
[T ′, P ′], [κ ◦ f ◦ κ−1

∣∣
P ′ ]
)
(where κ

is the standard projection from T to the tree T ′ obtained by collapsing the edge
〈v, p1〉 of T and P ′ = κ(P )). As in the Case f(v) 6= v, P ′ is maximal, simplicial
and MP (P ′) is irreducible.

We will prove that h(P ′) > h(P). As in the case f(v) 6= v this will be done
with the help of two intermediate matrices (each of them “closer” to the matrix
MP (P ′)) in a sequence of three lemmas. To this end we need to extend the notions
of interior and exterior basic path, defined for the P-path graph, to the P ′-path
graph as we did in the Case f(v) 6= v.

Let f ′ be a map from T ′ to itself such that P ′ = [T ′, P ′, f ′] and (T ′, P ′, f ′) is a
monotone model. Set p′i = κ(pi) and C

′
i = κ(Ci) for i = 1, 2, . . . , k. The basic path

{p′1, p′j} of (T ′, P ′) with j ∈ {2, 3, . . . , k} will be denoted by p′1,j (or p
′
j,1) and called

an interior basic path of the P ′-path graph. Every other basic path of the P ′-path
graph will be called an exterior basic path. The set of exterior basic paths of the
P ′-path graph will be denoted by E ′.

Now we define the first one of the intermediate matrices. To do it observe that,
for any i, j ∈ {1, . . . , k}, i 6= j,

(9) pi,j f -covers pu,v if and only if {u, v} = {τ(i), τ(j)}.
This means that the matrix MP (P) has a 1 in every entry that is in a row corre-
sponding to an interior basic path pi,j with i 6= j and in the column corresponding
to pτ(i),τ(j). Every other entry in the same row and in the column corresponding
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to an interior basic path different from pτ(i),τ(j) has a 0. In particular, if we take
i, j so that 1 /∈ {i, j}, the matrix MP (P) has a 0 in the columns corresponding to
the paths pτ(1),τ(i) and pτ(1),τ(j) (in the row corresponding to pi,j).

LetM be the matrix obtained fromMP (P) by modifying the rows corresponding
to the interior basic paths pi,j with 1 < i < j ≤ k in the following way. We
substitute the 1 appearing in the column corresponding to pτ(i),τ(j) by a 0 and we
substitute the 0’s in the columns corresponding to pτ(1),τ(i) and pτ(1),τ(j) by a 1.

The definition of the matrix M is motivated as follows. Let p′1,i (with i 6= 1) be
an interior basic path of the P ′-path graph. By the definition of τ and (T ′, P ′, f ′),
f ′(p′1) ∈ C′

τ(1) and f ′(p′i) ∈ C′
τ(i). By definition p′1,i f

′-covers p′1,j if and only if

p′1,j ⊂ 〈f ′(p′1), f
′(p′j)〉, which is equivalent to j ∈ {τ(1), τ(i)}. So the definition of

M is natural taking into account that, as previously stated, we want that M is
“closer” to MP (P ′) than MP (P).

The relation between the entropy of P and the spectral radius of M is given by
the following

Lemma 7.6. With the above notations log σ(M) ≥ h(P).

The proof of Lemma 7.6 is based in the comparison of loops of the P-path
graph and the M -induced graph. To this end we need some more notation and two
technical results. In what follows we identify the vertices of the M -induced graph
with the vertices of the P-path graph. In particular the notions of interior and
exterior basic paths are extended to the M -induced graph.

We will denote by BE the set of paths α0 −→ α1 −→ · · · −→ αm in the P-path
graph such that m ≥ 2, α0, αm ∈ E and α1, α2, . . . , αm−1 are interior basic paths.
In a similar way, BE

M will denote the set of paths β0 −→ β1 −→ · · · −→ βm in the
M -induced graph such that m ≥ 2, β0, βm ∈ E and β1, β2, . . . , βm−1 are interior
basic paths of the P-path graph.

Lemma 7.7. There exists an injective length preserving map ψ : BE −→ BE
M such

that the initial and final vertices of ψ(α) coincide with those of α for every α ∈ BE .

Proof. Let α ∈ BE be a loop of length q ≥ 2. From (9) it follows that α is of the
form

α0 −→ pa,b −→ pτ(a),τ(b) −→ · · · −→ pτq−2(a),τq−2(b) −→ αq.

If q = 2 then α is also a path in the M -induced graph and we set ψ(α) = α.
Thus, in the rest of the proof we assume q ≥ 3.

Note that pτq−2(a),τq−2(b) only f -covers exterior basic paths in Bτq−2(a)∪Bτq−2(b).
So, either αq ∈ Bτq−2(a) or αq ∈ Bτq−2(b). Assume for definiteness that αq ∈
Bτq−2(a).

Set t0 = b and observe that α0 −→ pa,t0 is a path of length 1 in the M -induced
graph with t0 6= a = τ0(a).

We will inductively show that if 0 ≤ i < q − 2 and

α0 −→ pa,t0 −→ pτ(a),t1 −→ pτ2(a),t2 −→ · · · −→ pτ i(a),ti

is a path in theM -induced graph where tj ∈ {1, 2, . . . , k}\{τ j(a)} for j = 0, 1, . . . , i,
then there exists ti+1 ∈ {1, 2, . . . , k} \ {τ i+1(a)} such that

α0 −→ pa,t0 −→ pτ(a),t1 −→ pτ2(a),t2 −→ · · · −→ pτ i(a),ti −→ pτ i+1(a),ti+1

is a path of length i + 2 in the M -induced graph. If 1 /∈ {τ i(a), ti} then, by the
definition of M ,

α0 −→ pa,t0 −→ pτ(a),t1 −→ pτ2(a),t2 −→ · · · −→ pτ i(a),ti −→ pτ i+1(a),τ(1)

is a path in the M -induced graph. Since τ i(a) 6= 1 and τ is a permutation it follows
that τ i+1(a) 6= τ(1). Thus, the claim holds in this case by taking ti+1 = τ(1).
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Assume that 1 ∈ {τ i(a), ti}. Then,
α0 −→ pa,t0 −→ pτ(a),t1 −→ pτ2(a),t2 −→ · · · −→ pτ i(a),ti −→ pτ i+1(a),τ(ti)

is a path in theM -induced graph. Since τ i(a) 6= ti and τ is a permutation it follows
that τ i+1(a) 6= τ(ti) and the claim follows by taking ti+1 = τ(ti).

By the claim it follows that

α0 −→ pa,t0 −→ pτ(a),t1 −→ pτ2(a),t2 −→ · · · −→ pτq−2(a),tq−2

is a path in BE
M . Thus, since αq ∈ Bτq−2(a),

ψ(α) := α0 −→ pa,t0 −→ pτ(a),t1 −→ pτ2(a),t2 −→ · · · −→ pτq−2(a),tq−2
−→ αq

is a path in BE
M of length q. This completes the definition of the map ψ.

Notice that α is uniquely determined by its length, the arrow α0 −→ pi,j and αq.
By the above construction this also determines uniquely ψ(α). So, ψ is injective. �

Given a loop α = α0 −→ α1 −→ · · · −→ αm −→ α0 in a combinatorial ori-
ented generalized graph we define the shift of α, denoted by S(α), as the loop
α1 −→ α2 −→ · · · −→ αm −→ α0 −→ α1. For ℓ ≥ 0 we will also denote
by Sℓ the ℓ-fold shift. This means that S0(α) = α and if j ≡ ℓ (mod m) then
Sℓ(α) = αj −→ αj+1 −→ · · · −→ αm−1 −→ α0 −→ α1 −→ · · · −→ αj−1 −→ αj .

We also denote by ELm the set of all loops of length m in the P-path graph that
contain some exterior basic path and by Lm

M the set of all loops of length m in the
M -induced graph.

Lemma 7.8. There exists an injective map φ : ELm −→ Lm
M .

Proof. We define the map φ with the help of the map ψ obtained in Lemma 7.7.
To this end we introduce the following notation.

We will denote by EP the set of all paths in the P-path graph that do not
contain interior basic paths. Also, given a path α ∈ ELm we will denote by i(α)
the number of consecutive interior basic paths at the beginning of α. That is, if
α = α0 −→ α1 −→ · · · −→ αm−1 −→ α0, then i(α) is defined so that αi(α) ∈ E but
α0, α1, . . . , αi(α)−1 are interior basic paths.

Now we define φ(α) for α ∈ ELm. We start with the case i(α) = 0. If α ∈
EP then, since the entries of the matrix M corresponding to rows and columns
associated with exterior basic paths coincide with those of MP (P), it follows that
α is also a path in the M -induced graph. So, we set φ(α) = α.

Assume now that α /∈ EP (and i(α) = 0). Then α can be written in concate-
nation form as α = α1β1

α2β2
. . . αnβn

αn+1 where n ≥ 1, β
1
, β

2
, . . . , β

n
∈ BE and

α1, α2, . . . , αn, αn+1 are either empty paths or paths from EP . We set

φ(α) := α1ψ(β1
)α2ψ(β2

) . . . αnψ(βn
)αn+1.

Clearly φ(α) ∈ Lm
M since ψ is length preserving and, for every i, ψ(β

i
) has the same

initial and final vertices as β
i
.

When i(α) 6= 0 then α /∈ EP and we have i
(
Si(α)(α)

)
= 0. Hence φ

(
Si(α)(α)

)

is already defined. We set

φ(α) := Sm−i(α)
(
φ
(
Si(α)(α)

))
.

Clearly φ is a well defined map from ELm to Lm
M . To end the proof of the lemma

we have to see that φ is injective. Observe that φ(α) = Sm−i(α)
(
φ
(
Si(α)(α)

))
for

every α ∈ ELm (independently on the fact that i(α) is positive or zero). Moreover,
α starts with an exterior basic path if and only if φ(α) also starts with an exterior
basic path.



MAXIMIZING ENTROPY OF CYCLES ON TREES 29

We claim that

φ (S(α)) = S (φ(α)) .

To prove the claim we start with the case i(α) > 0. Clearly, i(S(α)) = i(α)− 1 ≥ 0
and, hence,

S (φ(α)) = S
(
Sm−i(α)

(
φ
(
Si(α)(α)

)))
= Sm−i(S(α))

(
φ
(
Si(α)−1(S(α))

))

= φ(S(α)).

Now we assume that i(α) = 0. If i(S(α)) = ℓ > 0, then, in a similar way as before,
α = β

1
α2β2

. . . αnβn
αn+1 where n ≥ 1, β

1
, β

2
, . . . , β

n
∈ BE and α2, . . . , αn, αn+1

are either empty paths or paths from EP . Clearly, Sℓ+1(α) = α2β2
. . . αnβn

αn+1β1

and i
(
Sℓ+1(α)

)
= 0. Hence, from the definition of φ for the case i(α) = 0,

φ
(
Sℓ+1(α)

)
= φ

(
α2β2

. . . αnβn
αn+1β1

)
= α2ψ(β2

) . . . αnψ(βn
)αn+1ψ(β1

)

= Sℓ+1
(
ψ(β

1
)α2ψ(β2

) . . . αnψ(βn
)αn+1

)
= Sℓ+1 (φ(α))

and thus,

φ (S(α)) = Sm−ℓ
(
φ
(
Sℓ(S(α))

))
= Sm−ℓ

(
Sℓ+1 (φ(α))

)
= S (φ(α)) .

Finally, if i(α) = i(S(α)) = 0, with the same notation as before we can write

α = (α0 −→ α1)α1β1
α2β2

. . . αnβn
αn+1.

Hence,

φ (S(α)) = φ
(
α1β1

α2β2
. . . αnβn

αn+1(α0 −→ α1)
)

= α1ψ(β1
)α2ψ(β2

) . . . αnψ(βn
)αn+1(α0 −→ α1) and

φ(α) = (α0 −→ α1)α1ψ(β1
)α2ψ(β2

) . . . αnψ(βn
)αn+1.

Consequently, φ (S(α)) = S (φ(α)) . This ends the proof of the claim.
To end the proof of the lemma we have to show that if α, β ∈ ELm, α 6= β then

φ(α) 6= φ(β). The statement clearly holds when one of α or β belongs to EP since
φ
∣∣
EP is the identity and φ(γ) contains interior basic paths of the P-path graph

whenever γ /∈ EP (Lemma 7.7). So, we may assume that α, β /∈ EP .
We assume for definiteness that i(α) ≥ i(β). By way of contradiction we also

assume that φ(α) = φ(β). Then, by the iterative use of the claim, φ
(
Si(β)(α)

)
=

φ
(
Si(β)(β)

)
. On the other hand, Si(β)(β) = 0 and so, Si(β)(β) starts with an ex-

terior basic path. Hence, φ
(
Si(β)(β)

)
= φ

(
Si(β)(α)

)
starts with an exterior basic

path which implies that Si(β)(α) also starts with an exterior basic path. Conse-
quently, i(Si(β)(α)) = i(Si(β)(β)) = 0. By the definition of φ and the injectivity
of ψ (Lemma 7.7), φ

(
Si(β)(α)

)
= φ

(
Si(β)(β)

)
implies that Si(β)(α) = Si(β)(β); a

contradiction. �

Now we are ready to prove Lemma 7.6.

Proof of Lemma 7.6. The proof is based on the comparison of the number of loops
of length m in the M -induced graph and in the P-path graph.

First we claim that the number of loops of a fixed length m in the P-path graph

that contain only interior basic paths is bounded above by k(k−1)
2 (recall that k is

the cardinality of Cv). Let α = pi,j −→ α1 −→ α2 −→ · · · −→ αm−1 −→ pi,j be
one of these loops. By (9), α is of the form pi,j −→ pτ(i),τ(j) −→ pτ2(i),τ2(j) −→ · · ·
−→ pτm−1(i),τm−1(j) −→ pi,j and hence it is uniquely determined by pi,j . Thus, the
number of loops of fixed length m in the P-path graph that contain only interior
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basic paths is bounded above by the number of interior basic paths which is k(k−1)
2

since k = |Cv|. This ends the proof of the claim.
From Lemma 3.1(a) it follows that, for every m ∈ N, tr(Mm) = |Lm

M | and
tr(MP (P)m) is the number of loops of length m in the P-path graph. The set
of such loops is, by definition, ELm together with the set of loops of length m in
the P-path graph that contain only interior basic paths. So, by the the claim and
Lemma 7.8,

tr(MP (P)m) ≤ |ELm|+ k(k − 1)

2
= |φ(ELm)|+ k(k − 1)

2

≤ |Lm
M |+ k(k − 1)

2
= tr(Mm) +

k(k − 1)

2
.

Consequently, by [5, Lemma 4.4.2],

σ(M) = lim sup
m→∞

m
√
tr(Mm) = lim sup

m→∞

m

√
tr(Mm) +

k(k − 1)

2

≥ lim sup
m→∞

m
√
tr(MP (P)m) = σ(MP (P)),

and the lemma follows from Remark 7.2. �

Now we consider the matrix M̃ obtained from M in the following way. For any
1 < i < j ≤ k we modify the entries corresponding to the row pi,j and to any
column corresponding to an exterior basic path contained in B1 by putting a 2 in
each of these entries. As we did for the matrix M we identify the vertices of the

M̃ -induced graph with the vertices of theM -induced graph (and, hence, with those
of the P-path graph). In particular the notions of interior and exterior basic paths

are extended to the M̃ -induced graph.
Observe that, by definition, the coverings between the elements of E ′ in the P ′-

path graph and the coverings between the elements of E in the M -induced and

the M̃ -induced graphs are in one-to-one correspondence. Moreover, in view of the
definition of τ , it follows that

(10)

for every interior path pi,j , there exists an exterior basic path

E ∈ B1 such that pi,j −→ E is an arrow in the M̃ -induced
graph.

In the next two lemmas we will prove

log σ(M) < log σ(M̃) = h(P ′).

This, together with Lemma 7.6, will give Theorem 7.1 in the case f(v) = v.

Lemma 7.9. With the above notations σ(M) < σ(M̃).

Proof. The proof follows the same approach as in Lemma 7.4.
First of all we claim that any pair of exterior basic paths of the P-path graph

(and, hence, of the M̃ -induced graph) can be joined by a path in the M̃ -induced

graph. To prove the claim take E, Ê ∈ E . Since MP (P ′) is irreducible, it follows

from Lemma 3.1(a,b) that there exists a path from E′ to Ê′ in the P ′-path graph

where E′, Ê′ denote the elements of E ′ corresponding to E and Ê, respectively.

If such a path does not contain interior basic paths, by the definition of M̃, a

corresponding path from E to Ê also exists in the M̃ -induced graph. This ends the
proof of the claim in this case.

Assume now that the above minimal path contains interior basic paths. Such
a path can be written as a concatenation of paths γ′1γ

′
2 · · · γ′m such that each γ′i

begins and ends with an external basic path (γ′1 begins with E′ and γ′m ends with
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Ê′), contains interior basic paths and all interior basic paths contained in each γ′i
are consecutive.

We will show that for each γ′i = E′i
1 −→ E′i

2 −→ · · · −→ E′i
ni

there exists a path γi

from Ei
1 to E

i
ni

in the M̃ -induced graph, where Ei
1 (respectively E

i
ni
) is the external

basic path of the M̃ -induced graph that corresponds to E′i
1 (respectively E′i

ni
). In

particular, γ1 begins with E and γm ends with Ê. Thus, we can concatenate the

paths γi to get a path γ1γ2 · · · γm from E to Ê and the claim follows.
Now we will show that for each path γ′i = E′i

1 −→ E′i
2 −→ · · · −→ E′i

ni
with the

above properties there exists a path γi from Ei
1 to Ei

ni
in the M̃ -induced graph.

By the definition of P ′, for every i ∈ {2, 3, . . . , k}, p′1,i only f ′− covers the inte-
rior basic paths p′1,τ(i) and p′1,τ(1). Thus, the path γ′i is of the form E′

1 −→ · · ·
−→ E′

m1
−→ p′1,ℓ0 −→ p′1,ℓ1 −→ · · · −→ p′1,ℓr −→ Ê′

1 −→ · · · −→ Ê′
m2

where

Ê′
m2

= E′i
ni
, all basic paths in E′

1 −→ · · · −→ E′
m1

and Ê′
1 −→ · · · −→ Ê′

m2

are exterior basic paths, ℓ0 ∈ {2, 3, . . . , k}, r ≥ 0 and ℓi ∈ {τ(ℓi−1), τ(1)} ⊂
{τ i(ℓ0), τ(1), τ2(1), . . . , τ i(1)} for i = 1, 2, . . . , r.

Since the coverings between the elements of E ′ in the P ′-path graph and the

coverings between the elements of E in the M -induced and the M̃ -induced graphs

are in one-to-one correspondence, E1 −→ · · · −→ Em1 and Ê1 −→ · · · −→ Êm2 are

paths in the M̃ -induced graph, where E1, . . . , Em1 , Ê1, . . . , Êm2 are the elements of

E corresponding to E′
1, . . . , E

′
m1
, Ê′

1, . . . , Ê
′
m2
, respectively. By the definition of P ′,

Ê1 ∈ B1 ∪Bℓr .
Assume that there exists j /∈ {1, ℓ0} such that E′

m1
f ′-covers p′1,j . Then, clearly,

Em1 f -covers pℓ0,j and, in the case Ê1 ∈ B1, it follows by the definition of M̃ that

E1 −→ · · · −→ Em1 −→ pℓ0,j
1−−→ Ê1 −→ · · · −→ Êm2 is a path in the M̃ -induced

graph and we are done.

Assume now that Ê1 ∈ Bℓr . Then, any interior basic path of the form pℓr,a
f -covers Ê1. So, by definition, the M -induced and M̃ -induced graphs contain the

arrow pℓr,a −→ Ê1 and E1 −→ · · · −→ Em1 −→ pℓ0,j −→ pτ(ℓ0),τ(1) is a path in

the M̃ -induced graph. If r = 0 then E1 −→ · · · −→ Em1 −→ pℓ0,j −→ Ê1 −→ · · ·
−→ Êm2 is the path in the M̃ -induced graph that we are looking for. Assume now
that r ≥ 1. If ℓr = τr(ℓ0), in a similar way to the inductive step in the proof of
Lemma 7.7, there exist t1 = τ(1), t2, t3, . . . , tr with ti ∈ {1, 2, . . . , k} \ {τ i(ℓ0)} for
i = 1, 2, . . . , r such that

E1 −→ · · · −→ Em1 −→ pℓ0,j −→
pτ(ℓ0),t1 −→ pτ2(ℓ0),t2 −→ pτ3(ℓ0),t3 −→ · · · −→ pτr(ℓ0),tr −→

Ê1 −→ · · · −→ Êm2

is a path in the M̃ -induced graph. If ℓr 6= τr(ℓ0) then ℓr = τm(1) with 1 ≤ m ≤ r.
As above, there exist t1 = τ(ℓ0), t2, t3, . . . , tm such that

E1 −→ · · · −→ Em1 −→ pℓ0,j −→
pτ(1),t1 −→ pτ2(1),t2 −→ pτ3(1),t3 −→ · · · −→ pτm(1),tm −→

Ê1 −→ · · · −→ Êm2

is a path in the M̃ -induced graph and the claim follows when there exists j /∈ {1, ℓ0}
such that E′

m1
f ′-covers p′1,j .

Now assume that, for every j /∈ {1, ℓ0}, E′
m1

does not f ′-cover p′1,j . In this
situation Em1 f -covers p1,ℓ0 and using arguments similar to those above, we also
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obtain a path from E1 to Êm2 in the M̃ -induced graph. This ends the proof of the
claim.

We will say that a basic path π of the M̃ -induced graph is admissible if there

exists a path in the M̃ -induced graph beginning at some exterior basic path and
ending at π. Let ∆ be the set of all admissible basic paths. By the claim, E ⊂ ∆.

We claim that the set ∆ is transitive. We have to see that for every π1, π2 ∈ ∆

there exists a path from π1 to π2 in the M̃ -induced graph using only elements of
∆. When π ∈ E this statement follows exactly as in Lemma 7.4.

Assume that π /∈ E . By (10) there exists an exterior basic path E ∈ B1 such that

π −→ E is an arrow in the M̃ -induced graph. Since π2 ∈ ∆ there exists a basic

path γ in the M̃ -induced graph from an exterior basic path Ê to π2 containing only
elements of ∆ (if p2 ∈ E this path can be taken to be the empty path). By the

previous claim there exists a basic path α from E to Ê in the M̃ -induced graph
containing only elements of ∆. Then the concatenated path (π −→ E)αγ is a path

from π1 to π2 in the M̃ -induced graph containing only elements of ∆. This ends
the proof that ∆ is transitive.

Now let Y denote the set of basic paths of the M̃ -induced graph that do not
belong to ∆. Clearly Y is disjoint from E and so, it only contains interior basic

paths. The columns of the matrix M̃ corresponding to the elements of Y are
identically zero. To see this notice that, by definition, there are no arrows from
any element of ∆ to any element of Y . Also, there are no arrows from any element
of Y to any element of Y . Indeed, all elements of Y are interior basic paths and
by definition they have only arrows to interior basic paths of the form pj,τ(1) that

belong to ∆. Moreover, since M ≤ M̃ it follows that the columns of the matrix M
corresponding to the elements of Y are also identically zero.

Denote by M ′ and M̃ ′ the matrices obtained respectively from M and M̃ by
deleting the rows and the columns corresponding to the vertices in Y . As in

Lemma 7.4, σ(M̃ ′) = σ(M̃) and σ(M ′) = σ(M). On the other hand, the ma-

trix M̃ ′ is irreducible because the set ∆ is transitive (i.e. any two elements of ∆
can be joined by a path in the M -induced graph using only elements of ∆ — see

Lemma 3.1(a,b)). Clearly, M̃ ′ ≥M ′ because M̃ ≥M . We claim that M̃ ′ 6=M ′. If
the claim holds, by Lemma 3.1(d),

σ(M̃) = σ(M̃ ′) > σ(M ′) = σ(M)

and the lemma is proved.

Now we prove that M̃ ′ 6= M ′. In the case τ = Id we know by construction
that there exist w1, w2 ∈ {2, 3, . . . , k}, w1 6= w2 such that some exterior basic path
f -covers the interior basic path pw1,w2 . Since this kind of arrows from the P-path

graph have been preserved in the M -induced and the M̃ -induced graphs, pw1,w2 ∈
∆. Thus, M̃ ′ 6= M ′ because in the definition of M̃ we have strictly increased the
entries corresponding to the row of pw1,w2 and the columns corresponding to the

elements in B1 ⊂ E ⊂ ∆ (since 1 ∈ N , B1 6= ∅). Hence, M̃ ′ 6=M ′ in this case.
Assume now that τ 6= Id . It is enough to show that there exists w /∈ {1, τ(1)}

such that pw,τ(1) ∈ ∆. Indeed: since 1 /∈ {w, τ(1)}, in the definition of M̃ we
have strictly increased the entries corresponding to the row pw,τ(1) in the columns

corresponding to the elements in B1 ⊂ ∆ (and hence, M̃ ′ 6=M ′).
The rest of the proof of the lemma will be devoted to show that, when τ 6= Id,

there exists w /∈ {1, τ(1)} such that pw,τ(1) ∈ ∆.
Assume that there exists E′ ∈ E ′ such that E′ f ′-covers p′1,r and p′1,l with r 6= l.

Since τ is a permutation, one of r and l, say r for definiteness, verifies τ(r) 6= 1. Also,
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τ(r) 6= τ(1) because r 6= 1. By the definition of M and M̃ , E −→ pr,l −→ pτ(r),τ(1)

is a path in the M̃ -induced graph and the claim follows from the definition of ∆ by
setting w = τ(r).

Now assume that every exterior basic path of P ′ f ′-covers at most one interior
basic path. There exists E′ ∈ E ′ such that E′ f ′-covers a unique p′1,r with r 6= 1. In

this case the M̃ -induced graph has the path E −→ p1,r −→ pτ(r),τ(1). If τ(r) 6= 1
then the claim follows from the definition of ∆ by setting w = τ(r).

Suppose now that τ(r) = 1. We know that the M̃ -induced graph has the path
E −→ p1,r −→ p1,τ(1) −→ pτ2(1),τ(1). If τ

2(1) 6= 1 then, again, the claim follows by

setting w = τ2(1).
We are left with the case τ2(1) = 1 and if an exterior basic path of P ′ f ′-

covers one interior basic path then this basic path is precisely p′1,r with r = τ(1).
Clearly, in this situation, the only interior basic path f ′-covered by p′1,τ(1) is itself.
Consequently, the set of vertices E ′ ∪ {p′1,τ(1)} is invariant in the P ′-path graph

(i.e. every path starting at E ′ ∪ {p′1,τ(1)} has all vertices in E ′ ∪ {p′1,τ(1)}). This

contradicts the irreducibility of MP (P ′) (Lemma 3.1(a,b)). �

Lemma 7.10. With the above notations log σ(M̃) = h(P ′)

In what follows we will denote by Orbτ (a) the set {a, τ(a), τ2(a), . . . }. Clearly,
since τ is a permutation over a set of cardinality k, Orbτ (a) has cardinality at most
k for every a.

Proof of Lemma 7.10. From the proof of Lemma 7.5 we have to show that σ(M̃ ′) =
σ(MP (P ′)), where M̃ ′ is the matrix from the proof of the previous lemma. Again
by the proof of Lemma 7.5 it is enough to show that, given two exterior basic paths
E′

1, E
′
2 ∈ E ′ and m ≥ 2, the number of paths of the P ′-path graph of the form

E′
1 −→ π′

1 −→ π′
2 −→ · · · −→ π′

m−1 −→ E′
2, where π

′
1, π

′
2, . . . , π

′
m−1 are interior

basic paths, coincides with the number of paths of the M̃ -induced graph of the form
E1 −→ π1 −→ π2 −→ · · · −→ πm−1 −→ E2, where π1, π2, . . . , πm−1 are interior
basic paths.

We prove this in the case τ 6= Id. The case τ = Id is simpler and we leave the
details to the reader.

We start by proving the statement in the case m = 2. Let E′
1 −→ p′1,i1 −→ E′

2

be a path of length 2 in the P ′-path graph from E′
1 to E′

2. The fact that the above
path ends with p′1,im−1

−→ E′
2 implies that E2 ∈ B1 ∪Bim−1 .

If p′1,i1 is the unique interior basic path f ′-covered by E′
1 then the above path is

the unique path of length 2 in the P ′-path graph starting with E′
1 and ending with

E′
2 and E1 −→ p1,i1 −→ E2 is the unique path of length 2 in the M̃ -induced graph

joining E1 and E2. Thus the lemma holds in this case.
Now assume that, additionally, E′

1 f
′−covers p′1,b1 with b1 6= i1 (1 /∈ {i1, b1}). If

E2 ∈ Bi1 then, as before, E′
1 −→ p′1,i1 −→ E′

2 is the unique path of length 2 in the
P ′-path graph starting with E′

1 and ending with E′
2 and E1 −→ pi1,b1 −→ E2 is

the unique path of length 2 in the M̃ -induced graph joining E1 and E2.
When E2 /∈ Bi1 it follows that E2 ∈ B1 and there are exactly two paths of length

2 in the P ′-path graph starting with E′
1 and ending with E′

2 : E′
1 −→ p′1,i1 −→ E′

2

and E′
1 −→ p′1,b1 −→ E′

2. On the other and, from the definition of the matrix M̃ it

follows that there are exactly two paths of length 2 in the M̃ -induced graph starting

with E1 and ending with E2 : E1 −→ pi1,b1
1−−→ E2 and E1 −→ pi1,b1

2−−→ E2. This

ends the proof of the lemma in the case m = 2. So, in the rest of the proof we
assume that m ≥ 3.
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By the definition of P ′, for every i ∈ {2, 3, . . . , k}, p′1,i only f ′− covers the
interior basic paths p′1,τ(i) and p′1,τ(1). Thus, the path E′

1 −→ π′
1 −→ π′

2 −→ · · ·
−→ π′

m−1 −→ E′
2 is of the form

E′
1 −→ p′1,i1 −→ p′1,i2 −→ · · · −→ p′1,im−1

−→ E′
2

with i1 ∈ {2, 3, . . . , k} and i2, i3, . . . , im−1 ∈ Orbτ (1) ∪ Orbτ (i1) such that ij /∈
Orbτ (1) implies i1, i2, . . . , ij−1 /∈ Orbτ (1) for j = 2, 3, . . . ,m− 1. Moreover, in such
case ij = τ j−1(i1). Also, as in the case m = 2, E2 ∈ Bℓ with ℓ ∈ {1, im−1}.

Concerning the M̃ -induced graph, from (9), the definition ofM and the fact that

in the definition of M̃ we did not modify the entries corresponding only to interior
paths, it follows that the path E1 −→ π1 −→ π2 −→ · · · −→ πm−1 −→ E2 is of the
form

E1 −→ pa1,b1 −→ pτ(1),t2 −→ · · · −→ pτ(1),tm−1
−→ E2

with a1, b1 ∈ {1, 2, 3, . . . , k} and t2, t3, . . . , tm−1 ∈ Orbτ (1) ∪ Orbτ (a1) ∪ Orbτ (b1)
such that tj /∈ Orbτ (1) implies t2, t3, . . . , tj−1 /∈ Orbτ (1) for j = 2, 3, . . . ,m − 1.
Moreover if a1 /∈ Orbτ (1) and tj ∈ Orbτ (a1) then tj = τ j−1(a1) for j = 2, 3, . . . ,m−
1, and the same holds for b1 instead of a1.

Assume first that ℓ /∈ Orbτ (1). Then, ℓ = im−1 = τm−2(i1), i1 /∈ Orbτ (1) and

E′
1 −→ p′1,i1 −→ p′1,τ(i1) −→ · · · −→ p′1,τm−2(i1)

−→ E′
2

is a path of length m in the P ′-path graph starting with E′
1 and ending with E′

2.
If p′1,i1 is the unique interior basic path f ′-covered by E′

1 then the above path

is the unique path of length m in the P ′-path graph starting with E′
1 and ending

with E′
2 having all basic paths different from E′

1 and E′
2 interior and

E1 −→ p1,i1 −→ pτ(1),τ(i1) −→ · · · −→ pτ(1),τm−2(i1) −→ E2

is the unique path of length m in the M̃ -induced graph joining E1 and E2 and
having all basic paths different from E1 and E2 interior. Thus the lemma holds in
this case.

Now assume that E′
1 f

′−covers p′1,b1 with b1 6= i1 (1 /∈ {i1, b1}). Clearly,
E1 −→ pi1,b1 −→ pτ(1),τ(i1) −→ · · · −→ pτ(1),τm−1(i1) −→ E2

is the unique path of length m in the M̃ -induced graph joining E1 and E2 and
having all basic paths different from E1 and E2 interior. To prove the lemma in
this case we have to show that

E′
1 −→ p′1,i1 −→ p′1,τ(i1) −→ · · · −→ p′1,τm−2(i1)

−→ E′
2

is the unique path of length m in the P ′-path graph starting with E′
1 and end-

ing with E′
2 and having all basic paths different from E′

1 and E′
2 interior. Ob-

serve that there is a unique path in the P ′-path graph of length m − 1 starting
with E′

1 −→ p′1,b1 : E′
1 −→ p′1,b1 −→ p′1,b2 −→ · · · −→ p′1,bm−1

with bm−1 ∈
Orbτ (1) ∪ Orbτ (b1). If, additionally, p′1,bm−1

f ′-covers some exterior basic path

then this must belong to B1 ∪ Bbm−1 . Since ℓ /∈ Orbτ (1) it follows that ℓ 6= bm−1

when bm−1 ∈ Orbτ (1). On the other hand, when bm−1 /∈ Orbτ (1), b1 6= i1 im-
plies bm−1 = τm−2(b1) 6= τm−2(i1) = ℓ. Thus, in any case ℓ /∈ {bm−1, 1}, and
E′

1 −→ p′1,b1 −→ p′1,b2 −→ · · · −→ p′1,bm−1
−→ E2 is not a path in the P ′-path

graph because E2 ∈ Bℓ. This ends the proof of the lemma in the case ℓ /∈ Orbτ (1).
Assume now that ℓ ∈ Orbτ (1) and denote by p the τ−period of 1. We also

assume that p > 2 (that is, τ2(1) 6= 1). The proof in the case p = 2 works in a
similar way with minor changes.

To deal with this case we introduce the following notation. For every r ≥ 2
and i ∈ {1, 2, 3, . . . , p − 1} we denote by βr

i the number of paths of length r in
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the P ′-path graph of the form E′
1 −→ π′

1 −→ π′
2 −→ · · · −→ π′

r−1 −→ p′1,τ i(1)

where π′
1, π

′
2, . . . , π

′
r−1 are interior basic paths. Analogously, for r ≥ 2 and i ∈

{0, 2, 3, . . . , p − 1} we denote by αr
i the number of paths of length r of the M̃ -

induced graph of the form E1 −→ π1 −→ π2 −→ · · · −→ πr−1 −→ pτ(1),τ i(1) where
π1, π2, . . . , πr−1 are interior basic paths. Also, given E′ ∈ E ′ we set

κ(E′) := {i ∈ {2, . . . , k} : E′ f ′ − covers p′1,i}.
Clearly |κ(E′)| ≤ 2.

We claim that, for every r ≥ 2 and i ∈ {2, 3, . . . , p− 1}, βr
i = αr

i and

βr
1 = |κ(E′

1) \Orbτ (1)|+ αr
0 +

p−1∑

i=2

αr
i .

First we will end the proof of the lemma in the case ℓ = τ j(1) with j ∈
{0, 1, 2, . . . , p− 1} by using the claim, and later we will prove the claim.

Denote by h′m the number of paths of length m of the P ′-path graph of the form
E′

1 −→ π′
1 −→ π′

2 −→ · · · −→ π′
m−1 −→ E′

2, where π
′
1, π

′
2, . . . , π

′
m−1 are interior

basic paths and by h̃m the number of paths of of length m of the M̃ -induced graph
of the form E1 −→ π1 −→ π2 −→ · · · −→ πm−1 −→ E2, where π1, π2, . . . , πm−1 are
interior basic paths.

Assume j = 0 (i.e. ℓ = 1). We claim that

h′m = s+

p−1∑

i=1

βm−1
i , and

h̃m = 2

(
s+

p−1∑

i=2

αm−1
i

)
+ αm−1

0 ,

where s = |κ(E′
1) \Orbτ (1)|. We start by proving that h′m = s+

∑p−1
i=1 β

m−1
i . Since

E2 ∈ B1, every path counted in βm−1
i (i.e. every path of length m− 1 of the form

E′
1 −→ π′

1 −→ π′
2 −→ · · · −→ π′

m−2 −→ p′1,τ i(1) where π
′
1, π

′
2, . . . , π

′
m−1 are interior

basic paths) gives a path that must be counted in h′m. Let t ∈ κ(E′
1) \ Orbτ (1).

Then, as in the case ℓ /∈ Orbτ (1),

E1 −→ pt,t′ −→ pτ(1),τ(t) −→ · · · −→ pτ(1),τm−2(t) −→ E2

with t′ = 1 when s = 1 and t′ ∈ κ(E′
1) \ {t} when s = 2 is a path of length m in

the P ′-path graph from E′
1 to E′

2. Since τ
m−2(t) /∈ Orbτ (1) this path is different

from the paths counted in βm−1
i . This proves that h′m = s+

∑p−1
i=1 β

m−1
i .

Now we prove that h̃m = 2
(
s+

∑p−1
i=2 α

m−1
i

)
+ αm−1

0 . We are looking at the

paths of length m − 1 in the M̃ -induced graph of the form E1 −→ π1 −→ π2 −→
· · · −→ πr−1 −→ pτ(1),t where π1, π2, . . . , πr−1 are interior basic paths. From the

definitions it follows that there are αm−1
0 of such paths with t = 1, αm−1

i paths
with t = τ i(1) and i ∈ {2, 3, . . . , p − 1}, and s paths with t /∈ Orbτ (1). Since
E2 ∈ B1, each of the αm−1

0 paths that have t = 1 gives a unique path of length

m in the M̃ -induced graph from E1 to E2 having all basic paths different from
E1 and E2 interior. For the rest of paths (which amount to s +

∑p−1
i=2 α

m−1
i ) it

follows that 1 /∈ {τ(1), t}. To see it recall that 1 6= τ(1) by assumption and 1 6= t
when t /∈ Orbτ (1). Observe also that, since p is the τ -period of 1 and p > 2,

1 6= τ i(1) for i ∈ {2, 3, . . . , p− 1}. Hence, by the definition of the matrix M̃ , each

of these paths gives two paths of length m in the M̃ -induced graph from E1 to E2

having all basic paths different from E1 and E2 interior: E1 −→ π1 −→ π2 −→ · · ·
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−→ πr−1 −→ pτ(1),t
1−−→ E2 and E1 −→ π1 −→ π2 −→ · · · −→ πr−1 −→ pτ(1),t

2−−→
E2. This shows the above formula for h̃m.

By the two formulas above for h′m and h̃m, and the claim we get

h′m = s+ βm−1
1 +

p−1∑

i=2

βm−1
i = s+

(
s+ αm−1

0 +

p−1∑

i=2

αm−1
i

)
+

p−1∑

i=2

αm−1
i

= 2

(
s+

p−1∑

i=2

αm−1
i

)
+ αm−1

0 = h̃m.

When j = 1 (i.e. ℓ = τ(1)), in a similar way as in the case j = 0 we get

h′m = βm−1
1 and h̃m = |κ(E′

1) \Orbτ (1)| + αm−1
0 +

∑p−1
i=2 α

m−1
i . By the claim

h′m = h̃m.

Finally, if j ≥ 2, h′m = βm−1
j and h̃m = αm−1

j and the lemma follows again from
the claim.

Now we prove the claim by induction on r. We will prove the claim assuming
that E′

1 f
′-covers a unique interior basic path p′1,i1 (so, |κ(E′

1) \Orbτ (1)| ≤ 1). The
proof in the case when E′

1 f
′-covers two interior basic paths follows in a similar

way with the help of paths described above.
When r = 2 and i1 6= τp−1(1) there are only two paths of length r in the P ′-

path graph starting with E′
1 and containing only interior basic paths except for

E′
1: E

′
1 −→ p′1,i1 −→ p′1,τ(1) and E

′
1 −→ p′1,i1 −→ p′1,τ(i1). In the M̃ -induced graph

there is a unique path of length r starting with E1 and containing only interior
basic paths except for E1: E1 −→ p1,i1 −→ pτ(1),τ(i1).

If i1 /∈ Orbτ (1) then, from the definitions we get |κ(E′
1) \Orbτ (1)| = 1, β2

1 = 1,
α2
0 = 0 and α2

i = β2
i for i = 2, 3, . . . , p− 1. So, the claim holds in this case.

If i1 = τs(1) with s 6= p − 1 then, |κ(E′
1) \Orbτ (1)| = 0, β2

1 = 1, α2
0 = 0,

α2
s+1 = β2

s+1 = 1 and α2
i = β2

i = 0 for i = 2, 3, . . . , p − 1, i = s + 1. So, the claim
also holds in this case.

Lastly, if r = 2 and i1 = τp−1(1) there is a unique path of length 2 in the

P ′-path graph (respectively in the M̃ -induced graph) starting with E′
1 (respec-

tively E1) and containing only interior basic paths except for the initial one:
E′

1 −→ p′1,τp−1(1) −→ p′1,τ(1) (respectively E1 −→ p1,τp−1(1) −→ pτ(1),1). In

this case we have |κ(E′
1) \Orbτ (1)| = 0, β2

1 = α2
0 = 1 and α2

i = β2
i = 0 for

i = 2, 3, . . . , p− 1 and the claim also holds.
Now assume that the claim holds for r ≥ 2 and prove it for r + 1.
To do this note that from the definitions we get βr+1

i = βr
i−1 for i ≥ 2, αr+1

0 =

αr
p−1 and αr+1

i = αr
i−1 for i ≥ 3. Thus, by the induction hypothesis,

βr+1
i = βr

i−1 = αr
i−1 = αr+1

i

for i ≥ 3.
On the other hand we have αr+1

2 = |κ(E′
1) \Orbτ (1)| + αr

0 +
∑p−1

i=2 α
r
i . Indeed,

in view of the definition of M and M̃ , each path of length r of the M̃ -induced
graph of the form E1 −→ π1 −→ π2 −→ · · · −→ πr−1 −→ pτ(1),τ i(1) with i ∈
{0, 2, . . . , p− 1}, gives the following path of length r+ 1: E1 −→ π1 −→ π2 −→ · · ·
−→ πr−1 −→ pτ(1),τ i(1) −→ pτ(1),τ2(1). Clearly all these paths contribute to αr+1

2

and there are αr
0+
∑p−1

i=2 α
r
i of such paths. On the other hand, if κ(E′

1)\Orbτ (1) =
{i1} then the path E1 −→ p1,i1 −→ pτ(1),τ(i1) −→ · · · −→ pτ(1),τr−1(i1) gives the
path E1 −→ p1,i1 −→ pτ(1),τ(i1) −→ · · · −→ pτ(1),τr−1(i1) −→ pτ(1),τ2(1) of length

r + 1 in the M̃ -induced graph. Since this path also contributes to αr+1
2 and is
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different from the previous ones, we get the formula

αr+1
2 = |κ(E′

1) \Orbτ (1)|+ αr
0 +

p−1∑

i=2

αr
i .

So, by induction we have

αr+1
2 = βr

1 = βr+1
2 .

In a similar way to the computation of αr+1
2 we get

βr+1
1 = |κ(E′

1) \Orbτ (1)|+
p−1∑

i=1

βr
i .

On the other hand, from above and the induction hypothesis, βr
p−1 = αr

p−1 = αr+1
0

and βr
i−1 = αr+1

i for i = 2, . . . , p− 1. Hence,

βr+1
1 = |κ(E′

1) \Orbτ (1)|+ αr+1
0 +

p−1∑

i=2

αr+1
i .

This ends the proof of the lemma. �

Proof of Theorem 7.1. It follows from Lemmas 7.4 and 7.5 in the case f(v) 6= v
and from Lemmas 7.6, 7.9 and 7.10 in the case f(v) = v. �

References

1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math.
Soc. 114 (1965), 309–319. MR 0175106 (30 #5291)
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08913 Cerdanyola del Vallès, Barcelona, Spain

E-mail address: manyosas@mat.uab.cat


